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Summary 
 

Tibetan bowls have been traditionally used for ceremonial and meditation purposes, but are also increasingly 

being used in contemporary music-making. They are handcrafted using alloys of several metals and produce 

different tones, depending on the alloy composition, their shape, size and weight. Most important is the sound- 

producing technique used – either impacting or rubbing, or both simultaneously – as well as the excitation 

location, the hardness and friction characteristics of the exciting stick (called puja). Recently, researchers 

became interested in the physical modelling of singing bowls, using waveguide synthesis techniques for 

performing numerical simulations. Their efforts aimed particularly at achieving real-time synthesis and, as a 

consequence, several aspects of the physics of these instruments do not appear to be clarified in the published 

numerical formulations and results. In the present paper, we extend to axi-symmetrical shells – subjected to 

impact and friction-induced excitations – our modal techniques of physical modelling, which were already 

used in previous papers concerning plucked and bowed strings as well as impacted and bowed bars. We start 

by an experimental modal identification of three different Tibetan bowls, and then develop a modelling 

approach for these systems. Extensive nonlinear numerical simulations were performed, for both impacted and 

rubbed bowls, which in particular highlight important aspects concerning the spatial patterns of the friction-

induced bowl vibrations. Our results are in good agreement with preliminary qualitative experiments. 

 
PACS no. 43.75.Kk 

 

 

1. Introduction
     

Several friction-excited idiophones are familiar to 

western musical culture, such as bowed vibraphone and 

marimba bars, the nail violin, the musical saw, musical 

glasses and the glass harmonica, as well as some natural 

objects rubbed against each other, like sea shells, bones, 

stones or pine-cones. In an interesting tutorial paper, 

Akay [1] presents an overview of the acoustics 

                                                 
 This paper is an enlarged version of work presented at the 34th Spanish 

National Acoustics Congress and EEA Symposium (Tecniacústica 

2003) and at the International Symposium on Musical Acoustics (ISMA 

2004), Japan. 

phenomena related to friction, which is the main sound-

generating mechanism for such systems. Some of these 

musical instruments have been experimentally studied, in 

particular by Rossing and co-workers, an account of 

which will be found in [2]. Nevertheless, the analysis of 

idiophones excited by friction is comparatively rare in the 

literature and mostly recent – see French [3], Rossing [4], 

Chapuis [5] and Essl & Cook [6]. Among these studies, 

only [3] and [6] aim at physical modelling, respectively 

of rubbed glasses and bowed bars. In our previous work – 

Inácio et al. [7-9] – we also investigated the stick-slip 

behaviour of bowed bars under different playing 



Inácio, Henrique & Antunes: The Dynamics of Tibetan Singing Bowls 

 2 

conditions, using a modal approach and a simplified 

friction model for the bow/bar interaction. 

Recently, some researchers became interested in the 

physical modelling of singing bowls, using waveguide 

synthesis techniques for performing numerical 

simulations [10-12]. Their efforts aimed particularly at 

achieving real-time synthesis. Therefore, understandably, 

several aspects of the physics of these instruments do not 

appear to be clarified in the published formulations and 

results. For instance, to our best knowledge, an account 

of the radial and tangential vibratory motion components 

of the bowl shell – and their dynamical coupling – has 

been ignored in the published literature. Also, how these 

motion components relate to the travelling position of the 

puja contact point is not clear at the present time. Details 

of the contact/friction interaction models used in 

simulations have been seldom provided, and the 

significance of the various model parameters has not been 

asserted. On the other hand, experiments clearly show 

that beating phenomena arises even for near-perfectly 

symmetrical bowls, an important aspect which the 

published modelling techniques seem to miss (although 

beating from closely mistuned modes has been addressed 

– not without some difficulty [12] – but this is a quite 

different aspect). Therefore, it appears that several 

important aspects of the excitation mechanism in singing 

bowls still lack clarification. 

In this paper, we report and extend our recent studies 

[13,14] by applying the modal physical modelling 

techniques to axi-symmetrical shells subjected to impact 

and/or friction-induced excitations. These techniques 

were already used in previous papers concerning plucked 

and bowed strings [15-18] as well as impacted [19] and 

bowed bars [7-9]. Our approach is based on a modal 

representation of the unconstrained system – here 

consisting on two orthogonal families of modes of similar 

(or near-similar) frequencies and shapes. The bowl 

modeshapes have radial and tangential motion 

components, which are prone to be excited by the normal 

and frictional contact forces between the bowl and the 

impact/sliding puja. At each time step, the generalized 

(modal) excitations are computed by projecting the 

normal and tangential interaction forces on the modal 

basis. Then, time-step integration of the modal 

differential equations is performed using an explicit 

algorithm. The physical motions at the contact location 

(and any other selected points) are obtained by modal 

superposition. This enables the computation of the 

motion-dependent interaction forces, and the integration 

proceeds. Details on the specificities of the contact and 

frictional models used in our simulations are given. A 

detailed experimental modal identification has been 

performed for three different Tibetan bowls. Then, we 

produce an extensive series of nonlinear numerical 

simulations, for both impacted and rubbed bowls, 

demonstrating the effectiveness of the proposed 

computational techniques and highlighting the main 

features of the physics of singing bowls. We discuss 

extensively the influence of the contact/friction and 

playing parameters – the normal contact force 
NF  and of 

the tangential velocity 
TV  of the exciter – on the 

produced sounds. Many aspects of the bowl responses 

displayed by our numerical simulations have been 

observed in preliminary qualitative experiments.  

Our simulation results highlight the existence of 

several motion regimes, both steady and unsteady, with 

either permanent or intermittent bowl/puja contact. 

Furthermore, the unstable modes spin at the angular 

velocity of the puja. As a consequence, for the listener, 

singing bowls behave as rotating quadropoles. The sound 

will always be perceived as beating phenomena, even if 

using perfectly symmetrical bowls. From our 

computations, sounds and animations have been 

produced, which appear to agree with qualitative 

experiments. Some of the computed sounds are appended 

to this paper.  

2. Tibetan singing bowls and their use 

Singing bowls, also designated by Himalayan or 

Nepalese singing bowls [20] are traditionally made in 
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Tibet, Nepal, Bhutan, Mongolia, India, China and Japan. 

Although the name qing has been applied to lithophones 

since the Han Chinese Confucian rituals, more recently it 

also designates the bowls used in Buddhist temples [21]. 

In the Himalaya there is a very ancient tradition of metal 

manufacture, and bowls have been handcrafted using 

alloys of several metals – mainly copper and tin, but also 

other metals such as gold, silver, iron, lead, etc. – each 

one believed to possess particular spiritual powers. There 

are many distinct bowls, which produce different tones, 

depending on the alloy composition, their shape, size and 

weight. Most important is the sound producing technique 

used – either impacting or rubbing, or both 

simultaneously – as well as the excitation location, the 

hardness and friction characteristics of the exciting stick 

(called puja, frequently made of wood and eventually 

covered with a soft skin) – see [22].  

