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Abstract

Objective In-111 (111In)-labeled octreotide has been clin-

ically used for imaging somatostatin receptor-positive

tumors, and radiolabeled octreotide analogs for positron

emission tomography (PET) have been developed. Cu-64

(64Cu; half-life, 12.7 h) is an attractive radionuclide for PET

imaging and is produced with high specific activity using a

small biomedical cyclotron. The aim of this study is to pro-

duce and fundamentally examine a 64Cu-labeled octreotide

analog, 64Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-

acetic acid-D-Phe1-Tyr3-octreotide (64Cu-DOTA-TOC).

Methods 64Cu produced using a biomedical cyclotron

was reacted with DOTA-TOC for 30 min at 45�C. The

stability of 64Cu-DOTA-TOC was evaluated in vitro

(incubated with serum) and in vivo (blood collected after

administration) by HPLC analysis. Biodistribution studies

were performed in normal mice by administration of mixed

solution of 64Cu-DOTA-TOC and 111In-DOTA-TOC and

somatostatin receptor-positive U87MG tumor-bearing mice

by administration of 64Cu-DOTA-TOC or 64Cu-1,4,8,11-

tetraazacyclotetradecane-1,4,8,11-tetraacetic acid-octreo-

tide (64Cu-TETA-OC). The tumor was imaged using
64Cu-DOTA-TOC, 64Cu-TETA-OC, and FDG with an

animal PET scanner.

Results 64Cu-DOTA-TOC can be produced in amounts

sufficient for clinical study with high radiochemical yield.
64Cu-DOTA-TOC was stable in vitro, but time-dependent

transchelation to protein was observed after injection into

mice. In biodistribution studies, the radioactivity of 64Cu

was higher than that of 111In in all organs except kidney. In

tumor-bearing mice, 64Cu-DOTA-TOC showed a high

accumulation in the tumor, and the tumor-to-blood ratio

reached as high as 8.81 ± 1.17 at 6 h after administration.
64Cu-DOTA-TOC showed significantly higher accumula-

tion in the tumor than 64Cu-TETA-OC. 64Cu-DOTA-TOC

PET showed a very clear image of the tumor, which was

comparable to that of 18F-FDG PET and very similar to

that of 64Cu-TETA-OC.

Conclusions 64Cu-DOTA-TOC clearly imaged a somato-

statin receptor-positive tumor and seemed to be a potential

PET tracer in the clinical phase.

Keywords 64Cu � DOTA-D-Phe1-Tyr3-octreotide

(DOTA-TOC) � Somatostatin receptor

Introduction

Somatostatin receptors are expressed on neuroendocrine

tumors, including carcinoid tumor, pituitary adenoma,
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pheochromocytoma, and medullary thyroid carcinoma.

Somatostatin receptors are also positive on the cell surfaces

of other types of tumors, such as small cell lung carcinoma,

meningioma, astrocytoma, and neuroblastoma. Recently,

radiolabeled somatostatin analogs have been clinically

and widely used, and In-111 (111In)-labeled diethylene-

triaminepentaacetic acid-octreotide (111In-DTPA-OC) has

been approved and is routinely used for the localization and

staging of neuroendocrine tumors [1, 2]. Octreotide analogs

have also been labeled with positron emitters because of the

advantage of positron emission tomography (PET) [3–6].

Cu-64 (64Cu; half-life, 12.7 h) is an attractive radionu-

clide for PET imaging, which decays by electron capture

(41%), b- (0.573 MeV, 40%) and b? (0.656 MeV, 19%).
64Cu can be produced with high specific activity using a

small biomedical cyclotron installed in hospitals or PET

centers [7, 8]. Furthermore, 64Cu is also potentially appli-

cable to therapy, either by itself or replaced by another

copper radionuclide, copper-67 (67Cu; half-life, 61.7 h),

which emits b- rays (0.395–0.577 MeV) and c rays

(0.091–0.185 MeV). Therefore, 64Cu-labeled octreotide

analogs are promising tracers for PET imaging in patients

with somatostatin receptor-positive tumors. 64Cu-TETA-

OC or its analogs (where TETA is 1,4,8,11-tetra-

azacyclotetradecane-1,4,8,11-tetraacetic acid) showed high

tumor accumulation in tumor-bearing mice or rats [9, 10].

