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- Dose normalised dose response characteristics are explored using simple theory 

- Uniformity and deviations of dose responses are explained 

- Magnitude depends strongly on the size of the test/normalisation dose 

- Dose dependent changes can explain non-exponential forms 

- The effects are analogous to superlinearity in non-normalised characteristics 
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Dose normalised dose response characteristics 

 

C. I. Burbidge 

 

Instituto Tecnológico e Nuclear, Sacavém, Portugal. christoph@itn.pt 

GeoBioTec, Universidade de Aveiro, Portugal 

 

Abstract 

The present study investigates basic geometric forms for dose (D) response characteristics based 

on saturating exponential functions, for un-normalised (I), dose normalised (to DT: IN = I/IT) and 

standardised (IS = DT .I/IT) signals. Algebraic functions are assembled to describe the effect of 

the size of the normalisation or test dose, and that of dose dependent changes in relative 

trapping and recombination probabilities, on the shapes of dose response characteristics based 

on single and multiple saturating signal components. Values calculated using these functions are 

fitted using single saturating exponential curves, to explore the applicability of this form and to 

illustrate deviations from it. 

 

The strong dependence of normalised signal levels on the size of the normalisation or test dose, 

and the much reduced dependence of standardised signals in this respect, are illustrated and 

described analytically. It is demonstrated that these differences in signal level do not affect the 

rate at which the signal saturates, i.e. the mean-dose of trap filling (D0). The assumption of a 

fixed linear test dose response (implicit in many studies) is shown to produce a saturating 

exponential standardised dose response characteristic for which, by definition, the signal at 

saturation (ISMax) is approximately equal to D0, and the gradient (δIS/δD) at zero dose is 

approximately unity. Thus, deviations from this case can be used to identify occurrences of 

more complex behaviour, and the wider presentation of results in standardised form would 

facilitate this. 

 

The presence of multiple saturating components is shown to produce minor variability in single 

component fits, but changes in trapping probability between D and DT, and particularly changes 

in recombination probability between I and IT, are found capable of producing major differences 

in such fits. It is demonstrated that these changes in fact undo the saturating exponential nature 

of the dose response characteristic: although the resultant form may be closely approximated by 

a saturating exponential or saturating exponential plus linear fit over a given dose range, the 

parameters of this fit will not provide accurate values with which to assess the dose response 

characteristic of the sample. Thus, a saturating exponential fit (whether simple, summed, or plus 

linear, etc.) may still function well as a tool for localised interpolation but, just as for 

supralinearity in non-normalised additively dosed data, it is not reliable for extrapolation.  

 

Relationships with results from the present study, and consideration of assumptions underlying 

the physics of the saturating exponential dose response in luminescence measurements, indicate 

that the changes in trapping and recombination probability investigated herein for dose 

normalised data are analogous to the processes that cause superlinearity in non-normalised data. 

 

It is observed that most variants of the form of the dose normalised dose response characteristic 

can be described when the relative recombination probability for I and IT is assumed to be a 

function of the dose, D. In this case the shape of the dose response characteristic may vary, but 

absorbed dose evaluations are not made inaccurate except by complicating the data analysis. 

The present study has developed an analytical framework with which dose rate, predose and 

non-dose dependent effects, which do adversely affect absorbed dose evaluation when using 

dose normalised dose response characteristics, may also be explored. 
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1. Introduction 

 

A geometric analysis is a description of the implications of prior assumptions – it is not in itself 

concerned with exploring whether the prior assumptions are actually correct (summarised from 

Descartes, in Hampshire, 1956, p71-82). 

 

The present study reviews, introduces, describes algebraically, and illustrates the basic 

geometric forms for dose response characteristics based on saturating exponential functions, in 

the following cases: 

- un-normalised. 

- dose normalised and standardised, assuming a fixed test response to a small fixed test dose 

- standardised or dose normalised for any fixed test response. 

- standardised, for test responses affected by dose dependent changes in recombination and/or 

trapping probability. 

 

The equations used to describe each type of dose response characteristic are not derived directly 

at each stage from sets of rate equations set up to explore a physical model of the system under 

examination, though this is should be possible and represents a possible test of the conclusions 

of this study. Instead, the objects analysed are constructed by combining a finite number of 

discrete elements of the simplest generalised form of dose response that have been previously 

obtained from the simplest models of the physical system to which they relate, i.e. models based 

on a single trap and a single centre (McKeever, 1985. Ch 3.4). A combination of these functions 

is developed and its geometry explored using basic calculus and other algebraic manipulation 

(e.g. Bird, 1988). 

 

The a priori assumptions of the present study are, therefore, that the chosen elements are 

sufficient to describe the system, that they are well described by the chosen forms, and that they 

in fact combine in the manner presented. If these assumptions are correct then the results of the 

present analysis are expected to represent the general, or underlying, behaviour of the physics of 

the dosimetric system examined. 

 

This work has the objective of developing descriptions of each case described above, to 

illustrate how the form of dose normalised dose response characteristics varies: 

- with normalisation or test dose, DT. 

- with dose dependent changes in trapping probability between the beginning of irradiation with 

a dose D, and the beginning of irradiation with a subsequent normalisation or test dose, DT.  

- with dose dependent changes in recombination probability between the beginning of 

measurement of the dose response I, and the beginning of measurement of a subsequent 

normalisation or test dose response, IT. 

 

It aims to demonstrate with relevant examples: 

- how the presence of multiple saturating exponential components can produce minor apparent 

differences between what appear to be single component dose response characteristics.  

- if the test dose is small relative to DT0 and the test response is unaffected by changes in 

trapping and recombination probability between dose and normalisation/test dose, dose 

normalised dose response characteristics, then the dose response characteristic follows a 

saturating exponential form with gradient at D = 0 of 1 and IMax approximates D0.     

- if same applies but the test dose is no longer small, then the saturating exponential form is 

maintained and changes in test dose produce changes in normalised (and standardised) signal 

levels but not in saturation rates. 

- that where changes in trapping and particularly in recombination probability occur between 

dose and normalisation/test dose, then the dose response characteristic no longer follows a 

saturating exponential. Major apparent differences in form between what appear to be single 

component saturating exponential dose response characteristics, and that the forms of these 
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variations can be used to explain why certain variations in dose response characteristic have 

been observed in the literature. 

- limits of the applicability of this analysis for selected dose responses obtained for high doses. 

 

2. Saturating exponential dose response characteristic 

 

The dose response characteristic for a luminescence signal based on a single trap single centre 

model (McKeever, 1985, Ch 3.4) follows a single saturating exponential, e.g.: 

 

(1) 










01

D
D

Max eII  

 

, where I = signal intensity, IMax = signal intensity at saturation and D0 is the mean-dose of trap 

filling (analogous to mean life in radioactive decay). For D = ∞, I = IMax.  

