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Abstract-The prediction of mortality has shown to be a 
challenge for hospital management. To help in this task, metrics 
were developed to predict the evolution of the disease severity. 
One of the most commonly used metric in Intensive Care Units 
(ICUs) is the SAPS II, based on Generalized Linear Models 
(GLMs). However, the use of the more flexible Generalized Addi­
tive Models (GAMs) provide better results when the association 
between the outcome and the continuous covariates is nonlinear. 
Neural networks have also been used for prediction namely those 
based in the Multi Layer Perceptron (MLP) architecture, as, 
in theory, they are universal approximators to any continuous 
function. Some studies have shown that their performances 
are equivalent to GLMs and, naturally, inspired by GAMs, 
Generalized Additive Neural Networks (GANNs) were proposed. 
Because the construction of a GANN is based in a subjective 
decision making process through the analysis of the residuals 
plots, studies to automate this process emerged originating 
new methodologies (AutoGANN). However, these are not free 
from problems when the number of variables is large. Some 
improvements were then introduced for model selection, such as, 
a multistep algorithm that allows more than one modification 
at the same time in GANNs's architecture. Methods described 
above have correspondence to evolutionary programming as the 
search of a better result is performed by small modifications, 
closely resembling the mutation operator. AutoGANN method 
and Genetic Algorithm were used in order to find optimal models 
for predicting mortality at an ICU. These models, as well as 
a MLP model, were compared regarding their predictive and 
discriminative abilities. 

I. INTRODUCTION 

The admission of critically ill patients in Intensive Care 
Units constitutes a challenge to the hospital management, 
taking into account the large budgets needed to maintain the 
quality of response of these units. Daily decisions must be 
made by focusing the effectiveness of treatments versus its 
cost. Metrics for predicting the evaluation of the severity of 
illness have then been developed, such as Mortality Probability 
Models (MPMs) [1], [2], [3], APACHE III [4], SAPS II (New 
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Simplified Acute Physiology Score) [5], SAPS 3 [6] and 
APACHE IV [7], have been developed. Most of these scores 
were obtained by logistic regression models. However because 
a nonlinear dependence between the binary response variable 
and continuous covariates may exist, other methods such as 
artificial neural networks (ANNs)[S] and generalized additive 
models, must be considered. 
The increasing use of ANNs models in the last decade is 
undoubtedly a reality. In fact, the flexibility that characterizes 
the ANNs allows them to model not only complex data from 
real situations, such as pattern recognition and voice, but also 
simple data such as, for example, those reflecting relation­
ships between several independent variables and a response 
(dependent variable). Therefore, we can find applications of 
this methodology in several areas of knowledge such as 
engineering, economics and biomedical sciences. They are 
often used in microbiology to model growth curves and mainly 
in medicine. Cardiology, orthopedics, geriatrics, trauma, re­
habilitation and cancer are only some examples of medical 
areas where neural networks were implemented [9] [10] [11]. 
These studies, in most cases, aim to predict a clinical outcome, 
such as, for example, death, related to a set of independent 
explanatory variables. 
Due to the usual nature of the binary response variable, 
the ANNs are presented as an alternative to the so popular 
logistic regression model. Robust, easy to implement and 
usually with a very satisfactory performance, this model 
is not free of problems. In fact, the imposition of linear 
relationships to model the potential association between the 
dependent variable and each independent variables maybe 
misleading. To overcome this problem, Generalized Additive 
Models (GAMs) [12] were proposed. They are, undoubtedly, 
more flexible than the existing Generalized Linear Models 
(GLMs), as they allow nonlinear relationships between the 



independent variables and the response, modelled by smooth 
functions. There has been, thus, an evolution of regression 
models in order to improve their performance. Due to the 
existing parallelism between those models and ANNs, it is, 
therefore, natural that ANNs suffer too, an evolution. In fact, 
a new model of ANN architecture, inspired in GAMs was 
proposed by [13] - Generalized Additive Neural Network 
(GANN). One of the advantages of this model, when compared 
to a MLP architecture, is the mitigation of the black box 
perception regarding the interpretation of results [13]. In fact, 
with GANNs, the effect of each variable on the output can be 
interpreted by using partial residual plots [13]. In subsequent 
studies [14], improvements have been introduced, such as 
a fully automated algorithm, in order to alleviate both the 
subjectivity of partial residual plot analysis and the high time­
consuming [14], [15]. 

