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Abstract

Eradication of cancer still remains an upsetting issue despite our increased understanding of the molecular basis of car-
cinogenesis. Factors such as the molecular heterogeneity of some tumours and initial diagnosis at advanced stages hamper
effective disease treatment. Given the ineffectiveness of current treatments, the development of newer therapeutic modalities
to address clinical unmet needs is still mandatory. Radioimmunotherapy (RIT) that combines the use of specific antibodies
against tumour-associated antigens with the cytotoxic properties of therapeutic radionuclides is amongst those approaches.
The potential of monoclonal antibodies to complement current treatment protocols may bring a significant improvement to
the overall therapeutic outcomes of oncologic disorders. RIT permits the delivery of a high dose of therapeutic radiation
to cancer cells, while minimizing the exposure of normal cells. '*'T and °°Y have been used in>95% of clinical RIT trials
and represent the current standard to which all other radionuclides are compared. Both p-particle-emitting isotopes qualify
for RIT because of their favourable emission characteristics and availability and flexible radiochemistry. The importance
of radioiodine in nuclear medicine together with the success of radioiodinated antibody-based drugs in the clinical setup
prompted us to provide an updated overview of the application of radioiodinated antibodies in RIT and anticipate potential
relevant accomplishments in the near future.
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Introduction

Radioimmunotherapy (RIT) is a form of targeted radionu-
clide therapy that uses a monoclonal antibody to deliver
localized radiation. It is most appropriate for treatment of
multiple tumour sites that cannot be readily excised surgi-
cally or irradiated using external beam radiation or brachy-
therapy. RIT has been established over the past 20 years and
is still an important therapeutic approach in haematological
malignancies.

Target specificity in the prevention or treatment of dis-
eases such as infection, cancer and autoimmune disorders
became more viable through the development of monoclonal
antibodies. The mouse hybridoma technology described by
Kohler and Milstein in 1975 was a significant step in the
development of antibody technology and opened the way
for the onset of therapeutic monoclonal antibodies [1]. The

first therapeutic murine monoclonal antibody, indicated for
the prevention of kidney transplant rejection (Orthoclone,
OKT?3 from Ortho Pharmaceuticals), was approved by the
US Food and Drug Administration (FDA) in 1986. How-
ever, monoclonal antibodies of mouse origin were shown to
have limited use because of the immunogenicity of murine
proteins in humans and the rapid development of a human
anti-murine antibody (HAMA) response in the patients. The
HAMA response neutralized the efficacy of the murine anti-
bodies and resulted in their rapid clearance from the body.
One way to reduce the immunogenicity of murine monoclo-
nal antibodies is the use of recombinant DNA technology
to generate a chimeric mouse/human antibody construct in
which the epitope-specific variable region of the murine
mAb is combined with the constant region of a human
immunoglobulin.

In the early 1990s, “chimeric” antibodies were shown to
elicit much lower HAMA responses in patients. This class of
antibodies include the highly successful anti-CD20 Rituxan®
and anti-EGFR Erbitux®, as well as the anti-inflammatory
product anti-TNF-« Remicade® [2]. Although superior to
murine antibodies, the chimeric versions still pose a mod-
erate risk of immunogenicity due to their residual murine
components.

“Humanized” antibodies, in which the complementarity-
determining regions (CDRs) of a human antibody gene
have been replaced by those from a CDR of a murine mAb
gene, were generated in an attempt to further reduce HAMA
response in patients. Successful examples of CDR-grafted
human antibodies currently in the market include Synagis®
(anti-RSV), Herceptin® (anti-HER2), Mylotarg® (anti-
CD33)®, Xolair® (anti-IgE), and Avastin® (anti-VEGF-A)
[3].

The latest advance in creating less immunogenic anti-
body-based drugs is the ability to generate fully human mon-
oclonal antibodies (mAbs). Two general methodologies have
been developed to prepare fully human antibodies: in vivo
strategies using a murine system in which the immunoglobu-
lin genes have been replaced by their human counterparts
or in vitro approaches using libraries containing millions of
variations of antibody sequences coupled with a mechanism
to express and screen these antibodies in vitro, such as phage
display. The anti-TNF-« antibody Humira®, the first fully
human antibody to be approved by the FDA for treatment
of rheumatoid arthritis, is still the best selling monoclonal
antibody therapy in the market [3]. Some examples of suc-
cessful therapeutic antibodies that have been approved for
clinical use are summarized in Table 1.