 

The first derivative of (1) is:  

 

(2) dI/dD = (IMax/D0) e
-D/D0

 

 

 

, i.e. the gradient of the curve is a function of D, IMax and D0. For D = 0, dI/dD = IMax/D0.  

 

Where the dose response characteristic is composed of more than one saturating exponential 

component, due to the contributions of different trap types, then: 

 

(3) I =∑{IMaxi (1-e
-D/D0i

)} i=(1-n) 

 

(4) dI/dD
 
= ∑{(IMaxi/D0i) e

-D/D0i
} i=(1-n) 

 

dI/dD at D = 0 is often approximated using a linear regression to the growth characteristic for 

low doses (Grün, R., 1996), in the range where saturation is not easily resolved statistically. If 

more than one saturating component is present, then as D approaches zero the regression will 

give:  

 

(5) I ≈ DΔI/ΔD ≈ DdI/dD (D = 0) = D∑{IMaxi/D0i} i=(1-n) 

 

At slightly higher doses the saturating exponential form of data may be apparent, but different 

saturating exponential components may not be resolvable statistically, so that a multiple 

saturating exponential dose response characteristic may be approximated by a single saturating 

exponential fit. Examples are illustrated in Fig. 1 and Table 1. If this fit were accurate then in 

addition to (5), for D = ∞ it would give: 

 

(6) I (D = ∞) = IMax = ∑{IMaxi}i=(1-n). 

 

3. Normalised and standardised dose response characteristics for a small fixed test 

response (i.e. assuming test dose response is proportional to dose) 

 

Where I is un-normalised, dI/dD at D = 0 is the sensitivity of the sample to dose excluding 

saturation effects, but IMax and D0 may vary as a function of trapping and recombination 

probability, and changes in these with repeated measurement. Where a “test dose monitor” is 

applied, as in equal predose-dose normalised multiple aliquot measurements (Aitken, 1985, 

p128) or the SAR protocol (Murray and Wintle, 2000), the signal (I) response to a given 

variable dose (D) is divided by the response (IT) to a fixed “test dose” (DT) delivered after 

measurement of I, to produce a normalised signal IN: 
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(7) IN = I/IT 

 

If IT accurately monitors sensitivity with respect to I, then in the idealised case of an infinitely 

small test dose:  

 

(8) IT/DT ≡ dI/dD (D = 0) 

 

However, IN is inversely proportional to IT  (7), and hence where DT is low enough that (8) may 

be reasonably assumed to apply, then IN is approximately inversely proportional to the finite test 

dose employed for real measurements (but see Fig. 2). Roberts and Duller (2004) “standardised” 

IN by multiplying by the test dose (IS = DTIN). They observed that following standardisation, fits 

using (1) often produce similar values of ISMax and D0, and that if ISMax is set equal to D0 then DT 

dIN/dD = 1. For the saturating exponential case, and making the approximation of a small but 

finite test dose, it is evident from (2) and (8) that: 

 

(9) dIS/dD = (dI/dD)/(IT/DT) = (IMax/D0) e
-D/D0/(IT/DT) 

 

(10) IT/DT ≈ dI/dD (D = 0) = IMax/D0 

 

, therefore: 

 

(11) dIS/dD ≈ e
-D/D0 

 

(12) ∫dIS/dD.dD = IS ≈ D0 (1 - e
-D/D0) 

 

Thus, for the approximation of a small but finite test dose the gradient of the standardised dose 

response characteristic (11) at D = 0 must approximate 1, and since for D = ∞, I = IMax in (1), 

ISMax in (12), now in units of Gy, must be approximately equal to D0. 

 

Where the dose response characteristic is composed of more than one saturating exponential 

component, but each component (i) conforms with (11) and (12), then ISMax and D0 are the sums 

of the values for each component, and ∑{ IMaxi} i=(1-n) = ∑{D0i} i=(1-n), such that: 

 

(13) dIS/dD
 
≈ ∑{e

-D/D0i}i=(1-n) 

 

and, 

 

(14) IS ≈ ∑{D0i} i=(1-n) (1-∑{e
-D/D0i}i=(1-n)) 

 

In (12) and (14), IS is independent of recombination probability and dIS/dD (D = 0) is 

independent of the trapping probability. However, the relative trapping probability (at D = 0) is 

reflected in the mean dose of trap filling (D0), which is equal to the standardised signal at 

saturation (ISMax): an initially high rate of trapping at sites from which the charge will eventually 

yield luminescence, relative to sites where this will not occur, will produce low D0 and ISMax 

values, and vice versa. Where D0 and ISMax or INMax vary by the same proportion between 

different materials, samples, aliquots or individual grains (e.g. Olley et al., 2004; Timar-Gabor 

et al., 2011; Lamothe and Auclair, 1999; Forman and Pierson, 2002), this indicates differences 

in trapping probability. This behaviour is a consequence of the saturating exponential form of 

the dose response characteristic and the effect of normalisation using an accurate monitor of 

sensitivity. It does not relate to any particular material or signal, so variations in ISMax or INMax 

and D0 indicate different relative trapping probabilities for different samples, and variations 

about ISMax/D0 = 1 indicate deviations from the case where IT accurately monitors sensitivity 

with respect to I. However, in practise a finite test dose response will also be subject to 
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saturation effects, which produce dependence of ISMax/D0 on test dose size (Burbidge et al., 

2006).  
 

4. Standardised and normalised dose response characteristics for any fixed test response 

 

Where the approximation of a small test dose is relinquished, the standardised signal is a 

function of the dose response characteristics of both the “signal” (I) in response to the “dose” 

(D) and the “test signal” (IT) in response to the “test dose” (DT). For single saturating 

exponential signal responses: 

(15) 
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Where a fixed test dose DT is applied, and DT0 and IMax/ITMax are invariant with dose D, then the 

standardised dose response characteristic (15) takes the form of a single saturating exponential: 

 

(18) 
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such that at D = 0, δIS/δD = ISMax/D0, where: 

  

(19) 



















01

1

T

T
D

D
TMax

Max
TSMax

e
I

I
DI  

 

Thus, ISMax varies as a function of test dose, but D0 does not, so ISMax (19) is no longer 

constrained to approximately equal D0, and the gradient of the standardised dose response 

characteristic (16) at D = 0 is no longer constrained to approximate unity (c.f. section 3). For 

large test doses the exponential of -DT/DT0 approximates zero, so the gradient of ISMax with 

respect to DT is found to be IMax/ITMax and: 

 

(20)  DT/DT0 → ∞: ISMax → DT IMax/ITMax; 

 

, for small test doses the exponential of -DT/DT0 approximates (1 - DT/DT0), and the gradient with 

respect to DT is found to be ½ IMax/ITMax, so:  

 

(21)  DT/DT0 → 0, ISMax → (DT0 + DT/2) IMax/ITMax 

 

Examples are shown in Fig. 2. and Table 2. However, DT0 and ITMax are not evaluated separately 

in a fit of the form of (18). The situation is simplified where the signal and test signal in (15) 

may be assumed to relate to the same dose response characteristic: in this case (10) is verified 
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for small test doses and the meaning of the assumption that “IT accurately monitors sensitivity 

with respect to I” in this context is clarified, i.e. IMax = ITMax and D0 = DT0. 