II. BUILDING AN ARTIFICIAL NEURAL NET W ORK 

A. Multi Layer Perceptron 

The most used ANN architecture is the MLP with one 
hidden layer. This architecture is considered to be an universal 
approximator [16] and, therefore, can serve as a reference for 
comparative studies with other methods. 
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Fig. 1. Multi Layer Perceptron Architecture 

The main goal of using a neural network is to build a 
model that will perform well on new data (generalization). 
This ability is related to a good non-linear interpolation of 
the input data [17]. This interpolation depends mainly on two 
factors - the size of the training dataset and the degree of 
flexibility. A too low number of nodes and an excessive degree 
of flexibility may lead to memorization, conducting, in both 
cases, to a poor generalization. 

Therefore, the design of a neural network has shown to 
be very important to the quality of final results. To calculate 

the number of hidden nodes or the number of hidden layers, 
there are no guidelines (this still remains an open problem). 
At a first approach, heuristics can be used [18][19] as well as 
constructive and pruning algorithms (e.g. brain damage algo­
rithm) or even Genetic Algorithms (GAs). However there is no 
direct method to calculate the optimal number of nodes and, 
despite the existence of several heuristics, many investigators 
defend that there is not a good way of determining a network 
topology if only the number of inputs and outputs are taken 
into account [20]. 

B. Generalized Additive Neural Networks 

Despite the fact a GANN does not be a universal approxi­
mator [13], when combined with the correct choice of a link 
function, it constitutes a good additive model approximator. In 
fact, a GANN can be approximated to a GAM [15] which, in 
general, has a better performance compared to a GLM or to 
a MLP [21]. 

1) GANN architecture: A first approach of the GANN 
architecture was done by Sarle[22]. Later, Potts [l3] included 
a method for construction and estimation of a GANN, inspired 
in the GAM equation: 

gol(E(Yi)) = 130 + h(Xli) + !2(X2i) + ... + fk(Xki), (1) 

where gol represents the link function, E is the expected 
value, Yi is the target variable (e. g. death), h, ... ,fk represents 
the partial functions, Xli, ... ,Xki are the input variables (e.g. 
patients characteristics) and 130 the overall bias. The architec-
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Fig. 2. Generalized Additive Neural Network Architecture 

ture of a GANN, Fig. 2, results from the transposition of the 
GAM equation, Eq. (1), to a neuronal model [15]; each partial 
function corresponds to a MLP (due to its property of being 
an universal approximator to any continuous function) with 
an input, an output and a single hidden layer. In an improved 
version of the MLP, a skip layer is inserted so that the GANN 



may include the linear model as a special case. The resulting 
equation for each MLP is given by: 

!j(Xji) = WOjXji + w1jtanh(w01j + WlljXj) + ... 
+whjtanh(wOhj + W1hjXji), 

(2) 

where W represents the network parameter. The flexibility of a 
MLP depends on the number of nodes in the hidden layer. For 
a good fit of the model, it will be necessary to find the optimal 
number of nodes for each of the MLPs. It will be the adequate 
amount of flexibility in all the MLPs that will guarantee a good 
fit of the model. Thus, in order to find the appropriate number 
of hidden nodes, Potts proposed a recipe based on the visual 
inspection of the partial residual plots defined by the following 
equations: 
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TABLE I 
GANN ENCODING 

Description 

No MLP (input removed from model) 

MLP with a skip layer 

MLP without skip layer and one hidden node 

MLP with skip layer and one hidden node 

MLP without skip layer and two hidden nodes 

MLP with skip layer and two hidden nodes 

MLP without skip layer and three hidden nodes 

MLP witht skip layer and three hidden nodes 

MLP without skip layer and four hidden nodes 

MLP with skip layer and four hidden nodes 

prji = gol(Yi) - �i - L ]l(Xli), 
lh 

evaluate candidate models is given, this search technique is 

(3) complete, optimal and has a good performance compared to 
other non-linear model selection techniques [24]. 