In a study of humans, more lesions were reported to be seen

with 64Cu-TETA-OC PET than with 111In-DTPA-OC

SPECT [4].

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic

acid (DOTA) is one of the most useful chelators and has

been widely used for the labeling of many radiometals,

including 64Cu. However, it has been reported that 64Cu-

DOTA complexes are not so stable, since 64Cu tends to

dissociate from the chelator followed by binding to copper-

binding proteins [11, 12]. Thus, TETA has been exten-

sively used as a stable chelator [4, 13], and more stable

chelators have been developed [14, 15]. However, these

new chelators are still in the research phase and are difficult

to use routinely in the clinical phase. On the other hand,

yttrium-90 (90Y)-labeled DOTA-D-Phe1-Tyr3-octreotide

(DOTA-TOC) has been evaluated in phase 1 and phase 2

clinical trials for therapy, meaning that radiolabeled

DOTA-TOC would be easy and safe to apply to the clinical

phase. In this study, 64Cu-DOTA-TOC was prepared and

its stability, biodistribution, and metabolism were evalu-

ated and compared with those of 111In-DOTA-TOC. The

tumor accumulation of 64Cu-DOTA-TOC in somatostatin

receptor-positive tumor-bearing mice was compared with

that of 64Cu-TETA-OC. Finally, 64Cu-DOTA-TOC PET

imaging of tumor-bearing mice was performed. Based on

the results, the usefulness and clinical applicability of
64Cu-DOTA-TOC were discussed.

Materials and methods

General

111InCl3 (74 MBq/mL in 0.02 N HCl) was purchased from

Nihon Medi-Physics (Nishinomiya, Japan). 64Cu was pro-

duced with a biomedical cyclotron CYPRIS HM-18

(Sumitomo Heavy Industries Ltd., Tokyo, Japan) at our

university hospital. 18F was also produced at our hospital

using the same cyclotron, and then 18F-FDG was synthe-

sized using an automated apparatus. DOTA-TOC was

purchased from Bachem (Bubendorf, Switzerland). For the

preparation of TETA-OC, octreotide was constructed using

Fmoc-based solid-phase synthesis and TETA was conju-

gated to it as previously described [10]. Human glioblas-

toma cell line U87MG, expressing somatostatin receptor

[16], was purchased from American Type Culture Collec-

tion (ATCC, Manassas, VA). Reversed-phase HPLC (RP-

HPLC) analyses were performed with a C18 column

(Capcell Pak C18 MG-II, 4.6 9 150 mm, Shiseido Co.

Ltd., Tokyo, Japan) eluted with a linear gradient of a 20–

30% mixture of acetonitrile and 0.1% aqueous TFA. Size-

exclusion HPLC (SE-HPLC) analyses were performed with

a TSKgel Super SW3000 column (4.6 9 300 mm, Tosoh,

Tokyo, Japan) eluted with 0.1 M phosphate buffer (pH

6.8). TLC analyses were performed with silica plates

(Silica gel 60, Merck, Darmstadt, Germany) with 10%

aqueous ammonium acetate–methanol (1:1) as the devel-

oping solvent. Other reagents were of reagent grade and

used as received.

Radiolabeling

For the preparation of 111In-DOTA-TOC, 40 lL of
111InCl3 (1.5 MBq) was incubated in 60 lL of 0.25 M

acetate buffer (pH 5.5) for 5 min at room temperature, then

DOTA-TOC (20 lg/20 lL of 0.25 M acetate buffer) was

added and incubated for 30 min at 45�C. 64Cu (200–

300 MBq) was provided in a dry state and was dissolved

in 100 lL of 0.25 M acetate buffer. Then DOTA-TOC

(50 lg/150 lL of 0.25 M acetate buffer) or TETA-OC

(50 lg/150 lL of 0.25 M acetate buffer) was added and

incubated for 30 min at 45�C. The radiochemical purities

of 64Cu-DOTA-TOC, 64Cu-TETA-OC, and 111In-DOTA-

TOC were determined by RP-HPLC and TLC. Rf values of
64Cu-DOTA-TOC and 64Cu were 0.5 and 0, respectively,

by TLC analysis.