 

Where the standardised dose response characteristic is composed of more than one saturating 

exponential component, due to the contributions of different trap types, then: 

 

(22) δIS/δD (D = 0) = ∑{ITi ISMaxi/D0i}i=(1-n) / ∑{ITi}i=(1-n) 

 

and: 

 

(23) IS (D = ∞) = ISMax = ∑{ITi ISMaxi}i=(1-n) / ∑{ITi}i=(1-n) 

 

However, unlike the case for non-normalised signals (4) or normalised signals using the small 

test dose assumption (14), D0 cannot be well predicted from (22) unless the relative contribution 

of each signal component to IT is known. 

 

5. Dose response characteristics where the test response is affected by changes in 

recombination and / or trapping probability 

 

In sections 3 and 4 calculations have been presented for a fixed test dose, assuming that this will 

provide a fixed test dose response. As mentioned in the introduction this is a simplification: in 

reality changes in recombination probability occur between the beginnings of the measurements 

I and IT, and changes in trapping probability occur between the beginnings of the irradiations D 

and DT. Let factor k represent relative recombination probability and factor l represent relative 

trapping probability. Thus k only affects IMax, while l affects IMax and D0 equally: 

 

(24) ITMax = kl IMax 

 

(25) DT0 = l D0 

 

, and so: 

(26) 
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Where change in the relative recombination and trapping probability (k and l) between I and IT 

is assumed to be a function of dose, D, then each is expected to respond as a function of filling 

of the electron and hole traps participating in the production of the signal. Assuming that each 

follows a single saturating exponential, but that this change is induced relative to a baseline 

level defined by non-dose responsive factors (k0, l0), then:  

 

(27) 
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(28) 
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ITMax and DT0 are now dose dependent variables, so the standardised dose response characteristic 

(15) no longer takes the form of a single saturating exponential (18). Substituting (26), (27) and 

(28) into (15) gives: 
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(29) 
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, and hence: 

 

(30)  
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Equation (29) may be simplified as follows: 

- If it is assumed that I and IT are measured from the same dose response characteristic, 

differences in trapping and recombination probability induced by different treatments associated 

with the measurements notwithstanding, then k0 = l0 = 1. 

- Where no changes in relative trapping or recombination probability are considered, then kMax = 

lMax = 0. If also k0 = l0 = 1, then (15) is obtained for the special case in which DT0 = D0 and ITMax 

= IMax.   

- Where only changes in relative recombination probability between the measurements I and IT 

are considered, then lMax = 0. 

- Where only changes in relative trapping probability between the beginnings of irradiations D 

and DT are considered, then kMax = 0. 

  

Examples of the form of the dose response characteristic obtained when considering changes in 

relative recombination and trapping probability separately are shown in Fig. 3, Fig. 4, and Fig. 

5. These illustrate that the effect of the functions k and/or l is to transfer the dose response 

characteristic based on (15) from one saturating exponential trajectory to another; i.e. IS at a 

given dose D is shifted at a rate controlled by kMax and Dk0 and/or lMax and Dl0 (see (2)), and by a 

magnitude controlled by kMax, k0, and/or lMax and l0. Where the normalisation or test dose 

response IT is measured subsequent to the dose response I, the shift is worked on IS through 

change in IT as a function of dose D, (Fig. 3, Fig. 4, and Fig. 5 insets). Just as the test dose 

response IT is constrained to be positive, statistical variations in real data notwithstanding, in the 

application of  (29) k and l function as multipliers of IT and so are also constrained to be 

positive. Where kMax/k0 or lMax/l0 is less than -1 then IS vs. D is discontinuous and enters 

physically meaningless regions of negative values, but (29) can be used to calculate continuous 

dose responses in negative space if necessary, by making k0 or l0 negative. At D = 0 and D = ∞, 

δ(29)/δD = (16), but at intermediate doses it is altered by k and l. δIS/δD = 0 if the two parts of 

(30), either side of the subtraction, are equal. This occurs at D = ∞, but when kMax or lMax is 

positive and Dk0 is greater than D0 it also occurs for a finite value of D. δIS/δDT is not affected 

by k or l. At doses approaching zero the characteristic is always linear. Above zero dose the 

transfer produces the following cases: 
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1/ Superlinearity followed by „two phase saturation‟. 

2/ An inflection followed by „accelerated saturation‟. 

3/ Early onset sublinearity followed by „subdued saturation‟. 

4/ A peak followed by „negative saturation‟. 

 

Which case is evident depends on at what dose, at what rate, and to what magnitude the transfer 

takes place (kMax, lMax, Dk0, Dl0), in relation to the dose, rate and magnitude of the basic 

saturating exponential form of the dose response (IMax, D0). Thus, when multiple components 

with different D0 values are present in the dose response characteristic of I, then for a given dose 

the effect of a given transfer function differs between the components. In addition to cases 1/ to 

4/ this can produce: 

 

5/ A peak, i.e. increase and decline in signal level, followed by a further increase to saturation 

(Fig. 7, curve a.).  

 

6. Discussion 

 

6.1. Superlinearity 

 

The algebraic-geometric descriptions studied in the present work are just that, but their 

behavioural implications relate to the superlinearity (supra- in the case of extrapolation, see 

Chen and McKeever, 1994) predicted from simple physical models for un-normalised dose 

response characteristics (McKeever, 1985. Ch 3.4). Where a dose response subject to a given 

(proportional) effect is normalised to a test signal subject to the same effect, then the effect is 

cancelled. Thus, the “positive” or “negative” superlinearity observed in the present study 

(section 5) represents the relative levels of superlinearity in the dose response and the test dose 

response; hence the complete lack of superlinearity in the standardised/normalised dose 

response where no differences in trapping or recombination probability are considered (sections 

3 and 4). Conversely, if the test dose (or reference point, whatever) were before the dose, then 

the change in trapping or recombination probability (k or l) would apply to I, not IT. If the 

normalisation were then removed but the samples were considered uniform prior to irradiation 

and measurement, then any changes would apply to an initial uniform baseline (but 

unmonitored) state. As such the changes would be manifest in the un-normalised dose response: 

this is the superlinearity reported for un-normalised dose responses and predicted from rate 

equations in the literature (Charitidis et al., 2000; Chen and McKeever, 1994; Lawless et al., 

2005; Mische and McKeever, 1989). Also, in the case of the dose normalised dose response 

characteristic, the test dose response appears to operate as a proxy for the availability or 

saturation of delocalised bands during irradiation: the gradient in INMax vs. DT at low test doses is 

(IMax/ITMax)/2, while at high test doses it is (IMax/ITMax) (Fig. 2). The factor of two difference 

between models calculated assuming non-equilibrium or quasi-equilibrium thermodynamics: 

„empty bands‟ or „nearly-full bands‟ is analogous to that discussed by McKeever (1985, Ch 

3.4), in the context of superlinearity in dose response. 