Assuming that gol is nonlinear, a first order approximation 
(5) can be used [l3]: 

f} -1 
prji = �� (Yi) X (Yi - Yi) + ]j(Xji), (5) 

where prji represents the partial residuals, Yi is the estimated 
output, Yi is the observed output and jj is the estimated 
output of each MLP. The proposed algorithm by [13] was: 

1- Construct a GANN with one neuron and a skip layer 
for each input (See Eq. (2» assuming that they are already 
standardized. 
2- This gives 4 parameters (degrees of freedom (df) for each 
input. Binary inputs (dmmny variables) only have a direct 
connection (1 df). 
3- Fit a generalized linear model to give initial estimates of 
(30 and WOj' 
4- Initialize the remaining 3 parameters in each hidden layer 
using random values from a normal distribution with mean 
zero and variance equal to 0.1. 
5- Fit the full GANN model. 
6- Examine each of the fitted partial functions overlaid over 
their partial residuals. 
7- Prune the hidden layers with apparently linear effects 
an add neurons to hidden layers where the nonlinear trend 
appears to be under-fitted. If this step is repeated, the final 
estimates from previous fits can be used as starting values. 

However, the performance of this interactive construction 
algorithm depends on the subjective analysis of partial residual 
plots. Thus, Du Toit [23] proposed an improved algorithm 
where the method of partial residual plots is not used in the 
process of model building. This improved algorithm is based 
on finding models using objective model selection criteria or 
cross-validation. Du Toit mentions that, if adequate time to 

2) Automated Construction of GANNs: From the point of 
GANN's view, each MLP has characteritics that will define its 
final behavior. In the other hand, MLP features are defined by 
the number of neurons in the hidden layer and the presence or 
absence of skip layer. These characteristics can be encoded 
in order to facilitate the process of model selection. As it 
can be seen later, GAs can be used for model selection 
by using an encoding system, that, in turn, translates the 
topological GANN's characteristics. Thus, an architecture with 
j variables can be encoded as a string with a number of j 
symbols. Each symbol is limited to a given number. As an 
example, DuToit and de Waal [23], [14], [15] use a table of 10 
symbols for coding some possible GANN's state (any GANN 
architecture, that corresponds to a structure which includes a 
number of nodes in each MLP, with or without a skip layer). 
The proposed encoding schema is given in Table I. 

Considering, as an example, the GANN model depicted in 
Fig. 2: the first variable is represented by a MLP with two 
hidden neurons with skip layer, the second MLP is represented 
by a hidden neuron with a skip layer, and the third one has 
just an hidden neuron, the resulting string that represents the 
model will, then, be "532". 
Concerning the process of model selection, the automated 
construction of a GANN is an iterative process that includes a 
set of tasks in each loop and it is described in [14] and [15]. 
This process aims to achieve an optimal GANN model. Each 
cycle begins with an initial state, which can start e. g. by only 
a skip layer for each MLP (linear model), or begin a state 
after an intelligent search. These may use a guess algorithm 
(a pre-processing step) based on the analysis of results of a 
stepwise regression, thereby reducing the search space to reach 
the optimum state. 

