Plasma–assisted conversion of methane and carbon dioxide: myths, challenges and opportunities

N. Pinhão, A. Janeco, J. Branco, L. Redondo, V. Guerra, A. Moura

Técnico/Universidade de Lisboa

npinhao@ctn.ist.utl.pt
1 Background
 - Energy: An urgent problem to mankind
 - An opportunity for plasma systems?

2 Conversion of CH\textsubscript{4} in a DBD
 - Experimental results with CH\textsubscript{4}/CO\textsubscript{2}/He mixtures
 - Application of over-voltages

3 A model of the discharge
 - Electron kinetics in CH\textsubscript{4}/CO\textsubscript{2}/He mixtures
 - A model for breakdown
 - A model for CH\textsubscript{4} and CO\textsubscript{2} conversion

4 Summary
1. **Background**
 - Energy: An urgent problem to mankind
 - An opportunity for plasma systems?

2. **Conversion of CH₄ in a DBD**
 - Experimental results with CH₄/CO₂/He mixtures
 - Application of over-voltages

3. **A model of the discharge**
 - Electron kinetics in CH₄/CO₂/He mixtures
 - A model for breakdown
 - A model for CH₄ and CO₂ conversion

4. **Summary**
Availability of conventional fuels

World:
- Oil: peak in 2015 (?)
- Gas: peak in 2030–2035 (?);
- \(\approx 100 \) years of consumption
- 85\% of global energy is transported by liquid fuels

Figure: Hubbert peak of US oil production
Storage of Energy: energy density

- **Electrical**
 - Batteries
 - Super capacitors

- **Chemical storage**
 - H_2
 - Fuels (>10 more energy density)
Chemical conversion of methane

- $\text{CH}_4 + \text{oxidant (O}_2, \text{CO}_2, \text{H}_2\text{O)} \rightarrow \text{H}_2 + \text{CO (Syngas)}$
 - Syngas \rightarrow H_2
 - Syngas \Rightarrow Fisher-Tropsch \Rightarrow synthetic fuels
- $\text{CH}_4 + \text{oxidant} \Rightarrow \text{CH}_3\text{OH (methanol)}$
Chemical conversion of methane

- $\text{CH}_4 + \text{oxidant (O}_2, \text{CO}_2, \text{H}_2\text{O}) \rightarrow \text{H}_2 + \text{CO (Syngas)}$
 - Syngas $\rightarrow \text{H}_2$
 - Syngas \Rightarrow Fisher-Tropsch \Rightarrow synthetic fuels
- $\text{CH}_4 + \text{oxidant} \Rightarrow \text{CH}_3\text{OH (methanol)}$

Perspectives

- *Conversion of natural gas into liquid fuels \rightarrow large-scale plants;*
- *Hydrogen for fuel cells \rightarrow compact and small syngas units.*
Non-thermal plasmas for conversion of CH$_4$

Main plasma sources used in the conversion of CH$_4$:

- **Dielectric Barrier Discharges**
 - Atmospheric pressure (normally in the filamentary mode);
 - High electron density and energy;
 - Easy to scale up;
 - Coupling between the plasma and a catalyst facilitated.
 - But... works at low gas flux
 - But... low electrode spacing

- **Gliding arc**: $T_e = 1 - 3$ eV $\gg T_g \sim 2000$ K and $T_v \sim 2 T_g$.

- Microwave discharges
1 Background
 - Energy: An urgent problem to mankind
 - An opportunity for plasma systems?

2 Conversion of CH₄ in a DBD
 - Experimental results with CH₄/CO₂/He mixtures
 - Application of over-voltages

3 A model of the discharge
 - Electron kinetics in CH₄/CO₂/He mixtures
 - A model for breakdown
 - A model for CH₄ and CO₂ conversion

4 Summary
Experimental set-up

Diagnostics:
- Conversion and selectivity: GC-FID/TCD
- Power, breakdown voltage: Q-V plots
CH$_4$/CO$_2$/He mixtures: Breakdown voltage

Figure: Gas breakdown voltage for CH$_4$/CO$_2$/He mixtures and [CH$_4$]:[CO$_2$]=1
CH₄/CO₂/He mixtures: Conversion

Figure: Conversion of (a) CH₄ and (b) CO₂ for mixtures with different helium mole fractions of 55%, 70%, 80% and 90% ([CH₄]:[CO₂]=1).
Selectivity for H_2 and CO for mixtures with different helium mole fractions of 55%, 70%, 80% and 90% ([CH$_4$]:[CO$_2$] = 1).
Table: Products and energy efficiency for CH$_4$ conversion in a DBD

Reference valuea (H$_2$): 1.13 eV/molec.