 

6.2. Standardisation and the effect of test dose size 

 

In section 3 it was shown that where a standardised dose response characteristic is based on 

saturating exponential dose and test dose responses, each drawn from the same dose response 

characteristic and evaluated using a small fixed test dose with fixed test dose response, then 

ISMax ≈ D0 and dIS/dD (D = 0) = 1. Satisfaction of the constraints required to obtain this simple 

case appears relatively demanding, but studies examining the utility of common dose response 

characteristics for different aliquots, samples, sites or regions indicate that it is often 

approximated (e.g. Burbidge et al., 2006; Roberts and Duller 2004; Hong and Choi, 2008; Lai, 

2006; Shen and Mauz, 2011; Telfer et al., 2008; and references in Wintle, 1997, section 5.1.5). 

The order-of-magnitude reduction in the effect of test dose size on signal level following 

standardisation (Fig. 2, Table 1, Table 2) illustrates that standardisation is a helpful first step in 
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facilitating comparisons between measurements made using different test doses. The effect of 

the magnitude of the normalisation or test dose on the standardised signal level can itself be 

described and accounted for (section 4). 

 

Standardised dose response characteristics were previously analysed for the effect of test dose 

size by Burbidge et al. (2006), who used quadratic approximations (IS = aD
2 
+ bD + c) to (1)., 

for limited ranges of D in order to separate gradient as an orthogonal component of the fits. A 

suite of samples were examined using test doses between 1 and 7 Gy, and change in b was 

found to be well approximated by a linear expression in this range (Burbidge et al., 2006, Eqn. 

4). Burbidge (2003) analysed the same data for the saturating exponential case and found 

change in ISMax/D0 with DT to be identical to change in b for the quadratic case, within 

uncertainties. Thus, for a fixed value of D0, ISMax was observed to be 10% higher for DT = 7 Gy 

than for DT = 1 Gy. Shen and Mauz (2011, Fig. 5) have measured an approximately linear 

increase in standardised luminescence response to a dose of 7.2 Gy with test doses between 1.8 

and 35 Gy. They used this to establish correction factors for measurements made on fine grains 

prepared from loess using a variety of test doses. The increase they observed between DT = 1.8 

and 23 Gy was approximately 40%, but unlike in Fig. 2 their uppermost data point indicated a 

slight tendency for sublinearity. The results of the present study show that these linear 

relationships are approximations and that a more complete and accurate descriptor is provided 

by (29) and (30), in these cases simplifiable into the forms of (16) and (19), and illustrated in 

Fig. 2. The apparent sublinearity observed by Shen and Mauz (2011) may be the result of other 

factors and merits further investigation. 

 

The simplified case (section 4) where the signal and test signal in (15) may be assumed to relate 

to the same dose response characteristic is likely to apply where the same type of signal is 

measured for the dose response and test response, following preheats of similar magnitude or at 

least of similar effect on trapping probability, e.g. in single aliquot regenerative optically 

stimulated luminescence (SAR OSL) measurement of quartz, or in infrared stimulated 

luminescence (IRSL) measurement of feldspars using matching preheats for dose and test dose 

responses. The general case for (19) applies where different signals are used to measure the dose 

response characteristic and the test response, e.g. in thermally transferred OSL (TTOSL) using 

an OSL test response or in OSL using the 110 °C thermally stimulated luminescence (TSL) test 

response, or where different preheats are applied to measure the dose response characteristic and 

the test response from a continuous trap distribution (a possibility for e.g. IRSL measurement of 

feldspars) (Table 2). 

 

6.3. Dose dependent changes in recombination and trapping probability 

 

In sections 3 and 4 calculations were made for a fixed test dose assuming that this would 

provide a fixed test dose response. Everyday experience with protocols such as SAR and studies 

such as Chen (1979), Stokes (1994) and Bailey (2000) show that test response relative to dose 

response varies as a function of dose, predose, and non-dose dependent factors. In particular, 

heating following irradiation tends to produce large increases in luminescence sensitivity in 

quartz, by increasing the relative availability of luminescent recombination sites. (OSL) 

measurement tends to reduce this, and hence to reverse any such increases, by recombination at 

such sites. The relative magnitude of each of these phenomena is different in different materials. 

For quartz, Stokes (1994, Fig 3) shows positive and negative changes of up to 2.5 times through 

the sequence. These appear to vary as a function of the saturating dose response, but their 

cumulative effects between I and IT were much smaller. Murray and Wintle (2000, Fig. 3) report 

similar changes but focus only on this cumulative effect: decreases of 8 % and 17 % were 

observed. In both papers the changes occur at rates, with respect to increasing dose, D, which 

are apparently consistent with saturation based on a D0 value c. 30-50 Gy and so relate to the 

level of the dominant OSL signal in the quartz samples in this dose range. 
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In section 5, k and l were introduced to describe changes in recombination and trapping 

probability between I and IT ((24), (25)). Their effects were explored for the case that they 

follow saturating exponential functions of dose, D ((27), (28)). When considering the effects of 

k and l as described in the present study, some care is required with terminology for the 

comparison of certain results between other studies. It is the case that “D”, the “dose” referred 

to in the present study and in the above discussion of Stokes (1994) and Murray and Wintle 

(2000), would be considered to be the “predose” in other contexts (e.g. Chen, 1979). In the 

present work, “predose” would refer to all irradiations prior to “D”, but the focus of the present 

study is on dose (D) dependent effects and ignores the others. This is because the effects of D 

are generally predominant following a given irradiation, whether through simple dose response 

or through activated predose response, and it appears possible to explain many forms of 

standardised dose response characteristic (29) by assuming that transforms for recombination 

and trapping probability (k and l) are functions of D, without recourse to other effects (Fig. 3-

Fig. 7, Table 3, Table 4). 