The displacement in the search space can be arranged in 
various ways. Du Toit proposes the demand for new states 
from a parent state (expanded node) through small changes 
in its string. Those changes should be restricted to slight 
modifications in each string digit, corresponding to small 



changes in GANN architecture (e.g. introducing one neuron in 
one of the MLPs). In this process, given a GANN's state, all 
possibilities in the next neighborhood are explored. According 
to a performance indicator, used as model selection criterion 
(e. g. cross-validation error), the best state is selected and will 
be the next expanded node. The expansion does not include 
duplicate states, thus, the process may be organized through 
a search tree where the nodes are organized according to the 
performance measurement, without duplications. The search 
ends when all possibilities are covered or when a maximum 
time is reached. The main disadvantage of this method is time 
consuming, especially if the number of variables is too large. 
In this case, a multistep approach can be used in addition to 
the described above, in which all changes that have been more 
advantageous may be implemented collectively, conducting 
to better results [ IS]. So, in addition, a state that includes 
collectively the changes that have been proven to be better 
than the parent node, should also be tested in the same loop. 
For applications with a large number of variables, the search 
space is exponentially proportional to the dimensions of the 
problem and, therefore, exhaustive search methods are very 
time consuming. Thus, the use of stochastic techniques (e. g. 

GAs) that attempt to discover near-optimal solutions within 
acceptable time, are highly useful. 

III. GENETIC ALGORITHMS 

GAs are part of a set of methods (evolutionary algorithms) 
where, inspired by natural selection, competition among in­
dividuals results in a struggle for survival [2S]. The indi­
viduals most adapted to the environment, i.e., those having 
characteristics that give them a greater degree of adaptability 
(fitness), are able to reach adulthood, becoming parents. These 
characteristics are determined primarily by their genes. After 
becoming parents, they may transmit their genes to future 
generations by exchanging genetic material (recombination). 
After this stage, a new population is generated. The new 
individuals will compete in the next generation. Sometimes 
an individual may mutate, corresponding to a small change 
in some of the genes. This change may confer greater fitness, 
contributing to its selection. 

From the computational point of view, each individual is 
represented by a chromosome, which, in turn, is formed by a 
well-defined array of genes. Each gene may be represented by 
a symbol or value depending on the used encoding schema 
(e.g. Table I). From a population with a fixed number of 
chromosomes, some are selected considering their fitnesses, 
based on a performance measure (e. g. cross-validation error). 
The selection may have other variants, such as the possibility 
(under certain conditions), of individuals with a lower fitnesses 
being selected. After selection, parents should be coupled 
randomly in pairs and generate offsprings which inherits some 
of the characteristics of both parents. At last, a new popu­
lation may be formed, e. g. , with the best chromosomes and 
offsprings [2S]. These steps are repeated in several iterations 
(generations) until a stop criterion is reached. 

IV. MET HODOLOGY 

A. Dataset and pre-processing 

For this study, data from 996 patients, obtained in an 
ICU, was used. SAPS II scores were collected in the first 
24 hours of admission. The SAPS II is a severity of illness 
score, used in intensive care units, that has received a lot 
of attention in Europe for its simplicity and applicability. It 
includes 17 variables: 12 physiology variables (heart rate, 

h . Pao? f' systolic blood pressure, body temperature, t e ratIO � or 
ventilated patients, urinary output, serum urea level, WBC 
count, serum potassium, serum sodium level, serum bicar­
bonate level, bilirubin level and Glasgow coma score), age, 
type of admission (scheduled surgical, unscheduled surgical 
or medical) and three underlying disease variables (acquired 
immunodeficiency syndrome, metastatic cancer and hemato­
logic malignancy). Categorical variables were recoded using 
dummy variables, resulting in a dataset with 19 covariates. 
Data were normalized with values between 0 and 1. 

B. Model Selection 

In order to search an optimal neural network model, dif­
ferent methods were implemented with out-of-sample model 
selection by using the Mean Squared Error (MSE) obtained 
from a S-fold cross-validation. Because the MLP architecture 
is the most popular, it was chosen as benchmark in the 
experiments. Thus, a MLP model with 19 inputs corresponding 
to the number of variables and one ouput was also imple­
mented. In order to find out the number of hidden layer nodes 
corresponding to a good MLP model, a set of models was 
generated with a topology that varied from one neuron in 
hidden layer until a maximum of fifty (in order to also include 
models provided by some heuristics that can be found in [18]). 
The model that presented a better cross-validation error was 
chosen. The best MLP model found has 31 nodes in the hidden 
layer. 