In vitro and in vivo stabilities

For the evaluation of in vitro stability, 64Cu-DOTA-TOC

(100 ng/20 lL of 0.1 M phosphate buffer) was added to

180 lL of murine serum, and the solution was incubated at
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37�C for 6 h. The radioactivity of the sample was analyzed

by SE-HPLC and RP-HPLC. For the evaluation of in vivo

stability, blood was drawn from the hearts of mice at 5 min,

1 h, and 6 h after the administration of 64Cu-DOTA-TOC

(200 ng/100 lL). After centrifugation at 3,000 rpm for

10 min at 4�C, the resultant serum samples were filtered

through a polycarbonate membrane with a pore diameter of

0.45 lm. The radioactivity of the sample was analyzed by

SE-HPLC. RP-HPLC analysis was performed after filtering

through a 10-kDa cutoff ultrafiltration membrane (VIVA-

SPIN 500; Sartorius, Goettingen, Germany). Bovine serum

albumin (BSA) was used as a molecular weight marker of

SE-HPLC and eluted at 17 min.

Biodistribution study

The animals were cared for and treated in accordance with

the guidelines of the animal care and experimentation

committee of our university. Tumor-bearing mice were

prepared by implanting U87MG tumor cells (5 9 106 cells)

into the flanks of BALB/c nude mice. When tumors were

palpable, the mice were used for biodistribution studies.

A mixed solution of 64Cu-DOTA-TOC (10 kBq) and 111In-

DOTA-TOC (30 kBq) (volume: 100 lL, total peptide dose:

200 ng) was administered to normal ddY mice, and 64Cu-

DOTA-TOC (10 kBq) or 64Cu-TETA-OC (10 kBq) (vol-

ume: 100 lL, total peptide dose: 100 ng) was administered

to U87MG tumor-bearing nude mice. At selected time

points after administration, animals were killed and tissues

of interest were excised and weighed. Their radioactivity

was then measured with a well-type gamma counter (ARC-

7001; Aloka Co. Ltd., Tokyo, Japan). Briefly, the total

radioactivity of 64Cu and 111In was measured. The radio-

activity of 111In was measured 6 days after first measure-

ment, since the count of 64Cu was negligible at that time.

The radioactivity of 64Cu was calculated using these two

measurements.

Urine and feces samples were collected using metabolic

cages (Metabolica TYPE MM-ST; Sugiyama-Gen Iriki Co.

Ltd., Tokyo, Japan) at 6 and 48 h after administration of
64Cu-DOTA-TOC alone or mixed with 111In-DOTA-TOC.

Urine samples were also drawn from the bladder at 30 min
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Fig. 1 Radioactivity profiles of
64Cu-DOTA-TOC after

incubation in murine serum.

After incubation in murine

serum at 37�C for 0 and 6 h, the

radioactivity of the sample was

analyzed by SE-HPLC and

RP-HPLC. Retention time of
64Cu-DOTA-TOC was 26 min

by SE-HPLC and 16 min

by RP-HPLC
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and 6 h after administration. The radioactivity of urine was

analyzed by SE-HPLC.

PET imaging

PET imaging was performed using an animal PET scanner

(Inveon; Siemens AG, Munich, Germany). After fasting for

about 12 h, U87MG tumor-bearing mice were injected

intravenously with 18F-FDG (20 MBq) and imaged at 1 h

after administration. Two days after 18F-FDG PET, mice

were injected intravenously with 64Cu-DOTA-TOC

(20 MBq) or 64Cu-TETA-OC (20 MBq) and imaged at

6 and 24 h after administration.

Statistical analysis

Data are expressed as means ± standard deviations where

appropriate. Results were analyzed using the unpaired

t test. Differences were considered statistically significant

when p values were less than 0.05.

Results

Radiolabeling

The radiolabeling yield of 64Cu-DOTA-TOC was more

than 95% for all five times radiolabeling. The radiolabeling

yields of 64Cu-TETA-OC and 111In-DOTA-TOC were also

more than 95%.

In vitro and in vivo stabilities

All radioactivities were recovered after filtration through a

polycarbonate membrane. After the incubation in murine

serum at 37�C for 6 h, 64Cu-DOTA-TOC existed only as

the intact form, and the retention times of SE-HPLC and

RP-HPLC were 26 and 16 min, respectively (Fig. 1). In

contrast, time-dependent transchelation to protein (reten-

tion time 18–19 min) was observed after administration to

mice (60.6 ± 3.8 and 95.2 ± 1.4% at 1 and 6 h, respec-

tively) (Fig. 2).