 

In Fig. 3 and Fig. 5, kMax and lMax were chosen to be -0.99 and 100 to illustrate the extreme forms 

or end members of the effects of dose dependent change in k and l. kMax was observed to have a 

far greater influence than lMax, on the magnitude of changes produced in IT relative to I, and 

hence in the form of the dose response characteristic, IS (Fig. 4). For kMax = -0.99 and 100, IT 

decreased and increased respectively by 100 times, while for lMax = -0.99 IT decreased by 2.5 

times and for lMax = 100 IT increased by only 1%. The lower sensitivity to l relates to the 

counterbalancing effects of its presence as a multiplier of both IMax and D0 ((24), (25)). Thus, a 

given change in trapping probability has much less effect on the form of the dose response 

characteristic than a change in recombination probability of similar magnitude. Where 

recombination or trapping probability was made to reduce with dose in (29) (Fig. 3a, Fig. 5a), 

results for case 1/ are similar to the shape commonly reported for superlinear un-normalised 

TSL dose response characteristics of TLDs (e.g. McKeever 1985, Fig 3.27). Case 2/ exhibits an 

inflection as do some dose response characteristics obtained using electron paramagnetic 

resonance (EPR) (e.g. Schellmann et al., 2008), but on a linear axis these curves tend towards 

an exponential plus linear appearance, which is commonly reported for (normalised) SAR OSL 

dose response characteristics (e.g. Murray and Wintle, 2000; Shen and Mauz, 2011). For 

increases in recombination or trapping probability with dose (Fig. 3b, Fig. 5b), case 3/ is similar 

to the shape commonly reported for superlinear un-normalised thermally stimulated 

luminescence dose response characteristics of heated quartz (e.g. McKeever 1985, Fig 4.1). 

Case 4/ is similar to dose normalised dose response characteristics reported for quartz by 

Burbidge et al. (2011), for OSL measurements subject to additional heating (thermal activation) 

between measurement of I and IT . 

 

In Fig. 6 are presented curves where lMax is set to 0 and kMax was chosen to produce differences 

in curve shape of magnitudes relevant to datasets obtained from real samples in luminescence 

analyses. The data in Fig. 6 a. and b. are calculated based on a c. ±20% change in the 

relationship between the sensitivity of the sample at the beginning of measurement I, relative to 

that of IT, as a function of dose. The level of variability is similar to that observed between 

samples in single aliquot data, e.g. the differences between standardised growth curves observed 

by Hong and Choi (2008) and Telfer et al. (2008). Stronger variations in the form of the 

normalised dose response have been reported for individual grains than for multi-grain single-

aliquot or multiple aliquot measurements (e.g. Duller et al., 2000; Yoshida et al., 2000). Such 

variability has been simulated in Fig. 6 c. and d. by assuming multiplicative or divisive changes 

of c. 5 times between I and IT. In most cases the data are well approximated by a single 

saturating exponential within the fitted range of dose values (0-166), but exponential plus linear 

or even simpler linear fits appear more appropriate in some cases (Fig. 6, Table 3). However, 

the parameters of these fits do not relate directly to the fundamental dose response 

characteristics of the samples. If the curves in Fig. 6 a. and b. were reconstructed from a limited 

number of real data using dose values below 200 (say five or six dose points as in many of the 

studies in the bibliography of the present study), then they would simply appear to be single 
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saturating exponential curves with different characteristics. In the cases of Fig. 6 c. and d. it 

would be possible to identify some differences from the single saturating exponential form, but 

only if the data were precise and numerous at both high and low doses. When the 

(approximately) saturating exponential plus linear data in Fig. 6 are fitted with curves of this 

form, the „plus linear‟ component reflects the average rate of the change in test response in the 

upper part of the dose range fitted but D0 tends to be underestimated. This is similar to the 

behaviour of fits applied to signals composed of multiple saturating components (Fig. 1). 

Observations of variations in the contribution of „plus linear‟ components (e.g. Shen and Mauz, 

2011, section 3.2), which do not conform to a conventional view of proportional increases in 

IMax and D0 (as a function of trapping probability) may therefore be looked at as either a 

difference in the contribution of a signal component with a high D0 value, or a greater degree of 

change in recombination probability between I and IT. 

 

6.4. Non-monotonicity 

 

Burbidge et al. (2011) reported OSL measurements made within a TTOSL protocol, where a 

significant dose dependent increase in recombination probability is expected to have occurred 

between I and IT, as a result of the additional heating prior to TTOSL measurement (see Stokes, 

1994, Fig. 3). In Burbidge et al. (2011) the samples were also heated to 500 °C between 

measurement cycles to reset residual signals. As such the dose D, plus a test dose of 10.5 Gy, 

was thermally activated in each case and sensitivity increased between measurement cycles. 

Sensitisation was strongest for D = 0, and reduced by 30% to 90% as D was increased to 20 

kGy. In the application of (29) this would indicate kMax ≈ -0.3 to -0.9, while the rate of change 

with dose appeared consistent with Dk0 values around 3 kGy. Dose response characteristics 

exhibiting superlinear (case 1) and non-monotonic behaviour were observed (cases 4/ and 5/). 

Fig. 7, curve c. is obtained straightforwardly using (29). It indicates a single component 

saturating exponential dose response characteristic affected by a strong dose dependent increase 

in recombination probability between I and IT. In such cases the peak is located at the D value 

for which the two parts of (30) are equal, it moves to lower doses if values of l0<1 are included, 

but l0>1 has little effect. Curve a. in Fig. 7 is similar to c., but includes an additional saturating 

exponential signal component to account for renewed increases in signal level at doses above 

the peak (Table 4). However, it was not possible to describe accurately using (26), (27), and 

(29) the dose at which the peak maximum occurred, or the magnitude of the “trough” at slightly 

higher doses, using the value of kMax that was required in order to bring IS down to the observed 

levels. This also necessitated the use of a smaller D0 value for component 1 when compared 

with curve c., which was very similar to curve a. but did not require component 2 (Table 4, and 

see end of previous paragraph). To be dose dependent, the down curve of the peak in curve a. 

would require descriptors other than (26) and (27). Curve b. in Fig. 7 was well approximated 

using (26), (27), and (29), but this required the employment of all the parameters in (29), often 

in ways that do not appear to square with the rationale developed in the present study, viz. the 

arbitrary use of l in addition to k, the use of k0 and l0 values other than unity, and the summing 

of a negatively saturating signal component.  

 

The employment of more parameters than data points to fit a given set of data, in the case of 

curve b. in Fig. 7, illustrates that although there are many parameters in the construction of (29), 

they are non-orthogonal, i.e. they are interrelated just as in (1) (c.f. use of polynomials by 

Burbidge et al., 2006). For this reason, the assumption that I and IT are related through k and l as 

described in (24) to (30) is actually quite restrictive on the form of the curve that can be 

obtained. The restriction becomes increasingly evident the more IS at D = ∞ deviates from ISMax 

≈ D0, i.e. the more extreme the value of k or l. Comparison with the extreme set of real data in 

Fig. 7, where Max. I is at least an order of magnitude lower than the D0 value of the most 

rapidly saturating component (Table 4 and c.f. Table 3), indicates that while the use of (29) with 

the assumption that k and l follow saturating exponential functions of dose D can well describe 

many aspects of dose normalised dose response characteristics, it cannot describe them all. 