The origin of these bowls isn’t still well known, but 

they are known to have been used also as eating vessels 

for monks. The singing bowls dates from the Bon 

civilization, long before the Buddhism [23]. Tibetan 

bowls have been used essentially for ceremonial and 

meditation purposes. Nevertheless, these amazing 

instruments are increasingly being used in relaxation, 

meditation [23], music therapy [20, 24, 25] and 

contemporary music.  

The musical use of Tibetan singing bowls in 

contemporary music is a consequence of a broad artistic 

movement. In fact, in the past decades the number of 

percussion instruments used in Western music has greatly 

increased with an “invasion” of many instruments from 

Africa, Eastern, South-America and other countries. 

Many Western composers have included such 

instruments in their music in an acculturation 

phenomenon.  

The Tibetan bowls and other related instruments used 

in contemporary music are referred to, in scores, by 

several names: temple bells, campana di templo, japonese 

temple bell, Buddhist bell, cup bell, dobaci Buddha 

temple bell. Several examples of the use of these 

instruments can be found in contemporary music: 

Philippe Leroux, Les Uns (2001); John Cage/Lou 

Harrison, Double Music (1941) percussion quartet, a 

work with a remarkable Eastern influence; Olivier 

Messiaen, Oiseaux Exotiques (1955/6); John Kenneth 

Tavener, cantata Total Eclipse (1999) for vocal soloist, 

boys’ choir, baroque instruments, brass, Tibetan bowls, 

and timpani; Tan Dun Opera Marco Polo (1995) with 

Tibetan bells and Tibetan singing bowls; Joyce Bee Tuan 

Koh, Lè (1997) for choir and Tibetan bowls. 

 

Figure 1. Three singing bowls used in the experiments: Bowl 1 

(φ = 180 mm); Bowl 2 (φ = 152 mm); Bowl 3 (φ = 140 mm). 

 

Figure 2. Large singing bowl: Bowl 4 (φ = 262 mm), and two 

pujas used in the experiments. 

3. Experimental modal identification 

Figures 1 and 2 show the four bowls and two pujas 

used for the experimental work in this paper. In order to 

estimate the natural frequencies nω , damping values nς , 

modal masses nm  and modeshapes ( , )n zϕ θ  to be used 

in our numerical simulations, a detailed experimental 

modal identification based on impact testing was 

performed for Bowls 1, 2 and 3. A mesh of 120 test 

locations was defined for each instrument (e.g., 24 points 

regularly spaced azimuthally, at 5 different heights). 

Impact excitation was performed on all of the points and 
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the radial responses were measured by two 

accelerometers attached to inner side of the bowl at two 

positions, located at the same horizontal plane (near the 

rim) with a relative angle of 55º between them, as can be 

seen in Figure 3(a). Modal identification was achieved by 

developing a simple MDOF algorithm in the frequency 

domain [26]. The modal parameters were optimized in 

order to minimize the error ( , , , )
n n n n

mε ω ς ϕ  between the 

measured transfer functions ( ) ( ) ( )
er r e

H Y Fω ω ω= ��  and 

the fitted modal model ˆ ( ; , , , )
er n n n n

H mω ω ς ϕ , for all 

measurements (
e

P  excitation and 
r

P  response locations), 

in a given frequency range [ ]
min max

,ω ω encompassing N  

modes. Hence: 

m ax

m in
1 1

( , , , )

ˆ( ) ( ; , , , )

e r

n n n n

P P

er er n n n n

e r

m

H H m d

ω

ω

ε ω ς ϕ

ω ω ω ς ϕ ω
= =

=

 = − ∑∑ ∫
 (1) 

with: 

1

1

2 2
1 22 2

ˆ ( ; , , , )

2

er n n n n

n N er
n

n n nn n

H m

A
C C

i

ω ω ς ϕ

ω ω
ω ω ω ω ς

+

=

=

= − − +
− +∑

(2) 

where the modal amplitude coefficients are given as 

( , ) ( , )er
n n e e n r r nA z z mϕ θ ϕ θ=  and the two last terms in 

(2) account for modes located out of the identified 

frequency-range. The values of the modal masses 

obviously depend on how modeshapes are normalized 

(we used 
max

( , ) 1zϕ θ = ). Note that the identification is 

nonlinear in nω  and 
n

ς  but linear in 
er

n
A . 

Results from the experiments on the three bowls show 

the existence of 5 to 7 prominent resonances with very 

low modal damping values up to frequencies about 4 ~ 6 

kHz. For these well-defined experimental modes, the 

simple identification scheme used proved adequate. As an 

illustration, Figure 3(b) depicts the modulus of a 

frequency response function obtained from Bowl 2, 

relating the acceleration measured at point 1 (near the 

bowl rim) to the force applied at the same point.  

The shapes of the identified bowl modes are mainly 

due to bending waves that propagate azimuthally, 

resulting in patterns similar to some modeshapes of bells 

[2]. Following Rossing, notation ( , )j k  represents here 

the number of complete nodal meridians extending over 

the top of the bowl (half the number of nodes observed 

along a circumference), and the number of nodal circles, 

respectively.  

Despite the high manufacturing quality of these 

handcrafted instruments, perfect axi-symmetry is nearly 

impossible to achieve. As will be explained in section 4, 

these slight geometric imperfections lead to the existence 

of two orthogonal modes (hereby called modal families A 

and B), with slightly different natural frequencies. 

Although this is not apparent in Figure 3(b), by zooming 

the analysis frequency-range, an apparently single 

resonance often reveals two closely spaced peaks. 

Figure 4 shows the perspective and top views of the 

two orthogonal families of the first 7 “sounding” (radial) 

modeshapes (rigid-body modes are not shown) for Bowl 

2, as identified from experiments. In the frequency-range 

explored, all the identified modes are of the ( ,0)j  type, 

due to the low value of the height to diameter ratio 

( /Z φ ) for Tibetan bowls, in contrast to most bells.  The 

modal amplitudes represented are normalised to the 

maximum amplitude of both modes, which complicates 

the perception of some modeshapes. However, the spatial 

phase difference ( / 2 jπ ) between each modal family (see 

section 4) is clearly seen.  

Although modal frequencies and damping values were 

obtained from the modal identification routine, it was 

soon realized that the accelerometers and their cables had 

a non-negligible influence on the bowl modal parameters, 

due to the very low damping of these systems, which was 

particularly affected by the instrumentation.  