Biodistribution study

64Cu-DOTA-TOC showed rapid blood clearance and renal

accumulation, similar to that of 111In-DOTA-TOC in nor-

mal mice at an early time point after administration

(Table 1). However, 64Cu-DOTA-TOC showed retention

in the blood after 1 h, and consequently the radioactivity of
64Cu in all organs except kidney was much higher than that

of 111In. 64Cu-DOTA-TOC showed significantly high

accumulation in the liver and intestine compared with

111In-DOTA-TOC (p \ 0.001 at all time points). 64Cu-

DOTA-TOC showed steady clearance from the kidney.
64Cu-DOTA-TOC showed high accumulation and

retention in the tumors of U87MG tumor-bearing mice,

resulting in a tumor-to-blood ratio of 8.81 ± 1.17 at 6 h

after administration (Table 2). The tumor-to-muscle ratios

were as high as 38.9 ± 13.8 and 45.1 ± 12.5 at 3 and 6 h,

respectively.

By 48 h after administration with 64Cu-DOTA-TOC,

67.0 ± 5.3 and 12.8 ± 9.3% of radioactivity were excreted
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Fig. 2 Radioactivity profiles in the blood after administration of
64Cu-DOTA-TOC to mice. Blood was drawn from the hearts of mice

at 5 min, 1 h, and 6 h after the administration of 64Cu-DOTA-TOC

and the radioactivity was analyzed by SE-HPLC
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in urine and feces, respectively. There was no significant

difference between 64Cu-DOTA-TOC and 111In-DOTA-

TOC in the radioactivity of urine at 30 min or 6 h after

injection (Fig. 3a). Radioactivity was not observed in the

protein fraction in the urine at 30 min or 6 h after admin-

istration of 64Cu-DOTA-TOC, and about 60–70% of

radioactivity was the intact peptide (Fig. 3b), similar to the

case with 111In-DOTA-TOC (data not shown).

PET imaging

The tumors were clearly visible with both 64Cu-DOTA-

TOC and 18F-FDG (Fig. 4). 64Cu-DOTA-TOC showed

heterogeneous accumulation in the tumor, and accumula-

tion of radioactivity was observed in the same region at

6–24 h. Relatively uniform uptake of 18F-FDG was seen

throughout the tumor. 64Cu-DOTA-TOC showed high

accumulation in the liver and bladder at 6 h, and the

radioactivity was retained in the liver and was cleared from

the bladder at 24 h after administration.

Comparison studies with 64Cu-TETA-OC

64Cu-DOTA-TOC showed significantly higher accumula-

tion than 64Cu-TETA-OC in the tumor, and also in the

blood, liver, kidney, and intestine (Fig. 5a). The tumor-to-

organ ratios were almost the same in all organs except for

muscle (Fig. 5b). The tumors were clearly visible with both
64Cu-DOTA-TOC and 64Cu-TETA-OC (Fig. 5c), and the

whole body images were very similar.

Table 1 Biodistribution of
64Cu-DOTA-TOC and 111In-

DOTA-TOC in normal mice

Each value represents the mean

% injected dose/g of

organ ± SD of 4 animals

Significant difference from
111In-DOTA-TOC (* p \ 0.01,

** p \ 0.001)

Time after injection

10 min 30 min 1 h 3 h 6 h

64Cu-DOTA-TOC

Blood 3.37 ± 0.13 1.35 ± 0.31 0.60 ± 0.03** 0.48 ± 0.09** 0.46 ± 0.02**

Liver 2.15 ± 0.20** 2.68 ± 0.73** 2.53 ± 0.63** 3.26 ± 0.51** 2.61 ± 0.36**

Kidney 16.53 ± 2.77 11.76 ± 2.70 7.60 ± 0.76 4.18 ± 0.74** 3.88 ± 0.53**

Intestine 1.06 ± 0.02** 1.16 ± 0.17** 1.40 ± 0.27** 2.40 ± 0.21** 1.71 ± 0.18**

Spleen 0.84 ± 0.37 0.51 ± 0.27 0.33 ± 0.20 0.34 ± 0.14 0.26 ± 0.12

Pancreas 2.48 ± 0.13** 1.79 ± 0.07** 1.75 ± 0.13** 1.11 ± 0.16** 0.49 ± 0.16

Lung 3.49 ± 0.25 2.40 ± 0.41 1.92 ± 0.58* 2.67 ± 0.25** 2.36 ± 0.33**

Heart 1.59 ± 0.14 0.81 ± 0.42 0.47 ± 0.24 0.61 ± 0.21* 0.49 ± 0.18
111In-DOTA-TOC