The clinical utility of antibodies for both therapeutic and
diagnostic applications has been somehow limited mostly
by their slow blood clearance and the relatively long time
needed to optimally accumulate in tumours, as well as the
extensive optimization required for each antibody-tracer
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Table 1 Some examples of successful therapeutic antibodies

mAb Trade name mADb type Technology Therapeutic indica-  First EU First US
(target antigen) tion approval year approval year
Muromanab-CD3 Orthoclone, OKT3 Murine [gG2a Hybridoma Kidney transplant 1986 1986
CD3 rejection
Rituximab Rituxan® Chimeric IgG1 Hybridoma Non-Hodgkin’s 1998 1997
MabThera CD20 lymphoma
Cetuximab Erbitux® Chimeric IgGl1 Hybridoma Colorectal cancer 2004 2004
EGFR
Infliximab Remicade® TNF-a Hybridoma Crohn’s disease 1999 1998
Palivizumab Synagis® Humanized IgG1 Hybridoma Prevention of RSV 1999 1998
RSV infection
Trastuzumab Herceptin® Humanized IgG1 Hybridoma Breast cancer 2000 1998
HER2
Gemtuzumab ozo- Mylotarg® Humanized IgG4 Hybridoma CD33-acute NA 2000
gamicin CD33 myeloma
Omalizumab Xolair® Humanized IgG1 Hybridoma Asthma 2005 2003
IgE
Bevacizumab Avastin® Humanized IgG1 Hybridoma Colorectal cancer 2005 2004
VEGF-A
Adalimumab Humira Human IgG1 Phage display Rheumatoid arthritis 2003 2002
TNF-a
Ibritumomab tiuxetan Zevalin Murine IgG1 Y-90  Hybridoma Non-Hodgkin’s 2004 2002
CD20 lymphoma
Tositumomab and Bexxar Murine IgG2a I-131 Hybridoma Non-Hodgkin’s NA 2003
iodine-131 CD20 lymphoma
Nimolumab Opidivo Human IgG4 Hybridoma Melanoma, NSCLC, 2015 2014
PDI and others
Pembrozilumab Keytruda Humanized IgG4 Hybridoma Melanoma, NSCLC, 2015 2014
PD1 and others
Ustekinumab Stelara Human IgG1 Transgenic mice psoriasis 2009 2009
1IL12/23
Eculizumab Soliris Humanized IgG2/4  Hybridoma Paroxysmal noctur- 2007 2007
C5 nal, haemoglobi-

nuria

RSV respiratory syncytial virus, TNF-a tumour necrosis factor alpha

system [4, 5]. Regarding radiolabelled antibodies for imag-
ing or therapeutic applications (RIT), almost all early clini-
cal trials have used whole IgG [6-8]. The slow blood clear-
ance of IgG stimulates tumour uptake, but also exposes the
red bone marrow, a highly radiation-sensitive tissue, to a
continuous source of low-dose radiation, leading, in some
cases, to myelosuppression even before a tumouricidal dose
can be achieved [9].

Most of the unwanted properties of intact IgGs that
restrict their use in RIT result from their large size
(120 kDa). The latter can be reduced by modifying the
antibody design, namely by altering the antibody structure
to generate lower molecular weight fragments without dis-
tressing their specific antigen binding. The first strategy to
increase tumour penetration and clearance from normal tis-
sues comprised the use of smaller enzymatically derived
antibody fragments F(ab’), and Fab’ that exhibited fast
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and homogenous tumour localization and shorter serum
half-lives. With the advent of genetic engineering, smaller
antibody fragments, ranging from 30 to 120 kDa, such as
single-chain Fvs (scFv), diabodies, and minibodies, have
been developed (Fig. 1).