<table>
<thead>
<tr>
<th>Admixture</th>
<th>pure CH$_4$</th>
<th>+ O$_2$ or CO$_2$</th>
<th>+ He, Ar, Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>H$_2$, C$_x$H$_y$, solid-C</td>
<td>H$_2$, CO, CO$_2$a, CH$_3$OH, C$_x$O$_y$H$_z$</td>
<td></td>
</tr>
<tr>
<td>Conv. ab. [total]</td>
<td>40</td>
<td>8.6</td>
<td>5.7</td>
</tr>
<tr>
<td>(MJ/mol) [CH$_4$]</td>
<td>40</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>[CO$_2$]</td>
<td>-</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>E. eff. (H$_2$) eV/molec.</td>
<td>-</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>Comment</td>
<td>C-deposits</td>
<td>H$_2$Ob, liquid products</td>
<td></td>
</tr>
</tbody>
</table>

bwith O$_2$

CH₄/CO₂/rare gas mixtures: Summary

Table: Products and energy efficiency for CH₄ conversion in a DBD

<table>
<thead>
<tr>
<th>Admixture</th>
<th>pure CH₄</th>
<th>+ O₂ or CO₂</th>
<th>+ He, Ar, Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>H₂, CₓHᵧ, solid-C</td>
<td>H₂, CO, CO₂ᵃ</td>
<td>H₂, COₓ, CₓOᵧH₂z</td>
</tr>
<tr>
<td>Conv. ab. [total]</td>
<td>40</td>
<td>8.6</td>
<td>5.7</td>
</tr>
<tr>
<td>(MJ/mol) [CH₄]</td>
<td>40</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>[CO₂]</td>
<td>-</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>E. eff. (H₂) eV/molec.</td>
<td>-</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>Comment</td>
<td>C-deposits</td>
<td>H₂Oᵇ, liquid products</td>
<td></td>
</tr>
</tbody>
</table>

Challenge:

How to explain the results?
How to increase the energy efficiency?

ᵇwith O₂

Results with a rectangular power supply

Figure: Voltage and current signals with a rectangular power supply on mixtures of CH$_4$/CO$_2$ with 60% He.
Results with a rectangular power supply

![Graph showing conversion and selectivity results](image)

Figure: Conversion and selectivity results obtained with sinusoidal or rectangular power supplies on mixtures of CH$_4$/CO$_2$ with 80% He. Conversion ability: (5.7 → 1.8) MJ/mol (H$_2$: 6 eV/molec.)
1 Background
 - Energy: An urgent problem to mankind
 - An opportunity for plasma systems?

2 Conversion of CH$_4$ in a DBD
 - Experimental results with CH$_4$/CO$_2$/He mixtures
 - Application of over-voltages

3 A model of the discharge
 - Electron kinetics in CH$_4$/CO$_2$/He mixtures
 - A model for breakdown
 - A model for CH$_4$ and CO$_2$ conversion

4 Summary
Electron kinetics

Boltzmann equation for an electron swarm:
- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH$_4$ and CO$_2$;

Gas mixtures:

Input: He/CH$_4$/CO$_2$, with $[CH_4]/[CO_2] = 1$;
... + Products: H$_2$, CO
Stoichiometry: $CH_4 + CO_2 \rightarrow 2CO + 2H_2$
Parameters: initial helium concentration and conversion: (η, C)

N. Pinhão, A. Janeco, J. Branco, L. Redondo, V. Guerra, A. Moura

Plasma conversion of CH$_4$ and CO$_2$
Electron kinetics

Boltzmann equation for an electron swarm:
- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH$_4$ and CO$_2$;

Gas mixtures:
- Input: He/CH$_4$/CO$_2$, with $[\text{CH}_4]/[\text{CO}_2] = 1$;
Boltzmann equation for an electron swarm:

- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH$_4$ and CO$_2$;

Gas mixtures:

