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The combinatorial optimization simulated annealing algorithm is applied to the analysis of
Rutherford backscattering data. The analysis is fully automatic, i.e., it does not require
time-consuming human intervention. The algorithm is tested on a complex iron-cobalt silicide
spectrum, and all the relevant features are successfully determined. The total analysis time using a
PC 486 processor running at 100 MHz is comparable to the data collection time, which opens the
way for on-line automatic analysis. ©1997 American Institute of Physics.
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Rutherford backscattering~RBS! is a standard techniqu
in the analysis of materials, and is used to determine wha
the elements present in a given sample, their stoichiome
and their depth distribution.1 Its main advantages are that it
fully quantitative, i.e., the use of external standards is
necessary, and that a precision better than 1% can
achieved with careful analysis~see e.g., Ref. 2!. Computer-
aided data interpretation has been common practice for
two decades,3 and several programs have been develope
facilitate the task of analyzing the data, the best known be
RUMP.4 While a recent review can be found in Ref. 5, ne
programs are still regularly developed~see e.g., Ref. 6!. A
common trait of the codes reported is that they all requir
considerable degree of input from the user, who must n
mally define the depth profile of all the elements, and th
compare a theoretical function generated from that la
structure with the data. Although there is research in n
directions~e.g., using maximum entropy methods7!, there is
at the moment no general algorithm available for the solut
of the inverse RBS problem, i.e., to calculate from the d
the depth profile of the elements present.

The aim of this letter is to present a computer progr
that performs automatic analysis of RBS data without
need of time-costly human involvement. The only inpu
necessary are the experimental conditions in which the
periment was done, and the elements present in the sam
This is in many cases knowna priori, and takes only a few
seconds to feed into the computer. The combinatorial o
mization simulated annealing8 algorithm was used, due to it
two main features: first, the solution is independent of
initial guess chosen, and therefore a human-input initial la
structure is not needed. Second, it tends asymptotically to
absolute minimum rather than to a local minimum as in c
ventional minimization algorithms, and hence high qual
solutions can be achieved. It has been applied in fields
diverse as very large scale integrated~VLSI! design,9

Biophysics,10 or Natural Language Processing.11 The inverse
RBS problem can be defined as a discrete combinatorial
timization problem; the solution spaceS containing all pos-
sible RBS spectra~ignoring the differences in the experime
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tal setups, which are not relevant! is indeed finite, due to the
finite sensitivity and energy resolution of the technique.
si is the sensitivity for elementi, only 1/si different concen-
trations of elementi in a given layer are distinguishable
Further, an energy resolution of 1% limits the number
separable layersn1 to about 100, and the size of the solutio
space is then limited by #S,n1

P i1/si.
Simulated annealing is based on an analogy with ann

ing, i.e., removing defects from a crystal by melting it a
subsequently cooling it down very slowly. If enough time
allowed for the crystal to reach thermodynamical equilibriu
at each temperature, and if the cooling is slow enough, t
at T50 K the crystal will be in a state of minimum energ
This is opposed to quenching, where a fast rate of coo
ensures that the crystal will freeze in a highly defective me
stable state. The analogy with simulated annealing is as
lows: the possible structures of the sample~i.e., number of
layers, layer thickness, and stoichiometry! are equivalent to
states of a physical system; the chi-square~x2, defined in the
usual way as a weighted distance between the proposed
oretical function and the data! is equivalent to the energy o
a state; and a control parameterT is equivalent to the tem-
perature. Further, a transition of state is defined as the g
eration of a new structure from the previously calculated o
~e.g., by increasing or decreasing the number of layers
altering the layers thickness and stoichiometry by so
amount!. The transitions are generated randomly, as is
case in a real material. The probabilityP of accepting a
transition is

P51 if Dx2,0

5exp~2Dx2/T! if Dx2.0. ~1!

It is the second condition that allows escape from lo
minima of thex2. Clearly, at sufficiently high values of th
control parameterT, practically all the transitions are ac
cepted, corresponding in the analogy to a liquid state w
high entropy. AsT decreases, the probability of transition
with a related high increase of thex2 becomes smaller, and
at very small values ofT only transitions that lead to ax2

decrease are accepted. The main elements of the prog
are:8

~a! A cooling schedule, i.e., the initial valueT0 of the
control parameter, the numberL of proposed transitions a

l:
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each value ofT, and the rate of cooling.T0 is determined by
calculating^Dx2&, i.e., the average chi-square increase
x2 increasing transitions, and requiring that the probabi
of the average transition be superior to a certain high va
P0 , typically around 0.95. This is expressed asT0
52^Dx2&/ ln(P0). The number of proposed transition
should be large enough to ensure that equilibrium is reac
i.e., at least a certain number of them should be accepte
each value ofT. The cooling rate is defined byTi115kTi ,
wherek is a positive constant smaller than 1.

~b! A transition of state procedure, i.e., to calculate
new state from the current one. For RBS, this amounts
varying randomly the thickness and stoichiometry of the l
ers, as well as creating randomly new layers and merg
existing ones. Finally, the program tests only the eleme
specified by the user.

~c! The calculation of thex2 value. This amounts basi
cally to calculating a theoretical RBS spectrumYthe(E) cor-
responding to the current layer structure, to then compa
with the dataYexp(E), whereE is the energy of the backsca
tered particles. In this implementation, several simplific
tions were done on the generation of the RBS spectra
order to reduce the calculation time. The 512 channels of
experimental data were compressed by adding four chan
each; the energy straggling is not taken into account, wh
leads to overestimation of the thickness of any interfa
present; and the average mass of the elements is used in
of the full isotopic distribution. The stopping cross sectio
are calculated, as usual, from the tabulated elemental on12

using Bragg’s rule. Further, there is no simple way of cal
lating the effect of plural and multiple scattering whic
would distort the spectral shape at lowE values,13 and hence
it was not included in the calculations. The influence
pileup was fully taken into account following the procedu
given in Ref. 2.