Current progress in innovative engineered antibodies has
been recently reviewed [10]. These new-generation antibody
fragments, when compared with intact mAbs and more con-
ventional enzymatically derived fragments, offer several
advantages, including as carriers for selective delivery of
radionuclides to tumours. An overview of relevant properties
of intact antibodies, enzymatic fragments, and other engi-
neered constructs is presented in Table 2.

The rate of clearance of scFv from the blood pool and
normal tissues is much faster than that seen for intact IgG,
F(ab’), or Fab’ fragments. Faster clearance reduces red mar-
row exposure, allowing the total administered activity to be
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Fig. 1 Schematic representation
of an intact antibody and other
engineered antibody fragments.
Created with BioRender.com.
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Table 2 Overview of relevant properties of intact antibodies, enzymatic fragments, and other engineered constructs
Format Intact IgG F(ab’)2 Minibody Diabody F(ab) scFv
MW 150 kDa 120 kDa 80 kDa 55kDa 55kDa 25kDa
Composition (Vg+Vp), (VeCyl +VL+Cpy, (scFv+Cy3), (scFv), VCyl+ VL +C, (Vg+Vp)
Source Enzymatic Engineered Engineered Enzymatic Engineered
Half-life in blood 1-3 weeks 8-10h 5-10h 3-5h 12-20h 2-4h
Valency Bivalent Bivalent Bivalent Bivalent Monovalent Monovalent
Clearance route Liver Liver, kidney Liver Kidney Kidney Kidney

increased. Also, autoradiographic studies have indicated that
scFv constructs penetrate into the tumour more efficiently
than intact IgG or larger fragments. Pharmacokinetics and
biodistribution of genetically engineered antibodies have
been discussed in detail elsewhere [11, 12].

Most antibodies are “naked” antibodies, meaning
that they rely on either blocking an important biological
function or on activating the immune system, to elicit a
therapeutic effect. However, antibodies are also useful as
targeting agents to deliver potent chemo- or radioactive
agents, specifically to target cells. Successful examples
are the immunoconjugate Mylotarg (an anti-CD33 linked
to a cytotoxic agent from the class of calicheamicins) and
the anti-CD20 radioimmunoconjugates Zevalin (°°Y-ibri-
tumomab tiuxetan) and Bexxar (iodine-131 tositumomab).
The first therapeutic clinical trials focused on using radi-
oiodinated antibodies but, over time, advances in chelation
chemistry have allowed other new therapeutic radionu-
clides to be explored (Table 3).

Table 3 Therapeutic radionuclides used for radioimmunotherapy

Radionuclide Energy Range' Half-life
(MeV,,,)"

B-emitter

Yttrium-90 2.28 11.3 mm 2.7 days

Todine-131* 0.61 2.3 mm 8.0 days

Lutetium-177 0.50 1.8 mm 6.7 days

Rhenium-188 2.12 10.4 mm 0.7 days

Copper-68 0.58 2.1 mm 2.6 days

a-emitter

Bismuth-213 8.3 60-85 pm 0.8h

Astatine-211 6.8 72h

Actinium-225 6.8 10 days

Auger electrons

Todine-125 2-500 nm 60.5 days

TAs reported by Kassis [13]. *lodine-131 also emits y-rays with a
minimum energy of 364 keV. MeV,,, . maximum range of particulate
energy in tissue
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Iodine-131 has a long successful history in the treatment
of several malignancies due to its short path-length S parti-
cles emission, y emission, long half-life and well-established
radiochemistry. Whereas f# emission permits the irradiation
of small and large foci of targeted tumour tissue with rela-
tively little exposure of neighbouring normal tissues, y ray
emission allows non-invasive tumour imaging, as well as
quantitative tumour and organ dosimetry.

The main advantages of > are the relatively low cost,
and the physical characteristics, which allow its use for both
imaging and therapy (Theranostics). The main disadvantage
is related with the fact that radioiodine is non-residualizing
and once internalized in the cell escapes by diffusion across
the cell membrane, causing unwanted irradiation of non-
targeted tissues (e.g. thyroid and stomach). In addition, the
y rays emitted by '3'I may pose a radiation risk to family
members and health-care personnel.