- Input: He/CH$_4$/CO$_2$, with $[\text{CH}_4]/[\text{CO}_2] = 1$;
- ... + Products: H$_2$, CO
Electron kinetics

Boltzmann equation for an electron swarm:
- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH$_4$ and CO$_2$;

Gas mixtures:
- Input: He/CH$_4$/CO$_2$, with $[\text{CH}_4]/[\text{CO}_2] = 1$;
- ... + Products: H$_2$, CO
- Stoichiometry: CH$_4$ + CO$_2$ \rightarrow 2CO + 2H$_2$
Electron kinetics

Boltzmann equation for an electron swarm:
- expansion on the electron density gradients / non-conservative processes;
- multi-term expansion on θ required by CH$_4$ and CO$_2$;

Gas mixtures:
- Input: He/CH$_4$/CO$_2$, with [CH$_4$]/[CO$_2$] = 1;
- ... + Products: H$_2$, CO
- Stoichiometry: CH$_4$ + CO$_2$ \rightarrow 2CO + 2H$_2$
- Parameters: initial helium concentration and conversion: (η, C)
Figure: Isotropic component of the $F^{[0]}$ expansion coefficient of the electron velocity distribution function for $E/N = 5 \cdot 10^{-16} \text{ Vcm}^2$. The vertical lines are the thresholds for inelastic processes in methane.
b) Ionization coefficient

Figure: Ionisation coefficient in CH$_4$/CO$_2$/He mixtures as a function of the initial helium concentration (η) and methane conversion, C.

N. Pinhão, A. Janeco, J. Branco, L. Redondo, V. Guerra, A. Moura
c) Dissociation frequencies

\[\nu_{\text{diss}} / N \left(\text{cm}^3 \text{s}^{-1} \right) \]

\[E/N \left(10^{-16} \text{ Vcm}^2 \right) \]

Figure: Dissociation frequencies in CH\(_4\)/CO\(_2\)/He mixtures as a function of the initial helium concentration \((\eta)\) and methane conversion \((C)\).
d) Excitation of helium metastable levels

Figure: Comparison of ionization frequencies and excitation frequencies for the helium metastable levels in CH₄/CO₂/He mixtures, as a function of the initial helium concentration.
e) Fractional energy losses

Figure: Fractional electron energy losses per type of process in CH$_4$/CO$_2$/He mixtures with [He]=60%.
Breakdown voltage

Model: Townsend regime

1. Discharge starts as a Townsend avalanche;
2. Electric field undisturbed: \(E(r) \propto U_{bk,g}/r \);
3. \(1/\nu_{inel} < 0.1 \text{ ns} \Rightarrow f_e(r, v, t) \) in local field equilibrium;
4. Initial development sustained by photo-electric effect;
5. Breakdown criteria: \(\int_{r_0}^{R} \alpha_{\text{eff}}(E(r)/N) \, dr = \log(1 + \gamma^{-1}) \)

N. Pinhão, A. Janeco, J. Branco, L. Redondo, V. Guerra, A. Moura

Plasma conversion of CH\(_4\) and CO\(_2\)
Breakdown voltage

Figure: Gas breakdown voltage for CH$_4$/CO$_2$/He mixtures and [CH$_4$]:[CO$_2$]$=1$. Experimental (points) and model (lines) results.
Breakdown voltage

Figure: Gas breakdown voltage for CH$_4$/CO$_2$/He mixtures and [CH$_4$]:[CO$_2$]=1. Experimental (points) and model (lines) results.
Breakdown voltage

\[U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g} \]

\[Q_{gas} = \sum_{i}^{m} Q^i \]

with \(^a\): \[Q^i(\delta t) = (C_d + C_g) \Delta U_{fs}^i + C_d (U_e^i(t + \delta t) - U_e^i(t)) \]

Breakdown voltage

\[U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g} \]

\[Q_{gas} = \sum_{i}^{m} Q^i \]

with \(^a\): \[Q^i(\delta t) = (C_d + C_g) \Delta U_{fs}^i + C_d (U_e^i(t + \delta t) - U_e^i(t)) \]

Breakdown voltage

\[U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g} \]

\[Q_{gas} = \sum_{i}^{m} Q^i \]

with\(^a\): \(Q^i(\delta t) = (C_d + C_g)\Delta U^i_{fs} + C_d(U^i_e(t + \delta t) - U^i_e(t)) \)

1. \(Q^i = Q^j, \Delta U^i_{fs} = \Delta U^j_{fs} \quad \forall i, j; \)
2. Consecutive microdischarges: \(U^{i+1}_e(t) = U^i_e(t + \delta t); \)
3. Each point in space has a maximum of one microdischarge.