Indeed, analysis of the near-field sound pressure time-

histories, radiated by impacted bowls, showed slightly 

higher values for the natural frequencies and much longer 

decay times, when compared to those displayed after 

transducers were installed. Hence, we decided to use 

some modal parameters identified from the acoustic 

responses of non-instrumented impacted bowls. Modal 

frequencies were extracted from the sound pressure 

spectra and damping values were computed from the 

logarithm-decrement of band-pass filtered (at each mode) 

sound pressure decays. 
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Figure 3. Experimental modal identification of Bowl 2: 

(a) Picture showing the measurement grid and accelerometer locations; (b) Modulus of the accelerance frequency response function. 

   (j,k) (2,0) (3,0)  (4,0)   (5,0)    (6,0)     (7,0)    (8,0) 

                       

                       

                           

                             

Figure 4. Perspective and top view of experimentally identified modeshapes (j,k) of the first 7 elastic mode-pairs of Bowl 2  

(j relates to the number of nodal meridians and k to the number of nodal circles – see text). 

Table I – Modal frequencies and frequency ratios of bowls 1, 2 and 3 (as well as their total masses MT and rim diameters φ). 

 Bowl 1 Bowl 2 Bowl 3 

Total Mass MT  = 934 g MT  = 563 g MT  = 557 g 

Diameter φ = 180 mm φ = 152 mm φ = 140 mm 

Mode 
A

nf  [Hz] B

nf  [Hz] 
1

AB AB

nf f  
A

nf  [Hz] B

nf  [Hz] 
1

AB AB

nf f  
A

nf  [Hz] B

nf  [Hz] 
1

AB AB

nf f  

(2,0) 219.6 220.6 1 310.2 312.1 1 513.0 523.6 1 

(3,0) 609.1 609.9 2.8 828.1 828.8 2.7 1451.2 1452.2 2.8 

(4,0) 1135.9 1139.7 5.2 1503.4 1506.7 4.8 2659.9 2682.9 5.2 

(5,0) 1787.6 1787.9 8.1 2328.1 2340.1 7.5 4083.0 4091.7 7.9 

(6,0) 2555.2 2564.8 11.6 3303.7 3312.7 10.6 5665.6 5669.8 10.9 

(7,0) 3427.0 3428.3 15.6 4413.2 4416.4 14.2 - - - 

(8,0) 4376.3 4389.4 19.9 5635.4 5642.0 18.1 - - - 
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Table I shows the values of the double modal 

frequencies ( A

nf and B

nf ) of the most prominent modes 

of the three bowls tested, together with their ratios to the 

fundamental – mode (2,0) – where AB

nf  represents the 

average frequency between the two modal frequencies 

A

nf and B

nf . These values are entirely in agreement with 

the results obtained by Rossing [2]. Interestingly, these 

ratios are rather similar, in spite of the different bowl 

shapes, sizes and wall thickness. As rightly pointed by 

Rossing, these modal frequencies are roughly 

proportional to 2j , as in cylindrical shells, and inversely 

proportional to 2φ . Rossing explains this in simple terms, 

something that can be also grasped from the theoretical 

solution for in-plane modes for rings [27]:  

2

42

( 1)

1
j

j j EI

ARj
ω

ρ

−
=

+
, with 1,2,...,j N=   (3) 

where E and ρ are the Young Modulus and density of the 

ring material, I the area moment of inertia, A the ring 

cross section area and R the ring radius. It can be seen 

that as j takes higher values, the first term of equation 3 

tends to 2j , while the dependency on the ring diameter is 

embedded in the second term.  

The frequency relationships are mildly inharmonic, 

which does not affect the definite pitch of this instrument, 

mainly dominated by the first (2,0) shell mode. As stated, 

dissipation is very low, with modal damping ratios 

typically in the range n
ς = 0.002~0.015 % (higher values 

pertaining to higher-order modes). However, note that 

these values may increase one order of magnitude, or 

more, depending on how the bowls are actually supported 

or handled. 

Further experiments were performed on the larger 

bowl shown in Figure 2 (Bowl 4), with φ = 262 mm, a 

total mass of 1533 g and a fundamental frequency of 86.7 

Hz. A full modal identification was not pursued for this 

instrument, but ten natural frequencies were identified 

from measurements of the sound pressure resulting from 

impact tests. These modal frequencies are presented in 

Table II, which show a similar relation to the 

fundamental as the first three bowls presented in this 

study. For this instrument all these modes were assumed 

to be of the (j,0) type. 

Table II – Modal frequencies and frequency ratios of Bowl 4. 

Mode (j,k) fn [Hz] fn/f1 

(2,0) 86.7 1.0 

(3,0) 252.5 2.9 

(4,0) 490.0 5.7 

(5,0) 788.0 9.1 

(6,0) 1135.0 13.1 

(7,0) 1533.0 17.7 

(8,0) 1963.0 22.6 

(9,0) 2429.0 28.0 

(10,0) 2936.0 33.9 

(11,0) 3480.0 40.1 

4. Formulation of the dynamical system 

4.1. Dynamical formulation of the bowl in modal 

coordinates 

Perfectly axi-symmetrical structures exhibit double 

vibrational modes, occurring in orthogonal pairs with 

identical frequencies (
A B

n n
ω ω= ) [4]. However, if a slight 

alteration of this symmetry is introduced, the natural 

frequencies of these two degenerate modal families 

deviate from identical values by a certain amount 
n

ω∆ . 

The use of these modal pairs is essential for the correct 

dynamical description of axi-symmetric bodies, under 

general excitation conditions. Furthermore, shell 

modeshapes present both radial and tangential 

components. Figure 5 displays a representation of the first 

four modeshape pairs, near the bowl rim, where the 

excitations are usually exerted (e.g., ez Z≈ ). Both the 

radial (green) and tangential (red) motion components are 

plotted, which for geometrically perfect bowls can be 

formulated as: 

 

( ) ( ) ( )

( ) ( ) ( )

A Ar At

n n n

B Br Bt

n n n

r t

r t

θ θ θ

θ θ θ

ϕ ϕ ϕ

ϕ ϕ ϕ

= +

= +





��

��  (4) 

with 

( ) ( )

( ) ( )

cos

sin

Ar

n

At

n

n

n n

θ θ

θ θ

ϕ

ϕ

=

= −





 ; 

( ) ( )

( ) ( )

sin

cos

Br

n

Bt

n

n

n n

θ θ

θ θ

ϕ

ϕ

=

=





 (5,6) 

where ( )Ar

n
ϕ θ  corresponds to the radial component of the 

A family nth modeshape, ( )At

n
ϕ θ  to the tangential 
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component of the A family nth mode shape, etc. Figure 5 

shows that spatial phase angles between orthogonal mode 

pairs are / 2 jπ . One immediate conclusion can be drawn 

from the polar diagrams shown and equations (5,6): the 

amplitude of the tangential modal component decreases 

relatively to the amplitude of the radial component as the 

mode number increases. This suggests that only the 

lower-order modes are prone to engage in self-sustained 

motion due to tangential rubbing excitation by the puja. 