Haematopoietic toxicity can also occur due to an exten-
sive radiation exposure resulting from the medium-long
range f3 and y emissions associated with '*'I. Thus, an alter-
native approach to killing individual tumour cells while spar-
ing the bone marrow would be the use of low-energy Auger
electron emitters, such as 21, conjugated to antibodies that
internalize only into the target cells [14]. RIT using Auger
electron emitters has been regarded disadvantageous, since
the localization of the radionuclide, after receptor binding,
is not the nucleus, as required for effective cell killing, but
the cytoplasm (internalizing mAbs) or the cell membrane
(non-internalizing mAbs). However, clinical trials in patients
with advanced colon cancer have demonstrated that RIT
with 12°I-labelled internalizing antibodies can be achieved
without significant patient toxicity or radiation hazard, but
only modest antitumour effects were observed [14—16].
Conversely, a preclinical study reported in 2009 by Santoro
et al. has suggested that the use of internalizing mAbs, which
drive radioactivity in cells near the nucleus, was not a pre-
requisite to the success of '2°I therapy, and '*I-labelled non-
internalizing mAbs could be suitable for RIT of small solid
tumours [17]. Unfortunately, as far as we are aware, there
have not been any subsequent clinical RIT trials attempted
with 1?°I-labelled mAbs in the past decade.

The aim of the present review article is to give an over-
view of published clinical trials of radioimmunotherapy with
radioiodinated monoclonal antibodies for the treatment of
solid cancers and haematological malignancies.

Radioiodinated monoclonal antibodies
for radioimmunotherapy of solid tumours

Throughout the last sixty decades, several radioimmuno-

therapeutic drugs have been explored for the treatment of a
variety of solid malignancies, including ovarian, colorectal,
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breast, prostate, pancreatic, hepatocellular, and primary
brain tumours. However, up to now, no drug of that class
has entered the market. Several new radioimmunotherapeu-
tic agents are still under active clinical investigation, either
as single agents or combined with radiosensitizing chemo-
therapy or with external beam radiotherapy. Progress in chi-
merization and humanization of antibodies (and antibody
fragments), improved pre-targeting methods and dosimetric
models, as well as the availability of novel radionuclides
have expanded the therapeutic window for these agents.

Ovarian cancer

Ovarian cancer is still a lethal gynaecological malignancy,
especially due to late diagnosis in most patients. In 2020
the estimated number of new cases worldwide was 313,959
(1.6%) with 207,252 deaths (2.1%) (GLOBOCAN2020)
[18]. Even with the evolution of surgical procedures and
the advent of novel targeted therapies, ovarian cancer is in
the top ten most common cancers for women in 2020 [18].
The poor prognosis is mainly related to the clinically occult
nature of the disease. The lack of specificity associated to
conventional therapies together with the heterogeneity that
characterizes malignant cells also hampers the possibility of
treatment. The most relevant ovarian cancer RIT/RIS clini-
cal trials with radioiodinated antibodies are summarized in
Table 4.

Targeting folate receptor a

Folate-binding protein GP38 is a membrane-associated gly-
coprotein (38 kDa) that mediates the intracellular transport
of folates. It is overexpressed in more than 90% of the ovar-
ian carcinomas and in 60% of other gynaecological carci-
nomas [19]. GP38 is identified by two murine monoclonal
antibodies (MOv18 and MOvV19) that recognize different
epitopes [19].

Immunohistochemical studies with both MOv18 and
MOvV19 were reported in the literature [20, 21]. MOv18
presented restricted specificity for both malignant and
benign ovarian tumours, with no significant immunoreaction
towards normal ovary [21, 22]. The administration of murine
(m) or chimeric (¢) MOv18 IgG to ovarian cancer patients
suggested therapeutic benefit without evident associated
toxicity. Findings from the first clinical study with *'I-m-
MOv18, conducted in 1991 by Crippa et al. [23] suggested
its potential application for radioimmunoscintigraphy of
ovarian cancer patients. Subsequent preclinical and clinical
studies with '*'-m-MOv18 demonstrated good localizing
properties in ovarian tumours, both as the whole immuno-
globulin G (IgG) and as fragments (F(ab’),) [24, 25]. The
efficacy of radioimmunotherapy with '*'I-MOv18 was later
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demonstrated in a clinical study enrolling 19 ovarian can-
cer patients with minimal residual disease [26]. Although
low toxicity was reported in this study, most of the treated
patients (94%) developed HAMA responses.