More complex numerical models (e.g. Bailey, 2001, for luminescence of quartz) may be better 
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able to describe these in detail (McKeever, 1985, Ch 3.4), but outputs from complex models 

themselves need to be analysed to understand which components are important or indeed 

relevant to the system under examination (Sivia, 2006). The analysis elaborated in the present 

study may be used to distinguish which forms are produced by dose dependent sensitivity 

change between IS and IT, and which may be due to other factors. Lawless et al. (2005) review 

and model non-monotonic luminescence dose responses: they demonstrate that the effect can be 

explained in relation to superlinearity and that traditional interpretations based on radiation 

damage effects are unnecessary. They obtained curves similar to Fig. 7, curve c, in cases 

dominated by competition (for holes) between two different recombination centres during 

excitation (irradiation in the terminology of the present study). Curves similar to Fig. 7, curve b 

were obtained for cases dominated by competition during heating (readout). However, 

additional components of signal increase were not considered, nor was the absolute position of 

the peak in the non-monotonic response, or variability in this.  

 

6.5. Beyond dose dependent effects 

 

Dose dependent effects produce differences in the form of the dose response characteristic but 

do not in themselves affect the evaluation of absorbed doses, i.e. the use of controlled 

irradiations of samples to calibrate, a posteriori, an unknown absorbed dose. Factors that do 

influence this include dose rate, cumulative “pre”-dose, and non-dosimetric chemical changes.  

In discussion of the results of Burbidge et al. (2011), when presented at UKLED2010, it was 

evident that similar forms of dose response characteristic had been observed by G.A.T. Duller, 

S.J. Armitage and R.M. Bailey; who indicated that they could be modelled using thermally 

unstable “R centres”. These centres may correspond to a delocalised band discussed above in 

respect of superlinearity, but charge losses due to thermal instability imply dose-rate effects. 

Differences in trapping probability as a function of dose rate can only be evident where the rate 

of charge build-up (dose rate) differs significantly in relation to, but remains greater than, the 

rate of charge loss (de-trapping rate), and that the difference is integrated over a dose 

sufficiently large that a significant degree of saturation of the delocalised band is achieved 

(Groom et al., 1978). The dose dependence of dose rate effects, or vice versa, indicates that they 

could be described in (29) by adjusting the form of (27). To quantitatively reproduce some 

features of dose response characteristics at higher doses (e.g. Fig. 7), such an adjustment would 

need to augment the effect of relative trapping probability (l) on the form of (29), which 

presently appears weak when compared to relative recombination probability (k, section 5). The 

reader is reminded that since the signal is normalised, any proportional changes or differences 

that apply to both I and IT cancel, so that it is the relationship between the two that is important. 

In the context of (26), (27), and (29), the predose and non-dose dependent changes require that 

k0 and/or l0 are not fixed, so that the basis value for each I, IT pair is different, whether D is 

varied or not. Assuming consistent thermal pre-treatments and measurement conditions, this 

only applies where repeated I, IT pairs are measured consecutively on the same sample (e.g. in 

protocols such as SAR or multiple activation predose. Bailey, 2000; Chen, 1979). The responses 

to cumulative predose and measurement cycle (non-dose dependent) could be based on the 

saturating exponential form, just as for dose and relative trapping and recombination probability 

in the present study, and related to dose as discrete functions when necessary. 

 

7. Conclusions 

 

The present study elaborates an approach to describing dose normalised dose response 

characteristics which, being based on the consequences of simple and established physical 

descriptions of dose response, can help to indicate what type of physical mechanism is involved 

in producing a particular form of dose response characteristic. The analysis was based solely on 

the consideration of dose response, normalisation/test dose response, and changes in trapping 

and recombination probability between dose and normalisation/test dose (irradiations and 

measurements), which were each assumed to follow saturating exponential functions of dose or 

normalisation/test dose. A combination of these functions was developed, described, and its 
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geometry explored, using basic algebraic manipulation and calculus, and illustrated with plots 

and tables of calculated examples and approximations to published datasets. It is able to 

quantitatively reproduce most observed features of dose-normalised dose response 

characteristics, and provides an analytical framework for the exploration of the effects of other 

factors on dose response and absorbed dose evaluation. The relevance of the algebraic-

geometric analyses in the present study is further indicated by emergent relationships between 

aspects of the results and features of the basic physical models underlying their calculation. The 

present study did not investigate the particular chemical changes or solid state reactions that 

ultimately produce the effects described. 

 

Signal levels at saturation in normalised dose response characteristics (INMax) depend strongly on 

test or normalisation dose size and this does not affect the mean-dose of trap filling (D0). 

Standardisation of the dose response characteristic to the test or normalisation dose reduces this 

dependence, particularly for low test/normalisation doses. If generally adopted this manner of 

presentation would greatly facilitate inter-comparison between published works.  

 

The assumption of a fixed linear test dose response was shown to result in a standardised 

saturating exponential dose response characteristic for which, by definition, the signal at 

saturation (ISMax) is approximately equal to mean-dose of trap filling (D0), and the gradient 

(δIS/δD) at zero dose is approximately unity. This assumption is implicit in most published 

comments on dose normalised dose response characteristics in the literature: standardised dose 

response characteristics published to date indicate that it is commonly approximated. Deviations 

from this case can be used to identify samples exhibiting more complex behaviour. 

 

Changes in recombination probability, as a function of dose, between the beginning of the 

measurement of the dose response and the measurement of the test/normalisation dose response, 

produce a dose response characteristic that does not follow the saturating exponential form, and 

which can exhibit non-monotonic behaviour (peaks and troughs) as the result of changes in 

recombination probability. Changes in trapping probability produce effects of a similar form but 

of much reduced amplitude.  

 

A degree of variability in the parameter values obtained from saturating exponential fits may 

result simply from the presence of additional poorly resolved saturating components. However, 

even moderate changes in recombination probability between dose and test dose measurements 

produce fits with widely varying parameter values, even though the data are well approximated 

by the saturating exponential or saturating exponential plus linear forms, for limited ranges of 

doses. Complex non-exponential forms of dose normalised dose response are obtained where 

severe heating is applied between measurement of the dose response and the normalisation 

response, as a result of additional thermal activation. These differences from the saturating 

exponential form make fits of this type (or summed saturating exponential curves, or saturating 

exponential + linear curves) unreliable for parameter evaluation and extrapolation. 