Concerning the GANN model, the topology included 19 
MLPs corresponding to the number of input variables. In the 
output, the logit link function was used: 

-1 ( E(Y) ) 
go (E(Y)) = In 

(1 _ E(Y)) . (6) 

For finding an optimal GANN model, two methods were 
compared. The first one is related to the AutoGann in [23], 
[14], [ IS]. The second used method was a standard GA [2S] 
applied to the GANN architecture. Both search algorithms 
applied to the GANN finished after a predetermined time. This 
time was equal regardless of the used search method. The 
referred models will be denoted by AutoGANN and Genetic, 
respectively. 

C. AutoGANN 

The use of AutoGANN method involved a multistep itera­
tion where a child node was built in each iteration, based on 
those children whose fitness was better than the one presented 
by the parent node. The initial state corresponds to a GLM 
Gust a skip layer in each MLP). 



TABLE II 
NEW GANN ENCODING 

Symbol Description 

null No MLP (input removed from model) 

0 MLP with a skip layer 

-1 MLP without skip layer and one hidden node 

1 MLP with skip layer and one hidden node 

-2 MLP without skip layer and two hidden nodes 

2 MLP with skip layer and two hidden nodes 

-3 MLP without skip layer and three hidden nodes 

3 MLP with skip layer and three hidden nodes 

-4 MLP without skip layer and four hidden nodes 

4 MLP with skip layer and four hidden nodes 

D. Genetic Algorithm 

The algorithm that was used can be found in [25]. For each 
generation, the steps listed below were followed: 

1) Generation of Population: Initial population is generated 
with ten chromosomes. This population size is maintained over 
generations. Each gene can assume random values from {-2,-
1,0,1,2}, meaning that the state of GANN can vary from 0 to 
2 nodes in each hidden layer and may include or not a skip 
layer. 

2) Evaluation: Each chromosome is evaluated in order to 
find its fitness. 

3) Selection of parents: In this step, among the top five 
chromossomes with better fitness, four should be randomly 
chosen to an empty set of parent chromosomes. Among the 
five with worst fitness, two should be chosen to the same set. 

4) Passage of genes from parents to children: The fun­
damental principle is that identical characteristics between 
parents should pass to the children. Before applying this 
principle, it is essential to find an encoding system that fa­
cilitates the development of the algorithm, namely the process 
of children generation as well as the mutation process. The 
proposed encoding schema (Table II), different from the one 
proposed by DuToit and de Waal (Table I), focuses on the main 
characteristics that define a GANN's state - the existence of a 
skip layer, and the number of nodes in each hidden layer. 

The first feature is boolean and the second one is numeric. 
Therefore, the system used in this study combines these two 
features in the same symbol, assigning a positive number if 
the MLP includes a skip layer or negative in the opposite 
case. The absolute part of the number represents the number 
of hidden nodes in a MLP. When a MLP only includes a 
skip layer, zero will be used. Thus, highlighting the two 
characteristics in the same gene will allow, for example, in 
the case of both parents having the same number of nodes in 
the hidden layer (absolute part of gene's value), but one of 
the parents has a skip layer and the other not, the children 
inherits the number of nodes, but the existence of a skip layer 
(the signal of gene's value) will be determined randomly. The 
same will happen if they both have the last characteristic in 
common, for example, no skip layer (negative signal) with a 
different number of nodes in the hidden layer. In this case, the 

corresponding children's gene will have a negative signal with 
a number of nodes randomly chosen. Because the encoding 
schema includes negative numbers, it is desirable, from now 
on, to represent the GANN state by using a vector rather 
than a string. Using the example of the GANN architecture 
in Fig. 2, according to the enconding schema proposed in 
Table II, the GANN state is represented by the vector (2,1,-1). 
When variable selection takes place and the input is removed 
from the model, a non-numerical value could be used, such as 
"null". However, because all SAPS II variables will have to 
be considered in the models, this feature will not be used in 
the present study. In each generation, the six selected parent 
chromosomes are randomly coupled in pairs. Each couple is 
combined resulting in two offsprings. Six children result from 
each generation. 