Breakdown voltage

\[U_{bk,g} = \frac{C_d}{C_d + C_g} U_{bk,e} + \frac{1}{2} \frac{Q_{gas}(T/2)}{C_d + C_g} \]

\[Q_{gas} = \sum_{i}^{m} Q^i \]

with\(^a\): \(Q^i(\delta t) = (C_d + C_g)\Delta U_{fs}^i + C_d(U_{e}^i(t + \delta t) - U_{e}^i(t)) \)

1. \(Q^i = Q^j, \Delta U_{fs}^i = \Delta U_{fs}^j \quad \forall i, j; \)
2. Consecutive microdischarges: \(U_{e}^{i+1}(t) = U_{e}^i(t + \delta t); \)
3. Each point in space has a maximum of one microdischarge.

\[\Rightarrow Q_{gas}(T/2) = (C_d + C_g)m\Delta U_{fs} + C_d(U_{max,e} - U_{bk,e}) \]

Breakdown voltage

Figure: Gas breakdown voltage for CH$_4$/CO$_2$/He mixtures and [CH$_4$]:[CO$_2$]=1. Experimental (points) and model (lines) results.
CH₄ and CO₂ conversion

Model

1. Consumption of CH₄ and CO₂ only by e-collisions or Penning ionz.;
CH$_4$ and CO$_2$ conversion

Model

1. Consumption of CH$_4$ and CO$_2$ only by e-collisions or Penning ionz.;
2. Radial average model;
CH₄ and CO₂ conversion

Model

1. Consumption of CH₄ and CO₂ only by e-collisions or Penning ionz.;
2. Radial average model;
3. Microdischarges occupy a fraction, \(f_V \approx 0.01 \) of the volume;
CH$_4$ and CO$_2$ conversion

Model

1. Consumption of CH$_4$ and CO$_2$ only by e-collisions or Penning ionz.;
2. Radial average model;
3. Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
4. Time average model in T: $f_T(U_{bk}/U_{max,e})$.
CH$_4$ and CO$_2$ conversion

Model

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Consumption of CH$_4$ and CO$_2$ only by e-collisions or Penning ioniz.;</td>
</tr>
<tr>
<td>2</td>
<td>Radial average model;</td>
</tr>
<tr>
<td>3</td>
<td>Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;</td>
</tr>
<tr>
<td>4</td>
<td>Time average model in T: $f_T(U_{bk}/U_{max,e})$.</td>
</tr>
</tbody>
</table>

How to estimate $n_e(r, t)$ and the source terms from collisions with electrons?
CH$_4$ and CO$_2$ conversion

Model

1. Consumption of CH$_4$ and CO$_2$ only by e-collisions or Penning ioniz.;
2. Radial average model;
3. Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
4. Time average model in T: $f_T(U_{bk}/U_{max,e})$.

How to estimate $n_e(r,t)$ and the source terms from collisions with electrons?

Equivalent field

1. $Q^i \propto \exp(\alpha \times l_{equiv})$;
CH₄ and CO₂ conversion

Model

1. Consumption of CH₄ and CO₂ only by e-collisions or Penning ioniz.;
2. Radial average model;
3. Microdischarges occupy a fraction, f₉ ≈ 0.01 of the volume;

How to estimate nₑ(r, t) and the source terms from collisions with electrons?

Equivalent field

1. Qᵢ ∝ exp(α × lₑquiv);
2. α ⇒ E/N ⇒ Kₑ*.
Model

1. Consumption of CH$_4$ and CO$_2$ only by e-collisions or Penning ioniz.;
2. Radial average model;
3. Microdischarges occupy a fraction, $f_V \approx 0.01$ of the volume;
4. Time average model in T: $f_T(U_{bk}/U_{max,e})$.

How to estimate $n_e(r, t)$ and the source terms from collisions with electrons?