If linear dissipation is assumed, the motion of the 

system can be described in terms of the bowl’s two 

families of modal parameters: modal masses 
X

n
m , modal 

circular frequencies 
X

n
ω , modal damping 

X

n
ζ , and mode 

shapes ( )X

n
ϕ θ  (at the assumed excitation level ez Z≈ ), 

with 1,2, ,n N= � , where X  stands for the modal 

family A  or B . The order N  of the modal truncation is 

problem-dependent and should be asserted by physical 

reasoning, supported by the convergence of 

computational results. 

The maximum modal frequency to be included, Nω , 

mostly depends on the short time-scales induced by the 

contact parameters – all modes significantly excited by 

impact and/or friction phenomena should be included in 

the computational modal basis.  

The forced response of the damped bowl can then be 

formulated as a set of 2N ordinary second-order 

differential equations 

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

0 ( )

0 ( )

0 ( )

         +
0 ( )

0 ( ) ( )

                   
0 ( ) ( )

A A

B B

A A

B B

A A A

B B B

M Q t

M Q t

C Q t

C Q t

K Q t t

K Q t t

+

+

Ξ
+ =

Ξ

        
          

        
          

            
                

��

��

�

�

 (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 5. Mode shapes at the bowl rim of the first four orthogonal mode pairs 

(Blue: Undeformed; Green: Radial component; Red: Tangential component). 
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where: 

[ ] 1
Diag( , , )

N

X X

X
M m m= � ,  

[ ]
1 1 1

Diag(2 , , 2 )
X X X X X X

X N N N
C m mω ζ ω ζ= � , 

[ ] 2 2

1 1
Diag( ( ) , , ( ) )

X X X X

X N N
K m mω ω= � ,  

are the matrices of the modal parameters (where X stands 

for A or B), for each of the two orthogonal mode families, 

while { }
1

( ) ( ), , ( )
T

X X

X N
Q t q t q t= �  and 

{ }
1

( ) ( ), , ( )
T

X X

X N
t t tΞ = ℑ ℑ�  are the vectors of the modal 

responses and of the generalized forces, respectively. 

Note that, although equations (7) obviously pertain to a 

linear formulation, nothing prevents us from including in 

( )
X

n
tℑ  all the nonlinear effects which arise from the 

contact/friction interaction between the bowl and the 

puja. Accordingly, the system modes become coupled by 

such nonlinear effects. 

The modal forces ( )
X

n
tℑ  are obtained by projecting 

the external force field on the modal basis: 

2

0
( ) ( , ) ( ) ( , ) ( )

X Xr Xt

n r n t n
t F t F t d

π

θ ϕ θ θ ϕ θ θℑ = +  ∫ (8) 

1, 2, ,n N= �  

where ( , )
r

F tθ  and ( , )
t

F tθ  are the radial (impact) and 

tangential (friction) force fields applied by the puja – e.g., 

a localised impact ( , )
r c

F tθ  and/or a travelling rub 

,
( ( ), )

r t c
F t tθ . The radial and tangential physical motions 

can be then computed at any location θ  from the modal 

amplitudes ( )
X

n
q t  by superposition: 

1

( ) ( ) ( ) ( ) ( )
N

Ar A Br B

r n n n n

n

y t q t q tϕ θ ϕ θ
=

= ⋅ + ⋅  ∑            (9) 

1

( ) ( ) ( ) ( ) ( )
N

At A Bt B

t n n n n

n

y t q t q tϕ θ ϕ θ
=

= ⋅ + ⋅  ∑          (10) 

and similarly concerning the velocities and accelerations. 

4.2. Dynamics of the puja 

As mentioned before, the excitation of these musical 

instruments can be performed in two basic different 

ways: by impact or by rubbing around the rim of the bowl 

with the puja (these two types of excitation can obviously 

be mixed, resulting in musically interesting effects). The 

dynamics of the puja will be formulated simply in terms 

of a mass Pm  subjected to a normal (e.g. radial) force 

( )
N

F t  and an imposed tangential rubbing velocity ( )
T

V t  

– which will be assumed constant in time for all our 

exploratory simulations – as well as to an initial impact 

velocity in the radial direction 
0

( )
N

V t . These three 

parameters are the most relevant factors which allow the 

musician to play the instrument and control the 

mechanism of sound generation. Many distinct sounds 

may be obtained by changing them: in particular, 

0
0( )

N
V t ≠  with 0

N T
F V= =  will be “pure” impact, and 

( ) 0 , ( ) 0
TNF t V t≠ ≠  with 

0
0( )

N
V t =  will be “pure” 

singing (see section 4). The radial motion of the puja, 

resulting from the external force applied and the 

impact/friction interaction with the bowl is given by: 

( ) ( , )
P P N r

m y F t F tθ=− +��   (11) 

where ( , )
r

F tθ is the dynamical bowl/puja contact force. 

4.3. Contact interaction formulation 

The radial contact force resulting from the interaction 

between the puja and the bowl is simply modelled as a 

contact stiffness, eventually associated with a contact 

damping term: 

( ) ( ) ( ), ,
r c c r c c r c

F K y t C y tθ θ θ= − − �� �  (12) 

where 
r

y�  and 
r

y��  are respectively the bowl/puja relative 

radial displacement and velocity, at the (fixed or 

travelling) contact location ( )
c

tθ , 
c

K  and 
c

C  are the 

contact stiffness and damping coefficients, directly 

related to the puja material. Other and more refined 

contact models – for instance of the hertzian type, 

eventually with hysteretic behaviour – could easily be 
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implemented instead of (12). Such refinements are 

however not a priority here. 

4.4. Friction interaction formulation 

In previous papers we have shown the effectiveness of 

a friction model used for the simulation of bowed bars 

and bowed strings [7-9, 15-18]. Such model enabled a 

clear distinction between sliding and adherence states, 

sliding friction forces being computed from the Coulomb 

model ( ) ( )t r d t tF F y sgn yµ= − � �� � , where 
t

y��  is the 

bowl/puja relative tangential velocity, and the adherence 

state being modelled essentially in terms of a local 

“adherence” stiffness 
a

K  and some damping. We were 

thus able to emulate true friction sticking of the 

contacting surfaces, whenever t r sF F µ< , however at 

the expense of a longer computational time, as smaller 

integration time-steps seem to be imposed by the 

transitions from velocity-controlled sliding states to 

displacement-controlled adherence states. 