Blood 3.30 ± 0.22 1.27 ± 0.43 0.34 ± 0.04 0.08 ± 0.06 0.04 ± 0.00

Liver 0.92 ± 0.04 0.48 ± 0.11 0.26 ± 0.03 0.24 ± 0.05 0.16 ± 0.02

Kidney 15.41 ± 3.14 11.78 ± 3.03 9.72 ± 1.59 11.91 ± 1.50 9.51 ± 1.11

Intestine 0.79 ± 0.04 0.42 ± 0.08 0.27 ± 0.08 0.38 ± 0.25 0.35 ± 0.20

Spleen 1.21 ± 0.11 0.50 ± 0.09 0.23 ± 0.05 0.13 ± 0.03 0.13 ± 0.01

Pancreas 1.50 ± 0.07 1.01 ± 0.12 0.61 ± 0.07 0.37 ± 0.04 0.27 ± 0.01

Lung 3.46 ± 0.23 1.46 ± 0.41 0.52 ± 0.08 0.21 ± 0.03 0.20 ± 0.05

Heart 1.38 ± 0.03 0.60 ± 0.22 0.17 ± 0.06 0.08 ± 0.03 0.06 ± 0.02

Table 2 Biodistribution of
64Cu-DOTA-TOC in U87MG

tumor-bearing mice

Each value represents the

mean ± SD of three animals.

Mean tumor weight was 23 mg
a Expressed as % injected

dose/g of organ

Time after injection

30 min 1 h 3 h 6 h

Blood 1.53 ± 0.09 0.80 ± 0.01 0.59 ± 0.14 0.52 ± 0.14

Liver 3.69 ± 0.53 4.27 ± 1.23 3.51 ± 0.83 3.43 ± 0.69

Kidney 16.95 ± 2.02 15.12 ± 0.97 9.83 ± 1.18 6.52 ± 0.89

Intestine 1.27 ± 0.03 1.65 ± 0.20 2.17 ± 0.34 2.21 ± 0.52

Muscle 0.34 ± 0.04 0.20 ± 0.05 0.12 ± 0.03 0.11 ± 0.04

Tumor 2.51 ± 0.13 3.43 ± 1.03 4.43 ± 0.43 4.50 ± 0.76

Tumor-to-blood ratioa 1.64 ± 0.07 4.31 ± 1.31 7.70 ± 1.30 8.81 ± 1.17

Tumor-to-muscle ratioa 7.5 ± 1.2 17.7 ± 3.3 38.9 ± 13.8 45.1 ± 12.5

Ann Nucl Med (2009) 23:559–567 563
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Discussion

The final goal of this study was to do a preclinical study of
64Cu-DOTA-TOC as a PET imaging agent for somatostatin

receptor-positive tumors. 64Cu-DOTA-TOC required no

purification, since the radiolabeling yield was more than

95% with 200–300 MBq of 64Cu. Furthermore, the radio-

activity of 64Cu-DOTA-TOC, produced using a small

hospital-installed cyclotron, would be sufficient for use in

clinical studies, since Anderson et al. [4] showed that clear

PET images of patients with neuroendocrine tumors were

obtained with a 107–130 MBq injection of 64Cu-TETA-

OC.

In contrast to the high in vitro stability, the transchela-

tion of 64Cu to protein, slightly lower size than that of

BSA, was observed in vivo as described previously [11,

12]. In a biodistribution study, 64Cu-DOTA-TOC showed

retention in the blood after 1 h and high accumulation in

the liver and intestine, the same results as previously

described [17]. Since liver is the critical organ involved in

the regulation of copper homeostasis [18], 64Cu transch-

elated to protein might accumulate in the liver and result in

biliary excretion. Recently, a combined PET/CT system

has been developed that provides detailed morphological

information [19]. Therefore, accumulation in nontarget

organs is not so critical, but high tumor accumulation is the

most important property for the development of PET tracer.