Aimed at reducing the immunogenicity of murine
MOv18, a chimeric form of the antibody (c-MOv18) was
prepared and compared to m-MOvI8. However, both the
affinity and immunoreactivity of c-MOv18 were reported
to be identical to the murine form [24]. Later, both the effi-
cacy and safety of i.v. administration of '*'T-c-MOV18 were
established in a dose-escalating phase I trial, suggesting
its clinical application as an unmodified antibody or as an
immunoconjugate in the treatment of ovarian carcinomas
[27].

The influence of the route of administration of radiola-
belled c-MOv18 was investigated by two distinct studies
where *!'I-c-MOv18 was administered by i.p. and i.v. routes
to ovarian cancer patients [28-30]. However, the results
from these studies were controversial. The first scintigraphic
images showed better accumulation of '*'T-c-MOv18 in the
ovarian cancer lesions of the patients that had received intra-
peritoneal administration [29]. Contrary to these findings,
van Zanten-Przybysz et al. could not demonstrate any advan-
tage for the i.p. route of '*I-labelled c-MOv18 with regard
to tumour uptake in suspected ovarian cancer patients [30].
According to van Zanten-Przybysz et al. the better accumu-
lation of '3'T-c-MOv18 found in ovarian cancer lesions of
patients following i.p. administration [29] was probably due
the fact that the background radioactivity was not defined
and the uptake values were extracted from the images using
region of interest (ROI) analysis, which is not as accurate as
the direct tissue counting method. Moreover, in some cases,
the favourable results for the i.p. route are influenced by
a persistent nonspecific accumulation of *'I-m-MOv18 in
pelvic tissues. Also, i.v. and i.p. routes of administration
were not compared in the same patient in the initial clinical
trial [29].

Targeting MUC1

Human milk fat globule membrane protein antibodies
(HMFG-1 and HMFG-2) are murine monoclonal antibod-
ies directed at specific epitopes of the MUC-1 gene prod-
uct, a large and heavily glycosylated mucin expressed on the
apical surface of the majority of secretory epithelial cells
[31]. MUC-1 is an attractive target for immunotherapy due
to its overexpression in 90% of adenocarcinomas, including
cancers of the ovary, breast, and pancreas. Moreover, as a
result of under glycosylation or aberrant glycosylation in
cancerous tissue MUCI is antigenically distinct from normal
tissue mucin [32].
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Radiolabelled '*'T-HMFG?2 has been successful used to
image lesions in patients with primary and metastatic ovar-
ian cancers [33]. In selected regions of the body such as the
pelvis, where CT scanning and ultrasonography have some
limitations, antibody scanning with '2I-HMFG2 has the
potential to detect accurately very small lesions such as ovar-
ian tumours with masses less than 0.8 cm in diameter [34].

Promising results from a RIT clinical trial with '*'I-
HMFG-1 and "*'I-HMFG-2, enrolling 24 patients with per-
sistent epithelial ovarian cancer after chemotherapy [35],
prompted the use of other therapeutic radionuclides. To
this end, yttrium-90, a pure f-emitter, seemed to be a more
promising candidate for ovarian cancer radioimmunotherapy
[36]. A nonrandomized, extended phase I/II clinical trial
suggested that patients with advanced ovarian cancer who
had achieved complete remission following conventional
therapy might benefit from further treatment with i.p. admin-
istered *°Y-HMFG-1 [37]. However, a multinational, open-
label, randomized phase III trial comparing *°Y-HMFG-1
plus standard treatment versus standard treatment alone in
ovarian cancer patients in complete clinical remission after
cytoreductive surgery and platinum-based chemotherapy
showed no extended survival or time to relapse in patients
who had a negative second-look laparoscopy [38]. Although
no survival benefit was found as consolidation treatment for
epithelial ovarian cancer, an improved control of intraperi-
toneal disease was demonstrated in a retrospective analysis
of this trial [39].