~d! The acceptance criterion given by Eq.~1!. The prob-
ability P of a transition is weighted against a random num
r between 0 and 1. IfP>r , the transition is accepted.

The algorithm was tested by first generating a theoret
spectrum from a given layer structure. The algorithm is th
applied to the inverse problem, i.e., from the spectrum
attempts to determine the layer structure. A multilaye
iron-cobalt silicide test structure, shown in Fig. 1, was ch

FIG. 1. The depth profile used to generate the theoretical spectrum fitt
shown as the symbols~squares: Si; circles: Fe; triangles: Co!. The final
depth profile as determined by the simulated annealing fit is shown as
~solid: Fe; dashed: Co!.
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sen because, first, to separate the neighbor Fe and Co
ments is within the limits of the RBS technique, and seco
it is a system of actual interest.14 The resulting spectrum is
shown in Fig. 2, and the superposition of the Co and
signals leads to a complex structure. Random statistical e
was added to the original theoretical spectrum in order to
the robustness of the solution found by the algorithm.

Figure 2~a! shows the initial guess used in the simulat
annealing fit. It assumes simply a single homogeneous la
of Si, Fe, and Co. The initial stoichiometry was determin
from the height of the detected edges; as the Fe and Co e
are not separated, equal initial concentrations are assigne
them. The cooling schedule was defined byT058.53104,
L52200, andk50.567. These values were determined a
tomatically by the program;T0 as given above, andL andk
from an empirical procedure optimized by trial and error
a number of real spectra with different characteristics. Th
depend on the number of elements in the sample and on
number of edges and peaks in the spectrum, so that incre
data complexity leads to slower cooling.

After reducing the value ofT to 5.33101, the best so-
lution obtained so far, shown in Fig. 2~b!, already consists of
a silicide layer with the correct thickness, on top of bulk S
The stoichiometry of the silicide layer is still approximate
homogeneous, and the smooth interface between the sili

is

es

FIG. 2. Different steps of the fit, from~a! the initial guess to~d! the final
result. The values of the control parameterT andx2 at each step are shown
On real data,x251 would mean that the fit is within the statistical error
all data points.
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and the substrate is not reproduced. This is the point wh
traditional minimization algorithms would stop~as does the
one implemented inRUMP,4 after some further optimization
of the exact silicide thickness and composition!, because a
local minimum has been reached, corresponding to que
ing in the analogy with annealing. In fact, a large reduct
of thex2 has already taken place, or using the analogy w
annealing, a low-energy, low-entropy, highly probable so
tion has already been found. However, the simulated ann
ing algorithm does not remain trapped in this metasta
state; instead, it proceeds to find the real minimum, and
T51.831022 the solution found has the correct shape, t
is due to the varying Fe and Co composition in the silicid
Then it adjusts the details, reproducing the features of
data with a smaller influence on thex2 value, and the final
solution is reached atT56.531026. The total number of
solutions tested was 93104. A very good fit is obtained.
Aarts and Korst8 show that when alternative traditiona
methods can solve a particular minimization problem, th
generally perform better than simulated annealing. Th
methods, however, cannot be used to solve the genera
verse RBS problem, due to the different, overlapping, de
scales of the different elements, leading to the existenc
strong local minima.

FIG. 3. ~a! Final result of a simulated annealing fit of an Fe–Co silicid
including a surface oxide.~b! Depth profile determined from the fit. The O
profile is not shown, for clarity. The depression in the Si concentra
between about 1000 and 150031015/cm2 corresponds to a stoichiometri
cubic silicide, while below about 100031015/cm2 the layer has a stoichiom
etry similar to the Si-richa-FeSi2 phase.
Appl. Phys. Lett., Vol. 71, No. 2, 14 July 1997
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The final sample structure~i.e., the final state! deter-
mined is shown in Fig. 1, and it agrees remarkably well w
the original one, which demonstrates the power of the sim
lated annealing algorithm. All the features are correctly d
termined. Given infinite time, the algorithm would find th
best possible solution, as opposed to the high quality solu
found. The whole procedure took 6 min 19 s on a 486 p
cessor running at 100 MHz. This is comparable to the d
collection time, which means that fully automated on-li
analysis of RBS data becomes possible.

The successful use of the algorithm to recover the or
nal structure from a theoretical test spectrum shows tha
solution to the inverse RBS problem exists. Errors in t
spectrum simulator due to multiple scattering or inaccur
stopping powers will lead to errors in the solution obtaine
These problems, avoided by the use of simulated input d
affect all RBS data analysis and are outside the scope of
letter. However, real data are also successfully analyzed
our algorithm, including the data shown in Figs. 5, 9, 10, a
11 of Ref. 14. As an example, Fig. 3 shows the analysis
Fig. 9 of Ref. 14. This is actually a harder case since
surface oxide is present, but an excellent fit is obtained.
depth profiles derived by simulated annealing agree in
cases remarkably well with the x-ray photoemission sp
troscopy~XPS! and cross-section transmission electron m
croscopy ~XTEM! results presented by Harryet al. The
simulated annealing algorithm has also been success
used in the study of many other systems, including O i
planted SiC and the ion beam mixing of Fe/Si and Ta/Si w
As and Xe implantation.
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