In this paper, a simpler approach is taken to model 

friction interaction, which allows for faster computation 

times, although it lacks the capability to emulate true 

friction sticking. The friction force will be formulated as: 

( ) ( )( , ) ( , ) ( , ) ( , )

, if ( , )

( , ) ( , ) ( , ) , if ( , )

                                                   

t r d

t r s

c c t c t c

t c

c c t c t c

F t F t t sgn t

t

F t F t t t

y y

y

y y

θ θ µ θ θ

θ ε

θ θ µ θ ε θ ε

= −

≥

= − <









� �� �

��

� �� �

(13) 

where 
s

µ  is a “static” friction coefficient and ( )
d t

yµ ��  is a 

“dynamic” friction coefficient, which depends on the 

puja/bowl relative surface velocity 
t

y�� . We will use the 

following model: 

( )( ) ( ) exp ( , )d t s t cy C y tµ µ µ µ θ∞ ∞= + − −� �� �     (14) 

where, 0
s

µ µ
∞

≤ ≤  is an asymptotic lower limit of the 

friction coefficient when ty → ∞�� , and parameter C  

controls the decay rate of the friction coefficient with the 

relative sliding velocity, as shown in the typical plot of 

Figure 6(a). This model can be fitted to the available 

experimental friction data (obtained under the assumption 

of instantaneous velocity-dependence), by adjusting the 

empirical constants 
s

µ , µ
∞

 and C . 

Notice that both equations (13) correspond to velocity-

controlled friction forces. For values of 
t

y��  outside the 

interval [ , ]ε ε− , the first equation simply states 

Coulomb’s model for sliding. Inside the interval [ , ]ε ε− , 

the second equation models a state of pseudo-adherence 

at very low tangential velocities. Obviously, ε  acts as a 

regularization parameter for the friction force law, 

replacing the “zero-velocity” discontinuity (which 

renders the adherence state numerically tricky), as shown 

in Figure 6(b). This regularization method, extensively 

developed in [28], has been often used as a pragmatic 

way to deal with friction phenomena in the context of 

dynamic problems. However, using this model, the 

friction force will always be zero at zero sliding velocity, 

inducing a relaxation on the “adherence” state (dependent 

on the magnitude of ε ), and therefore disabling a true 

sticking behaviour. How pernicious this effect may be is 

problem-dependent – systems involving a prolonged 

adherence will obviously suffer more from the relaxation 

effect than systems which are sliding most of the time. 

For the problem addressed here, we have obtained 

realistic results using formulation (13), for small enough 

values of the regularization domain (we used 

4 -1
10 msε

−
± ≈ ) – results which do not seem to critically 

depend on ε , within reasonable limits. 

4.5. Time-step integration 

For given external excitation and initial conditions, the 

previous system of equations is numerically integrated 

using an adequate time-step algorithm. Explicit 

integration methods are well suited for the 

contact/friction model developed here. In our 

implementation, we used a simple Velocity-Verlet 

integration algorithm [29], which is a low-order explicit 

scheme. 
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Figure 6. Friction coefficient as a function of the contact 

relative tangential velocity ( µ∞
= 0.2, 

sµ = 0.4, C = 10):  

(a) For -1<
ty��  <1; (b) For -0.01<

ty�� <0.01. 

5. Numerical simulations 

The numerical simulations presented here are based on 

the modal data of two different sized instruments: Bowl 2 

and Bowl 4, which were identified in section 2. The 

simulations based on the smaller instrument data will be 

used to highlight the main features of the dynamics of 

these instruments, while the larger instrument simulations 

will serve the purpose of studying the influence of the 

contact/friction parameters on the oscillation regimes.  

The puja is modeled as a simple mass of 20 g, moving 

at tangential velocity 
TV , and subjected to an external 

normal force 
NF  as well as to the bowl/puja nonlinear 

interaction force. We explore a significant range of 

rubbing parameters: 1 ~ 9 NNF =  and 0.1 ~ 0.5 m/sTV = , 

which encompass the usual playing conditions, although 

calculations were made also using impact excitation only. 

For clarity, the normal force and tangential velocity will 

be assumed time-constant, in the present simulations. 

However, nothing would prevent us from imposing any 

time-varying functions ( )NF t  and ( )TV t , or even – as 

musicians would do – to couple the generation of ( )NF t  

and ( )TV t  with the nonlinear bowl/puja dynamical 

simulation, through well-designed control strategies, in 

order to achieve a suitable response regime. 

The contact model used in all rubbing simulations of 

Bowl 2 has a contact stiffness of 610  N/m
c

K = and a 

contact dissipation of 50 Ns/m
c

C = , which appear 

adequate for the present system. However, concerning 

impact simulations of this instrument, contact parameters 

ten times higher and lower were also explored. The 

friction parameters used in numerical simulations of this 

instrument are 0.4
s

µ = , 0.2µ∞ =  and 10C =  (see Figure 

6). In relation to the numerical simulations of Bowl 4, 

different contact/friction parameters were used to 

simulated friction by pujas made of different materials, 

namely rubber and wood. Its values will be described in 

section 5.4.  

In section 4.1 a few general remarks were produced 

concerning the order of the modal basis to use. With 

respect to the present system, the choice of the modal 

basis order of truncation is not difficult and certainly not 

critical, as only a few modes are excited (in contrast with 

bowed strings). For easily understandable physical 

reasons, modes with modal stiffness much higher than the 

contact stiffness are not significantly excited, so a 

reasonable criterion to choose a minimum order of 

truncation N  is to compare 
c

K  with the successive 
n

K  

of the modal series. In the present study a maximum 

value of 610 N/m
c

K =  is used, then it is reasonable to 

assume that modes with 
n

K  much higher than 710 N/m  

will be “useless”. For Bowl 2, we decided to use seven 

mode pairs, the maximum value 
N

K  being of the order 

8

2 7
~ 10 N/mK × . Indeed, this is a generous modal basis, 

and four mode pairs would do equally well, as 

7

2 4
~ 10 N/mK × . However it is pointless to discuss on 

such a detail, when the number of modes is low. In 

relation to the larger Bowl 4, ten mode pairs were used, 

following the same reasoning. Both computational and 

experimental results confirm that the truncation criterion 

adopted is adequate. 

a) 

b) 
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As discussed before, assuming a perfectly symmetrical 

bowl, simulations were performed using identical 

frequencies for each mode-pair (
A B

n n
ω ω= ). However, a 

few computations were also performed for less-than-

perfect systems, asymmetry being then modelled 

introducing a difference (or “split”) 
n

ω∆  between the 

frequencies of each mode pair. An average value of 

0.005% was used for all modal damping coefficients. In 

order to cope with the large settling times that arise with 

singing bowls, 20 seconds of computed data were 

generated (enough to accommodate transients for all 

rubbing conditions), at a sampling frequency of 22050 

Hz.  