5) Mutation: the probability of inherited mutation of a 
gene in children was considered 0.1 (the value of the gene 
is modified to a random value). 

6) Generation of new Population: The fittest chromosomes 
from previous population and the six children above generated, 
will form together the new population for the next generation. 

7) Steps from 2 to 6 are performed until the number of 
iterations corresponds to the predefined time or a maximum 
number of generations. 

E. Statistical methods for model comparison 

In order to compare the models under study, predictive and 
discriminative abilities were studied. Predictive performance 
was evaluated through the analysis of the agreement between 
the estimated probabilities of death and the actual observed 
mortality by using MSE. The discriminative performance (i. e. 

ability of the model to distinguish between patients who live 
from patients who die) was measured by the area under the 
Receiver Operating Characteristic (ROC) curve [26]. A value 
of 0.50 is obtained when a model discriminates no better than 
chance, and a value of 1.0 means perfect accuracy [27]. To 
complement the study of model's performance, predictive ness 
curves were also calculated [28]. This curve is a graphical 
representation of the distribution of risk given a marker (in our 
case, marker values correspond to the estimated probabilities 
of death). This risk is defined by the following conditional 
probability: risk(y) == P[D = llY = y], where D denotes 
the binary outcome (in our case, death) and Y = y a marker 
value (in our case, predicted probabilities of death). A marker 
that is useless assigns equal risk to all individuals and hence, 
the corresponding predictiveness curve is an horizontal line at 
the prevalence of the outcome; on the other hand, a marker 
that is highly informative about risk, originates a predictive 
curve that is close to a step function. 

To compare the several models, continuous Net 
Reclassification Improvement (continuous NRI) and Integrated 
Discrimination Improvement (IDI) with corresponding 
bootstrap 95% confidence intervals were also calculated. NRI 
is a prospective measure which quantifies the correctness 
of upward and downward reclassification or movement of 
predicted probabilities as a result of adding a new marker (or 



using a new estimation method) and IDI may be viewed as 
a difference between improvement in average sensitivity and 
any potential increase in average I-specificity (it measures the 
increase in the difference in average predicted risks between 
the individuals with and without the outcome) [29]. 

Data analysis was performed on a personal computer 
with an Intel processor icore3, operating at 3.33 GHz with 
4 GB of RAM, running Microsoft Windows 7, 32 bit. All 
algorithms have been implemented in Java using the Eclipse 
IDE. However, some statistical functions that can be found in 
R software [30] were also integrated into the Java program 
by using the library RJava (e. g. the software that was used to 
implement the GLMs). All the statistical methods that were 
used to compare the performances of the three models were 
implemented by using R software [30]. A p-value < 0.05 
was considered significant and 95% confidence intervals were 
calculated whenever appropriate. 

V. RESULTS 

The mean of patients ages was 60.3 (95% confidence 
interval: 59.3 - 61.4) years. The median SAPS II was 41 
(interquartile range 20-60) and a mortality rate of 36%. 
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Concerning the predictive ability of the models, measured 
by the 5-fold cross-validation MSE, it may be seen that the 
MLP model had a higher value than the other two. Regarding 
the discriminative ability of the models, results showed that 
all models had a better performance than the MLP model. By 
Fig. 3 and Table III it can be seen that the model obtained 
by the AutoGANN had the highest AVC and was clearly dif­
ferent from MLP model's AVC (p-value=0.004). Comparing 
MLP model with the model obtained by Genetic, statistical 
differences remained (p-value=0.022). No differences were 

TABLE III 
PREDICTIVE AND DISCRIMINATIVE PERFORMANCE MEASURES 

Model MSE AUC 95%C.1. 