 

Most variations in the form of the dose normalised dose response characteristic can be described 

as functions of dose, D. In this case absorbed dose evaluation is not made inaccurate by the 

variations in the shape of the dose response characteristic, except through complicating data 

reduction. Variations in the form of the dose normalised dose response characteristic caused by 

dose rate, predose and non-dose dependent effects, will affect the accuracy of absorbed dose 

evaluations. The present study also provides an analytical framework through which these may 

be explored. It has focussed on radiation dosimetry using luminescence measurements, with a 

particular emphasis on the behaviour of OSL signals from quartz, but the approach and findings 

are expected to be relevant to other dosimetric methods where dose normalised signals are 

employed. 
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Captions 

 

Fig. 1. Un-normalised (I, a. - c.) and normalised or standardised (IN, IS, d. - e.) dose response 

characteristics calculated using (1) and (18). The DT value used to calculate IS was 1, so IN = IS. 

Two saturating exponential components were summed (∑I): a dominant component (I1), for 

which IMax = ITMax = 4, and D0 = DT0 = 50, and a minor component (I2),  for which IMax = ITMax = 

1, and D0 = DT0 = 100 (in a. and d.), 500 (in b. and e.) or 5000 (in c. and f.). ∑I was 

approximated (Predicted ∑I) by calculating dI/dD at D = 0 and IMax (using (5), (6), (22), and 

(23)), and then assuming values of D0 predicted from these equations, as if the curve were a 

simple saturating exponential and not a sum of saturating exponentials. ∑I was then fitted using 

an equation of the form (1) in the range D = 0-166 (Fit ∑I, D = 0-166), to illustrate the dose 

response characteristic that would be obtained from a dataset for a limited range of doses when 

single saturating exponential dose response was assumed. Input values and results of the 

calculations and fits are listed in Table 1. 

 

Fig. 2. ISMax and δIS/δD at D = 0 calculated for a range of test doses (DT) using (16) and (19), 

assuming IMax = ITMax = 1 and D0 = DT0 = 38 Gy: the D0 value observed when low test doses 

were used by Burbidge et al. (2006). Inset a plot of the same data with axis extended, into the 

physically meaningless region of negative DT, to illustrate the form of the curve. Limits for low 

and high DT values ((20), (21)) are indicated by dashed lines. A linear fit to the calculated values 

of δIS/δD at D = 0 for DT values between 1 and 7 Gy gives y = 0.014 x + 0.999, i.e. the 

parameters are within errors of those in (Error! Reference source not found.). Examples of 

normalised and standardised dose response characteristics for DT values between 1 and 7 Gy are 

presented in Burbidge et al. (2006), Fig. 1. An equivalent plot for INMax and δIS/δD at D = 0 is 

included to illustrate the much stronger variation of this signal with DT; note logged axes. 

 

Fig. 3. Standardised dose response characteristics calculated using (29), to illustrate how the 

form changes as Dk0 is varied, relative to a D0 value of 50, for different values of kMax: i.e. for 

different rates and magnitudes of dose (D) dependent change in recombination probability, 

between the measurement of dose response I (D) and the measurement of the response to the 

normalisation or test dose (DT), IT. In a., kMax = -0.99, in b., kMax =  100. In each plot are shown 

curves for Dk0 = 0.5, 5, 50, 500 and 5000. In all cases DT = 1, IMax = 1, D0 = 50, k0 = 1, l0 = 1, 

lMax = 0, and Dl0 = 1. Since the DT value used to calculate IS was 1, IS = IN. The dotted line 

indicates the dose response characteristic for kMax = 0, i.e. no change in recombination 

probability. Inset is the dose dependent change in a subsequently measured normalisation or test 

dose response, IT relative to I, which produces the dose dependent change in the dose response 

characteristics. 

 

Fig. 4. Standardised dose response characteristics calculated using (29), to illustrate how the 

form changes as kMax is varied, for different values of Dk0 (relative to a D0 value of 50): i.e. for 

different magnitudes and rates of dose (D) dependent change in recombination probability, 

between the measurement of dose response I (D) and the measurement of the response to the 

normalisation or test dose (DT), IT. In a., Dk0 = 5000 (i.e. > D0), in b., Dk0 = 0.5 (i.e. < D0). In 

each plot are shown curves for kMax = -0.99, -0.9, 0, 10, and 100. In all cases DT = 1, IMax = 1, D0 

= 50, k0 = 1, l0 = 1, lMax = 0, and Dl0 = 1. Since the DT value used to calculate IS was 1, IS = IN. 

Inset is the dose dependent change in a subsequently measured normalisation or test dose 

response, IT relative to I, which produces the dose dependent change in the dose response 

characteristics. 

 

Fig. 5. Standardised dose response characteristics calculated using (29), to illustrate how the 

form changes as Dl0 is varied, relative to a D0 value of 50, for different values of lMax: i.e. for 

different rates and magnitudes of dose (D) dependent change in trapping probability, between 

the start of irradiation with the dose, D, and the start of irradiation with the normalisation or test 

dose, DT. In a., lMax = -0.99, and curves are shown for Dl0 = 0.5, 5, 50, 500 and 5000. In b., lMax =  

100 and curves are shown for Dl0 = 50, 500, 5000, 50000 and 500000. In all cases DT = 1, IMax = 
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1, D0 = 50, l0 = 1, k0 = 1, kMax = 0, and Dk0 = 1. Since the DT value used to calculate IS was 1, IS = 

IN. The dotted line indicates the dose response characteristic for lMax = 0, i.e. no change in 

trapping probability. Inset is the dose dependent change in a subsequently measured 

normalisation or test dose response, IT relative to I, which produces the dose dependent change 

in the dose response characteristics. 

 

Fig. 6. Standardised dose response characteristics calculated using (29), using different values 

of kMax and Dk0, to illustrate variations in shape that are similar in form and magnitude to those 

observed in single aliquot (a. and b.) and single grain (c. and d.) data. In a., kMax = 0.2, in b. -0.2, 

in c. 4, and in d. -0.8. In each plot are shown curves for Dk0 = 5, 50, 500 and 5000. In all cases 

DT = 1, IMax = 1, D0 = 50, k0 = 1, l0 = 1, lMax = 0, Dl0 = 1. Since the DT value used to calculate IS 

was 1, IS = IN. Each set of calculated data was fitted using an equation of the form (1) in the 

range D = 0-166, indicated by dotted lines, to illustrate the dose response characteristic that 

would be obtained from a dataset for a limited range of doses when single saturating 

exponential dose response was assumed. Selected characteristics of each curve and fit are listed 

in Table 3. 

 

Fig. 7. Examples of quartz OSL multi-kGy dose response characteristics, where the dose D was 

subject to additional thermal activation, i.e. increase in recombination probability, in between 

the measurement of I and IT (Stokes, 1994; Chen, 1979). The data are selected from Burbidge et 

al. (2011, Fig. 5), standardised, and approximated by curves calculated using (29) with the 

parameters in Table 4. The data are of dose normalised OSL, but measured within a TTOSL 

protocol: following irradiation with D, the samples were preheated and the OSL signal 

measured (I), then they were preheated again to a higher temperature before measurement of the 

TTOSL signal, following which the test/normalisation dose (DT) was administered and the 

samples preheated to a lower temperature, then finally measured by OSL (IT).  