Equivalent field

1. $Q^i \propto \exp(\overline{\alpha} \times l_{equiv})$;
2. $\overline{\alpha} \Rightarrow E/N \Rightarrow K_e^*$;
3. $l_{equiv} \sim v_d \delta t_{microdisc}$.
Model equations and species

Products involved in conversion:

CH$_4$: CH$_3$, CH$_2$, CH, CH$_3^+$, CH$_2^+$, CH$^+$, C$, H_2^+$, H^+, H^-, CH$_2^-$;
CO$_2$: O(1S), O^+, CO$^+$, C$, O^-$
Model equations and species

Products involved in conversion:

<table>
<thead>
<tr>
<th>Species</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$</td>
<td>CH$_3$, CH$_2$, CH, CH$_3^+$, CH$_2^+$, CH$^+$, C$^+$, H$_2^+$, H$^+$, H$^-$, CH$_2^-$;</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>O(1S), O$^+$, CO$^+$, C$^+$, O$^-$</td>
</tr>
<tr>
<td>He</td>
<td>He(2S), He(1S)</td>
</tr>
</tbody>
</table>
Model equations and species

<table>
<thead>
<tr>
<th>Products involved in conversion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4): CH(_3), CH(_2), CH, CH(_3^+), CH(_2^+), CH(^+), C(^+), H(_2^+), H(^+), H(^-), CH(_2^-);</td>
</tr>
<tr>
<td>CO(_2): O((^1)S), O(^+), CO(^+), C(^+), O(^-)</td>
</tr>
<tr>
<td>He: He((^2)(^3)S), He((^2)(^1)S)</td>
</tr>
</tbody>
</table>

In steady state:

\[
\frac{d \rho v_{gas}}{dz} = 0
\]

\[
\frac{d}{dz} \left[n^i(z)(v_{gas} + V_D) \right] = -f_T f_V \frac{Q_{gas}}{q_e} c^i(z) \sum_j \frac{K_{e,j}^i(z)}{\alpha(z)/N_\xi} - K_P n^i(z) n_{He^*}(z), \quad i = CH_4, CO_2
\]
Model results

CH\(_4\)

- Blue line: 55%
- Green dashed line: 75%
- Red dotted line: 85%
- Cyan dotted line: 95%

CO\(_2\)

- Blue line: 55%
- Green dashed line: 75%
- Red dotted line: 85%
- Cyan dotted line: 95%
1 Background
 - Energy: An urgent problem to mankind
 - An opportunity for plasma systems?

2 Conversion of CH₄ in a DBD
 - Experimental results with CH₄/CO₂/He mixtures
 - Application of over-voltages

3 A model of the discharge
 - Electron kinetics in CH₄/CO₂/He mixtures
 - A model for breakdown
 - A model for CH₄ and CO₂ conversion

4 Summary
Conclusions

- Significant change of the electron kinetics along the discharge;
Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the \(eedf \) to higher energy;
 - responsible for an increase of e-collision frequencies on \(\text{CH}_4 \) and \(\text{CO}_2 \);
 - low He excitation or ionization rates: Negligible Penning ionization
Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the e_{edf} to higher energy;
 - responsible for an increase of e-collision frequencies on CH$_4$ and CO$_2$;
 - low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the eef to higher energy;
 - responsible for an increase of e-collision frequencies on CH$_4$ and CO$_2$;
 - low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
- Conversion of CH$_4$ and CO$_2$ by electron collisions;
Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the eedf to higher energy;
 - responsible for an increase of e-collision frequencies on CH$_4$ and CO$_2$;
 - low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
- Conversion of CH$_4$ and CO$_2$ by electron collisions;
- Model based on the measured charge and an “equivalent field” is useful to explain the conversion results;
Conclusions

- Significant change of the electron kinetics along the discharge;
- Role of helium:
 - shifts the \textit{eedf} to higher energy;
 - responsible for an increase of e-collision frequencies on CH$_4$ and CO$_2$;
 - low He excitation or ionization rates: Negligible Penning ionization
- Gas breakdown voltage predicted from the electron kinetics;
- Conversion of CH$_4$ and CO$_2$ by electron collisions;
- Model based on the measured charge and an “equivalent field” is useful to explain the conversion results;
- Use of DBD discharges for dry reforming of CH$_4$/CO$_2$ is not yet competitive for \textit{Syngas} production.