In U87MG tumor-bearing mice, 64Cu-DOTA-TOC showed

high accumulation and retention in the tumor, and the

tumor-to-blood and tumor-to-muscle ratios reached

8.81 ± 1.17 and 45.1 ± 12.5 at 6 h after administration,

respectively, indicating that 64Cu-DOTA-TOC would be a

potential PET tracer for imaging of somatostatin receptor-

positive tumors.

In comparison studies with 64Cu-TETA-OC, 64Cu-

DOTA-TOC showed significantly higher accumulations

than 64Cu-TETA-OC in the blood, liver, kidney, and

intestine, since the Cu-DOTA complex undergoes more

transchelation than the Cu-TETA complex [12]. On the

other hand, the accumulation of 64Cu-DOTA-TOC in the

tumors was also significantly higher than that of 64Cu-

TETA-OC, and the tumor-to-organ ratio of 64Cu-DOTA-

TOC was almost the same as that of 64Cu-TETA-OC in all

organs except for muscle. It was reported that 111In-labeled

or 99mTc-labeled TOC showed higher accumulation in the

tumor than that of 111In-labeled or 99mTc-labeled OC,

respectively [20, 21]. So, due to the high affinity toward

somatostatin receptor, 64Cu-DOTA-TOC accumulated to a

high level in the tumor before transchelation occurred.

Although comparison studies are needed in humans, 64Cu-

DOTA-TOC is potentially useful for PET imaging of

tumors instead of 64Cu-TETA-OC.
64Cu-DOTA-TOC PET images showed the tumors very

clearly, comparable to 18F-FDG PET, indicating the pos-

sibility of its use in clinical studies. Interestingly, tumor

accumulation of 64Cu-DOTA-TOC was heterogeneous

despite the relatively uniform accumulation of 18F-FDG,

which might provide valuable information about the char-

acteristics of individual tumors. Because of the lower

spatial resolution of SPECT compared to PET, the
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tumor-bearing mice with 64Cu-

DOTA-TOC or 18F-FDG. Four

mice were imaged at 6 and 24 h

after administration of 64Cu-

DOTA-TOC and at 1 h after

administration of 18F-FDG.
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Fig. 5 Comparison of

biodistribution and PET image

between 64Cu-DOTA-TOC and
64Cu-TETA-OC in U87MG

tumor-bearing mice. a %

Injected dose/g of organ and

b tumor-to-organ ratio at 6 h

after administration of
64Cu-DOTA-TOC or
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approved radiolabeled octreotide analog, 111In-DTPA-OC,

would not be able to provide such information. Further-

more, 64Cu-DOTA-TOC PET would be more useful than
111In-DTPA-OC SPECT for choosing the appropriate case

of therapy with non-radiolabeled or radiolabeled octreotide

analogs. The 64Cu-DOTA-TOC PET image was very

similar to that of 64Cu-TETA-OC. Since clear PET images

of patients with neuroendocrine tumors were obtained with
64Cu-TETA-OC [4], 64Cu-DOTA-TOC is a potential PET

tracer in the clinical phase.
64Cu-DOTA-TOC showed steady clearance from the

kidney, as previously described [17], and was also reported

in case of other 64Cu-labeled peptide [22–24]. Therefore,
64Cu and 67Cu would be suitable radionuclides for the

therapy, since renal clearance could reduce renal toxicity,

which is the major problem of radionuclide therapy using

radiolabeled peptides or small proteins. Since the levels of

radioactivity of 64Cu and 111In excreted in the urine were

almost equal, 64Cu would be released into the circulation

from the kidney. One of the key copper-binding proteins,

superoxide dismutase (SOD), is highly distributed in the

kidney cytosol [18], leading to the hypothesis that 64Cu is

transchelated to the SOD in kidney cytosol, released into

the blood, accumulated in the liver, and finally excreted in

feces. Although the radioactivity levels of blood and liver

were slightly high, they were much lower than radiolabeled

antibodies, which have been efficiently used in the clinical

phase as a treatment for malignant lymphoma [25, 26].

Conclusion

64Cu-DOTA-TOC was prepared in high radiochemical

yield sufficient for clinical practice. 64Cu-DOTA-TOC

showed high levels of accumulation in tumors and clear

PET images in U87MG tumor-bearing mice. These find-

ings indicated that 64Cu-DOTA-TOC is a potential PET

tracer for imaging somatostatin receptor-positive tumors in

the clinical phase.
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