5.1. Impact responses 

Figures 7(a, b) display the simulated responses of a 

perfectly symmetrical bowl to an impact excitation 

(
0

( ) 1 m/s
N

V t = ), assuming different values for the contact 

model parameters. The time-histories of the response 

displacements pertain to the impact location. The 

spectrograms are based on the corresponding velocity 

responses. Typically, as the contact stiffness increases 

from 10
5
 N/m to 10

7
 N/m, higher-order modes become 

increasingly excited and resonate longer. The 

corresponding simulated sounds become progressively 

brighter, denoting the “metallic” bell-like tone which is 

clearly heard when impacting real bowls using wood or 

metal pujas. 

5.2. Friction-excited responses  

Figure 8 shows the results obtained when rubbing a 

perfectly symmetrical bowl near the rim, using fairly 

standard rubbing conditions: 3 N
N

F =  and 0.3 m/sTV = . 

The plots shown pertain to the following response 

locations: (a) the travelling contact point between the 

bowl and the puja; (b) a fixed point in the bowl’s rim. 

Depicted are the time-histories and corresponding spectra 

of the radial (green) and tangential (red) displacement 

responses, as well as the spectrograms of the radial 

velocity responses. 

As can be seen, an instability of the first "elastic" shell 

mode (with 4 azimuthal nodes) arises, with an 

exponential increase of the vibration amplitude until 

saturation by nonlinear effects is reached (at about 7.5 s), 

after which the self-excited vibratory motion of the bowl 

becomes steady. The response spectra show that most of 

the energy lays in the first mode, the others being 

marginally excited. Notice the dramatic differences 

between the responses at the travelling contact point and 

at a fixed location. At the moving contact point, the 

motion amplitude does not fluctuate and the tangential 

component of the motion is significantly higher than the 

radial component. On the contrary, at a fixed location, the 

motion amplitude fluctuates at a frequency which can be 

identified as being four times the spinning frequency of 

the puja: ( )4 4 2fluct puja TV φΩ = Ω = . Furthermore, at 

a fixed location, the amplitude of the radial motion 

component is higher than the tangential component. 

The animations of the bowl and puja motions enable 

an interpretation of these results. After synchronisation of 

the self-excited regime, the combined responses of the 

first mode-pair result in a vibratory motion according to 

the 4-node modeshape, which however spins, “following” 

the revolving puja. Furthermore, synchronisation settles 

with the puja interacting near a node of the radial 

component, corresponding to an anti-nodal region of the 

tangential component – see Figure 5 and Equations (5,6). 

In retrospect, this appears to make sense – indeed, 

because of the friction excitation mechanism in singing 

bowls, the system modes self-organize in such way that a 

high tangential motion-component will arise at the 

contact point, where energy is inputted. 

At any fixed location, a transducer will “see” the 

vibratory response of the bowl modulated in amplitude, 

as the 2j alternate nodal and anti-nodal regions of the 

“singing” modeshape revolve. For a listener, the rubbed 

bowl behaves as a spinning quadropole – or, in general, a 

2j-pole (depending on the self-excited mode j) – and the 

radiated sound will always be perceived with beating 

phenomena, even for a perfectly symmetrical bowl. 

Therefore the sound files available were generated from 

the velocity time-history at a fixed point in the bowl rim. 
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(a)                                                                                                           (b) 

Figure 7. Displacement time histories (top) and spectrograms (bottom) of the response of Bowl 2 to impact excitation with two 

different values of the bowl/puja contact stiffness: (a) 105 N/m (sound file available); (b) 107 N/m (sound file available).
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(a)                                                                                                                (b) 

Figure 8. Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation when 
NF = 3 N,      

T
V = 0.3 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                                              (b) 

Figure 9. Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation when 
NF = 7 N,      

T
V = 0.5 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 
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(a)                                                                                                                 (b) 

Figure 10. Time-histories, spectra and spectrograms of the dynamical response of Bowl 2 to friction excitation when 
NF = 1 N,      

T
V = 0.5 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Radial (green) and tangential (red) interaction forces between the bowl and the travelling puja:  

(a) 
NF = 3 N, 

T
V = 0.3 m/s; (b) 

NF = 7 N, 
T

V = 0.5 m/s; (c) 
NF = 1 N, 

T
V = 0.5 m/s.

(b) 

(a) 

(c) 
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Following the previous remarks, the out-of-phase 

envelope modulations of the radial and tangential motion 

components at a fixed location, as well as their 

amplitudes, can be understood. Indeed, all necessary 

insight stems from Equations (5,6) and the first plot of 

Figure 5.  

In order to confirm the rotational behaviour of the self-

excited mode we performed a simple experiment under 

normal playing (rubbing) conditions on Bowl 2. The 

near-field sound pressure radiated by the instrument was 

recorded by a microphone at a fixed point, approximately 

5 cm from the bowl’s rim. While a musician played the 

instrument, giving rise to a self-sustained oscillation of 

the first shell mode (j = 2, see Figures 4 and 5), the 

position of the rotating puja was monitored by an 

observer which emitted a short impulse at the puja 

passage by the microphone position. Since sound 

radiation is mainly due to the radial motion of the bowl, 

the experiment proves the existence of a radial vibrational 

nodal region at the travelling point of excitation. Between 

each two passages of the puja by this point (i.e. one 

revolution), 4 sound pressure maxima are recorded, 

corroborating our previous comments that the listener 

hears a beating phenomena (or pseudo-beating) 

originating from a rotating 2j-pole source, whose 

“beating-frequency” is proportional to the revolving 

frequency of the puja. Such behaviour will be 

experimentally documented in section 5.4. 

It should be noted that our results basically support the 

qualitative remarks provided by Rossing, when 

discussing friction-excited musical glass-instruments (see 

[4] or his book [2] pp. 185-187, the only references, to 

our knowledge, where some attention has been paid to 

these issues). However, his main point “The location of 

the maximum motion follows the moving finger around 

the glass” may now be further clarified: the “maximum 

motion” following the exciter should refer in fact to the 

maximum tangential motion component (and not the 

radial component, as might be assumed). 

Before leaving this example, notice in Figure 11(a) the 

behaviour of the radial and tangential components of the 

bowl/puja contact force, on several cycles of the steady 

motion. The radial component oscillates between almost 

zero and the double of the value 
N

F  imposed to the puja, 

and contact is never disrupted. The plot of the friction 

force shows that the bowl/puja interface is sliding during 

most of the time. This behaviour is quite similar to what 

we observed in simulations of bowed bars, and is in clear 

contrast to bowed strings, which adhere to the bow during 

most of the time – see [9], for a detailed discussion. The 

fact that sticking only occurs during a short fraction of 

the motion, justifies the simplified friction model which 

has been used for the present computations. 