MLP 0.1600 0.821 0.794 - 0.848 

AutoGANN 0.1545 0.835 0.810 - 0.861 

Genetic 

Model 

comparison 

MLP vs 

AutoGANN 

AutoGANN vs 

Genetic 

Model 

comparison 

MLP vs 

AutoGANN 

AutoGANN vs 

Genetic 

0.1559 0.832 

TABLE IV 
NRI AND IDI 

Total NRI(95%C.I.) 

(p - value) 

54.6%(41.7, 67.6) 

(p < 0.001) 

-7.18%(-20.1, 5.8) 

(p = 0.277) 

TABLE V 

0.806 - 0.857 

Total IDI (95%C.I.) 

(p - value) 

0.0298(0.0199, -0.0397) 

(p < 0.001) 

-0.0021(-0.0074, 0.0032) 

(p = 0.442) 

NRI EVENTS/NO-EVENTS 

NRI events(95%C.i.) NRI no-events(95%C.i.) 

(p - value) (p - value) 

25.9%(15.6,36.2) 28.7%(21.0,36.5) 

(p < 0.001) (p < 0.001) 

5.85%(-4.5, 16.2) -13.03%(20.8,-5.3) 

(p = 0.268) (p = 0.001) 

found between the genetic method and the AutoGANN (p­
value=0.19). 

Results concerning NRI and IDI also confirm that Auto­
GANN has the best performance (see Table IV and Table 
V). When compared to MLP, a huge increase in total NRI 
was found (NRI=54.6%; p < 0.001). This reflects the correct 
changes in the relative order of the calculated risk of those 
with and without events (NRI events= 25.9%; p < 0.001 
and NRI no-events= 28.7%; p < 0.001, respectively). This 
means that, when AutoGANN was used, an increase of the 
calculated risk in 25.9% of those who died was observed as 
well as a reduction of the calculated risk in 28.7% of those 
who didn't died. The value of the ID!, which considers the 
size of the referred changes, was also significant (IDI=0.0298; 
p < 0.001). When comparing the AutoGANN with the Ge­
netic, although NRI and IDI total value was negative indicating 
a worse performance of this algorithm, no overall significant 
differences were detected (Table IV). However, if events/no­
events NRI components are analysed, a significant reduction 
of NRI for no-events was obtained (NRI no-events= -13.0%; 
p = 0.001). By the analysis of the predictiveness curves in Fig. 
4, a confirmation of previous results was found. In fact, the 
MLP model originated the worse results (higher risk estimates 
for low percentiles of risk and lower risk estimates for high 
percentiles of risk) and, AutoGANN and Genetic models were 
similar. 

VI. CONCLUSION 

After carrying out several performance measurements, it 
was found that the AutoGANN obtained a better model than 
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the best MLP model attained with 31 nodes in the hidden 
layer. Indeed, comparing their predictive and discriminative 
indicators, the GANN model presented better results than the 
MLP model, despite the search methods that were used. In 
this study it was also shown that the architecture GANN is 
surely a good alternative to the MLP. After comparing the 
two GANN search methods, the Genetic method emerges as 
a potential alternative to AutoGANN. AutoGANN and GAs 
have in common the fact that both methods perform a search 
in a population of candidates through an iterative process and, 
using a selection criterion, both retain the characteristics most 
promising for future generations. In the other hand, the Auto­
GANN is based on small changes along generations, meaning 
that the convergence process is very slow and more subject 
to falling into local minima. Using a GA, the search begins 
for a more spreaded throughout the search space and may 
found alternative solutions inside the population of candidates. 
However, given a convergence zone, it may result in a good 
solution but not in the best one. AutoGANN may be used in 
situations that require a local search, while the GA is more 
suited to a global search, founding possible alternatives. These 
roles may be complemental and, because it was shown that the 
GA and the AutoGANN are very similar regarding predictive 
and discriminative performances, we propose, as future work, 
the use of hybrid methods that combine the two approaches 
together in a single search method. 
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