 

Table 1. Input values and results of the calculations and fits for the curves presented in Fig. 1. 

Also included are two examples designed to permit comparison of normalised and standardised 

dose response characteristics where DT >> 1. 

 

Table 2. Example calculations of ISMax for different test doses, for D0 values relevant to quartz 

OSL, feldspar IRSL and TTOSL (values are in arbitrary units, but D0, DT0, DT, and ISMax may be 

considered as if they were presented in Gy). Also included are equivalent values of INMax, to 

illustrate differences in the patterns of change with test dose size between standardised and 

normalised signals. In each case the gradient at D = 0 can be obtained by dividing the values by 

D0. 

 

Table 3. Maximum signal levels, gradients at D = 0 and saturation rates for the curves plotted in 

Fig. 6, and the single saturating exponential fits to these data in the range D = 0-166. An 

example where kMax is set to 0 is included for comparison. Max. IS was used for the data instead 

of ISMax, so that where kMax > 1, the signal level at the peak would be recorded. In all cases k0, l0, 

DT and Dk0 were set to 1, and lMax to 0. 

 

Table 4. Parameter values used to calculate the curves plotted in Fig. 7. 
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Tables 

 

Table 1, double column table 

 

  

∑I (∑I)N = (∑I)S (∑I)N (∑I)S 

  

No DT DT = 1 DT = 100 

 

Fig. 1. a b c d e f 

  Inputs 

        I₁ IMax, ITMax 4 4 4 4 4 4 4 4 

 

D0, DT0  50 50 50 50 50 50 50 50 

I₂ IMax, ITMax 1 1 1 1 1 1 1 1 

 

D0, DT0  100 500 5000 100 500 5000 5000 5000 

Results 

        I₁ IMax - - - 50.5 50.5 50.5 1.16 116 

dI/dD at D=0 - - - 1.01 1.01 1.01 0.0231 2.31 

 

D0
1 - - - 50.0 50.0 50.0 50.0 50.0 

I₂ IMax - - - 101 501 5001 50.5 5050 

dI/dD at D=0 - - - 1.01 1.00 1.00 0.0101 1.01 

 

D0
1 - - - 100 500 5000 5000 5000 

∑I IMax 5.00 5.00 5.00 56.1 61.6 63.0 1.44 144 

dI/dD at D=0 0.0900 0.0820 0.0802 1.01 1.01 1.01 0.0231 2.31 

 

D0
12 55.6 61.0 62.3 55.6 61.0 62.3 62.3 62.3 

Fit (∑I) IMax 4.89 4.31 4.03 54.8 53.0 50.8 1.2 116.0 

(D = 0-166) D0 54.8 53.1 50.4 54.8 53.1 50.4 50.4 50.4 

 

IMax /D0
3 0.0892 0.0811 0.0801 1.00 1.00 1.01 0.0230 2.30 

1D0 calculated as IMax/(dI/dD at D = 0), 2 Not appropriate for ∑I, but used to calculate  

“predicted” curve in Fig. 1. for the purposes of illustration. 3 IMax/D0, = dI/dD at D = 0. 
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Table 2, single column table 

 

 
Example 

 
1 2 3 4 5 6 7 8 

IMax 1 1 1 1 0,5 1 1 1 

D0 50 50 50 50 50 25 1000 1000 

ITMax 1 0,5 0,5 1 1 1 1 1 

DT0 50 25 50 25 50 50 1000 50 

DT  )1/()/( 0/ DD
TMaxMaxNMax

TeIII


  

0,1 501 501 1001 251 250 501 10001 501 

1 50,5 51,0 101 25,5 25,3 50,5 1001 50,5 

10 5,52 6,07 11,0 3,03 2,76 5,52 101 5,52 

100 1,16 2,04 2,31 1,02 0,58 1,16 10,5 1,16 

1000 1,00 2,00 2,00 1,00 0,50 1,00 1,58 1,00 

DT )1/()/( 0/ DD
TMaxMaxTSMax

TeIIDI


  

0,1 50 50 100 25 25 50 1000 50 

1 51 51 101 26 25 51 1001 51 

10 55 61 110 30 28 55 1005 55 

100 116 204 231 102 58 116 1051 116 

1000 1000 2000 2000 1000 500 1000 1582 1000 
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Table 3, double column table 

 
Inputs 

 

Data Fit 

kMax Dk0 Max. IS dIS/dD at D = 0 Predicted D0 ISMax D0 Predicted dIS/dD at D = 0 

0 - 50.5 1.01 50.0 50.5 50.0 1.01 

0.2 5 42.1 1.01 41.7 41.9 49.4 0.85 

(IT(D=∞)/IT(D=0)) = 1.2   50 42.1 1.01 41.7 41.3 42.6 0.97 

 
500 46.6 1.01 46.1 47.6 46.8 1.02 

 
5000 49.8 1.01 49.3 50.2 49.6 1.01 

-0.2 5 63.1 1.01 62.5 63.4 50.8 1.25 

(IT(D=∞)/IT(D=0)) = 0.8   50 63.1 1.01 62.5 65.3 61.5 1.06 

 
500 63.1 1.01 62.5 53.8 53.8 1.00 

 
5000 63.1 1.01 62.5 50.9 50.4 1.01 

4 5 10.1 1.01 10.0 8.21 45.8 0.18 

(IT(D=∞)/IT(D=0)) = 5  50 10.1 1.01 10.0 7.90 10.5 0.75 

 500 25.3 1.01 25.1 22.6 20.5 1.10 

 5000 43.1 1.01 42.6 43.3 41.7 1.04 

-0.8 5 252.5 1.01 250 264 57.9 4.56 

(IT(D=∞)/IT(D=0)) = 0.2  50 252.5 1.01 250 4512 3322 1.36 

 500 252.5 1.01 250 68.5 71.0 0.97 

 5000 252.5 1.01 250 52.0 51.7 1.00 
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Table 4, single column table 

 

  
Curve  

Parameter a b c 

DT 10.5 10.5 10.5 

IMax1 1 1 1 

D01 1100 3750 1500 

IMax2 4.26 -1.6 0 

D02 15714 100000 1 

k0 1 100 1 

kMax 46 -70 24.5 

Dk0 4000 1000 2500 

l0 1 0.0000017 1 

lMax 0 0.1 0 

Dl0 1 3000 1 
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Figures 

 

Fig. 1, double column figure 
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Fig. 2, single column figure 
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Fig. 3, single column figure 
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Fig. 4, single column figure 
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Fig. 5, single column figure 
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Fig. 6, double column figure 
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Fig. 7, single column figure 
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