Figure 9 shows the results for a slightly different 

regime, corresponding to rubbing conditions: 7 N
N

F =  

and 0.5 m/sTV = . The transient duration is smaller than in 

the previous case (about 5 s). Also, because of the higher 

tangential puja velocity, beating of the vibratory response 

at the fixed location also displays a higher frequency. 

This motion regime seems qualitatively similar to the 

previous example, however notice that the response 

spectra display more energy at higher frequencies, and 

that is because the contact between the exciter and the 

bowl is periodically disrupted, as shown in the contact 

force plots of Figure 11(b). One can see that, during 

about 25% of the time, the contact force is zero. Also, 

because of moderate impacting, the maxima of the radial 

component reach almost 3
N

F . Both the radial and 

friction force components are much less regular than in 

the previous example, but this does not prevent the 

motion from being nearly-periodic. 

Figure 10 shows a quite different behaviour, when 

1 N
N

F =  and 0.5 m/sTV = . Here, a steady motion is 

never reached, as the bowl/puja contact is disrupted 

whenever the vibration amplitude reaches a certain level. 

As shown in Figure 11 (c), severe chaotic impacting 

arises (the amplitude of the radial component reaches 

almost 7
N

F ), which breaks the mechanism of energy 

transfer, leading to a sudden decrease of the motion 

amplitude. Then, the motion build-up starts again until 

the saturation level is reached, and so on. As can be 

expected, this intermittent response regime results in 
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curious sounds, which interplay the aerial characteristics 

of “singing” with a distinct “ringing” response due to 

chaotic chattering. Anyone who ever attempted to play a 

Tibetan bowl is well aware of this sonorous saturation 

effect, which can be musically interesting, or a vicious 

nuisance, depending on the context. 

To get a clearer picture of the global dynamics of this 

system, Figures 12 and 13 present the domains covered 

by the three basic motion regimes (typified in Figures 8-

10), as a function of 
N

F  and 
TV : (1) Steady self-excited 

vibration with permanent contact between the puja and 

the bowl (green data); (2) Steady self-excited vibrations 

with periodic contact disruption (yellow data); (3) 

Unsteady self-excited vibrations with intermittent 

amplitude increasing followed by attenuation after 

chaotic chattering (orange data). Note that, under 

different conditions, the self-excitation of a different 

mode may be triggered – for instance, by starting the 

vibration with an impact followed by rubbing. Such issue 

will be discussed later on this paper.  

Figure 12(a) shows how the initial transient duration 

depends on 
N

F  and 
TV . In every case, transients are 

shorter for increasing normal forces, though such 

dependence becomes almost negligible at higher 

tangential velocities. At constant normal force, the 

influence of 
TV  strongly depends on the motion regime. 

Figure 12 (b) shows the fraction of time with motion 

disruption. It is obviously zero for regime (1), and 

growing up to 30 % at very high excitation velocities. It 

is clear that the “ringing” regime (3) is more prone to 

arise at low excitation forces and higher velocities. 

Figures 13(a) and (b) show the root-mean-square 

vibratory amplitudes at the traveling contact point, as a 

function of 
N

F  and 
TV . Notice that the levels of the 

radial components are much lower than the corresponding 

levels of the tangential component, in agreement with the 

previous comments. These plots show some dependence 

of the vibratory level on the response regime. Overall, the 

vibration amplitude increases with 
TV  for regime (1) and 

decreases for regime (3). On the other hand, it is almost 

independent of 
N

F  for regime (1), while it increases with 

N
F  for regime (3). 

 

 

 

 

 

 

 

 

 

 

     (a)                                                                                                                                (b) 

Figure 12. (a) Initial transient duration and (b) percentage of time with no bowl/puja contact, as a function of 
NF  and 

TV . 
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(a)                                                                                                                            (b) 

Figure 13. Displacement amplitude (RMS) at the bowl/puja travelling contact point, as a function of 
NF  and 

TV : 

(a) Radial motion component; (b) Tangential motion component. 

5.3. Non-symmetrical bowls 

Figures 14(a) and (b) enable a comparison between the 

impact responses of perfectly symmetrical and a non-

symmetrical bowls. Here, the lack of symmetry has been 

simulated by introducing a frequency split of 2% between 

the frequencies of each mode-pair (e.g. 0.02n nω ω∆ = ), 

all other aspects remaining identical – such crude 

approach is adequate for illustration purposes.  

Notice that the symmetrical bowl only displays radial 

motion at the impact point (as it should), while the 

unsymmetrical bowl displays both radial and tangential 

motion components due to the different propagation 

velocities of the travelling waves excited. On the other 

hand, one can notice in the response spectra of the 

unsymmetrical system the frequency-split of the various 

mode-pairs. This leads to beating of the vibratory 

response, as clearly seen on the corresponding 

spectrogram. 

Figure 15 shows the self-excited response of the 

symmetrical bowl, when rubbed at 3 NNF =  and 

0.3 m/sTV = . Notice that sound beating due to the 

spinning of the response modeshape dominates, when 

compared to effect of modal frequency-split. 

Interestingly, the slight change in the modal frequencies 

was enough to modify the nature of the self-excited 

regime, which went from type (1) to type (3). This fact 

shows the difficulties in mastering these apparently 

simple instruments. 

5.4. Influence of the contact/friction parameters 

Playing experience shows that rubbing with pujas 

made of different materials may trigger self-excited 

motions at different fundamental frequencies. This 

suggests that friction and contact parameters have an 

important influence on the dynamics of the bowl regimes. 

Although this behaviour was present in all the bowls used 

in this study, it was clearly easier to establish these 

different regimes on a larger bowl. Therefore we illustrate 

the different behaviours that can be obtained, by using 

Bowl 4 and parameters corresponding to two pujas, 

respectively covered with rubber and made of naked 

wood. 

As the frequency separation between mode-pairs was 

relatively small for this bowl, we assume a perfectly 

symmetrical bowl, and performed simulations using 10 

mode-pairs with identical frequencies (
A B

n n
ω ω= ) – see 

Table II. An average value of 0.005% was used for all 

modal damping coefficients. In order to cope with the 

large settling times that arise with singing bowls, 30 

seconds of computed data were generated (enough to 

accommodate transients for all rubbing conditions). 

Figure 16 shows a computed response obtained when 

using a soft puja with relatively high friction. Here a 

contact stiffness Kc = 10
5
 N/m was used, assuming 

friction parameters 8.0=sµ , 4.0=∞µ  and C = 10, 

under playing conditions FN = 5 N and VT = 0.3 m/s. 
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(a)                                                                                                  (b) 

Figure 14. Dynamical responses of an impacted bowl, at the impact location:  

(a) Axi-symmetrical bowl (0% frequency split); (b) Non-symmetrical bowl with 2% frequency split (sound file available). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                                      (b) 

Figure 15. Dynamical response of a rubbed bowl with 2% frequency split when 
NF = 3 N, 

T
V = 0.3 m/s:  

(a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 
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(a)                                                                                                      (b) 

Figure 16. Time-histories, spectra and spectrograms of the dynamical response of Bowl 4 excited by a rubber-covered puja for        

FN = 5 N and VT = 0.3 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                                      (b) 

Figure 17. Time-histories, spectra and spectrograms of the dynamical response of Bowl 4 excited by a wooden puja for FN = 5 N and 

VT = 0.3 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file available).
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The plot shown in a) displays the radial (green) and 

tangential (red) bowl motions at the travelling contact 

point with the puja. These are of about the same 

magnitude, and perfectly steady as soon as the self-

excited motion locks-in. In contrast, plot b) shows that 

the radial motion clearly dominates when looking at a 

fixed location in the bowl, with maximum amplitudes 

exceeding those of the travelling contact point by a factor 

two. Most important, beating phenomena is observed at a 

frequency related to the puja spinning frequency 

2p TΩ V φ= , as also observed in relation to Bowl 2. The 

spectrum shown in plot c) presents the highest energy 

near the first modal frequency, while the spectrogram d) 

shows that the motion settles after about 7 seconds of 

exponential divergence. Indeed, our computed animations 

show that the unstable first bowl mode ( ≈ 87Hz) spins, 

following the puja motion, with the contact point located 

near one of the four nodes of the excited modeshape (see 

Figure 4). The bowl radiates as a quadro-pole spinning 

with frequency pΩ , and beating is perceived with 

frequency 4beat pΩ Ω= . 

Figure 17 shows a computed response obtained when 

using a harder puja with lower friction, assuming 

610  N/m
c

K = , 4.0=sµ  and 2.0=∞µ , under the same 

playing conditions as before.  

The self-excited motion takes longer to emerge and is 

prone to qualitative changes. However, vibration is 

essentially dominated by the second modal frequency 

( ≈ 253Hz), with a significant contribution of the first 

mode during the initial 25 seconds. This leads to more 

complex beating phenomena, except during the final 5 

seconds of the simulation, where one can notice that, in 

spite of the similar value of 
TV  used, beating is at a 

higher frequency than in Figure 16. Indeed, because the 

second elastic mode is now unstable (see Figure 4), the 

bowl radiates as a hexa-pole spinning with frequency Ωp, 

and beating is perceived with frequency Ωbeat = 6Ωp. 

Figure 18(a) shows the experimental results recorded 

by a microphone placed near the bowl rim, while playing 

with a rubber-covered puja. As described before, timing 

pulses were generated at each consecutive revolution, 

when the puja and microphone were nearby. Vibration 

was dominated by an instability of the first mode (2,0) 

and, in spite of mildly-controlled human playing, it is 

clear that radiation is minimal near the contact point and 

that four beats per revolution are perceived. When a 

harder naked wood puja was used, the initial transient 

became longer, before an instability of the second mode 

(3,0) settled. The bowl responses tended to be less 

regular, as shown in Figure 18(b), however six beats per 

revolution are clearly perceived. All these features 

support the simulation results presented in Figures 16 and 

17, as well as the physical discussion presented in section 

5.2. 

The present results stress the importance of the 

contact/friction parameters, if one wishes a bowl to 

“sing” in different modes − such behaviour is easier to 

obtain in larger bowls. As a concluding remark, we stress 

that a sonorous bowl/puja rattling contact can easily arise, 

in particular at higher tangential velocities and lower 

normal forces, a feature which was equally displayed by 

many experiments and numerical simulations, as 

discussed before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 – Near-field sound pressure waveform (blue) due to 

friction excitation by: a) a rubber-covered puja and b) a wooden 

puja on Bowl 4, and electrical impulses (red) synchronized with 

the passage of the puja by the microphone position (sound files 

available). 

6. Conclusions 

In this paper we have developed a modelling technique 

based on the modal approach, which can achieve accurate 
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time-domain simulations of impacted and/or rubbed axi-

symmetrical structures such as the Tibetan singing bowl.  

To substantiate the numerical simulations, we 

performed an experimental modal analysis on three 

bowls. Results show the existence of 5 to 7 prominent 

vibrational mode-pairs up to frequencies about 6 kHz, 

with very low modal damping values. The numerical 

simulations presented in this paper show some light on 

the sound-producing mechanisms of Tibetan singing 

bowls. Both impact and friction excitations have been 

addressed, as well as perfectly-symmetrical and less-than-

perfect bowls (a very common occurrence). For suitable 

friction parameters and for adequate ranges of the normal 

contact force 
N

F  and tangential rubbing velocity 
T

V  of 

the puja, instability of a shell mode (typically the first 

"elastic" mode, with 4 azimuthal nodes) arises, with an 

exponential increase of the vibration amplitude followed 

by saturation due to nonlinear effects.  

Because of the intimate coupling between the radial 

and tangential shell motions, the effective bowl/puja 

contact force is not constant, but oscillates. After 

vibratory motions settle, the excitation point tends to 

locate near a nodal region of the radial motion of the 

unstable mode, which corresponds to an anti-nodal region 

of the friction-excited tangential motion (this effect is 

somewhat relaxed for softer pujas). This means that 

unstable modes spin at the same angular velocity of the 

puja. As a consequence, for the listener, sounds will 

always be perceived with beating phenomena. However, 

for a perfectly symmetrical bowl, no beating at all is 

generated at the moving excitation point. 

Typically, the transient duration increases with 
T

V  and 

decreases for higher values of
N

F . The way vibratory 

amplitudes depend on 
T

V  and 
N

F  changes for different 

response regimes. Three basic motion regimes were 

obtained in the present computations, depending on 
N

F  

and 
TV : (1) Steady self-excited vibration with permanent 

contact between the puja and the bowl; (2) Steady self-

excited vibrations with periodic contact disruption; (3) 

Unsteady self-excited vibrations with intermittent 

amplitude increasing followed by attenuation after 

chaotic chattering.  

It was demonstrated through computations and 

experiments that the order j of the mode triggered by 

friction excitation is heavily dependent on the 

contact/friction parameters. In our computations and 

experiments on a large bowl, the first mode responded 

easily when using a soft high-friction puja, while 

instability of the second mode was triggered by using a 

harder lower-friction wooden puja. 

The first motion regime offers the “purest” bowl 

singing. Our results suggest that higher values of 
N

F  

should enable a better control of the produced sounds, as 

they lead to shorter transients and also render the system 

less prone to chattering. 

As a concluding note, the computational methods 

presented in this paper can be easily adapted for the 

dynamical simulation of glass harmonicas, by simply 

changing the modes of the computed system, as well as 

the contact and friction parameters. 
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