Targeting CA-125

CA125 is an ovarian cancer-associated antigen expressed
on tumour cells in over 90% of patients with advanced epi-
thelial ovarian cancer [40]. Preliminary animal and clinical
studies with a specific murine monoclonal antibody labelled
with B, B11-0C125, have demonstrated selective tumour
uptake and favourable tumour to non-tumour ratios suitable
for intraperitoneal RIT [41, 42]. Phase I and II clinical tri-
als demonstrated that i.p. administration of '*!'I-OC125 was
effective against residual macroscopic or microscopic dis-
ease and that a dose of up to 140 mCi of '*'I could be safely
administered [43, 44]. However, a phase II clinical study
with B'I-0C125 F(ab’), showed little therapeutic benefit
in patients with residual ovarian carcinoma after primary
treatment with surgery and chemotherapy [45].

Several other '*'I-labelled mAbs for RIT in ovarian can-
cer have also been reported in the literature, but with little or
no clinical experience. These include the monoclonal anti-
bodies '2I-Hu2LAP, *'I-H317, and *'1-H17E2, specific
for placental-type alkaline phosphatase (PLAP), a surface-
membrane enzyme expressed in most ovarian carcinomas
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[46, 47]. The human IgG Hu2LAP labelled with !>’ and the
mouse IG, H317 and IG, H17E2 labelled with '*'T have also
been used for ovarian tumour detection [48, 49]. However,
no therapeutic studies have been reported so far.

Colorectal cancer

Colorectal cancer (CRC) ranks third in terms of incidence
and second in terms of mortality. Indeed, more than 1.9 mil-
lion new colorectal cancer cases and 935,000 deaths were
estimated to occur in 2020, which accounts for about one in
ten cancer cases and deaths [50]. In this manuscript, colo-
rectal cancer will be defined as the combination of cancers
of the colon, rectum, and anus. The more important RIT/
RIS clinical trials conducted in colorectal cancer patients
are outlined in Table 5.

Targeting CEA

Carcinoembryonic antigen (CEA), a glycosylated cell sur-
face glycoprotein (molecular weight =200 kDa), was first
identified from extracts of human adenocarcinoma of the
colon by Gold and Freedman [51]. As CEA is highly over-
expressed in breast, lung and pancreatic cancer and, particu-
larly, in CRC [52, 53], it has become one of the first tumour-
associated antigens to be explored at the clinical level. CEA
is routinely detected in serum as a tumour biomarker.

The first clinical trial testing the efficacy of RIT with an
anti-CEA radiolabelled antibody was reported by Lane et al.
in 1994 [54]. The murine anti-CEA antibody '*'I-A5B7,
either as the intact immunoglobulin IgG or as the F(ab’)2
fragment, was administered to 19 patients with metastatic
colorectal tumours. Four hours after injection the tumour
uptake of F(ab’)2 fragments was higher than that of the
intact antibody, which was consistent with the faster pen-
etration of the smaller F(ab’)2 into tumour masses as already
found earlier in animal models of CRC [55-57].

Four other anti-CEA antibodies reactive with four distinct
epitopes expressed on CEA have also been described in the
literature [58, 59]. These antibodies, NP-1, NP-2, NP-3 and
NP-4, were classified into three main classes according to
their reactivity towards CEA and the CEA-related antigens,
meconium antigen (MA) and nonspecific cross-reacting
antigen (NCA) [59, 60]. The class I antibody, NP-1, had
high affinity for CEA and MA, but low affinity for NCA,
while the class II antibodies, NP-2 and NP-3, had moderate
affinities for CEA and MA. The class III antibody, NP-4,
appeared to recognize determinants unique to CEA and had
no affinity for NCA or MA. The immunological, pharma-
cokinetic, and targeting properties of '*'l-labelled murine
NP-2, NP-3 and NP-4 were evaluated after i.v. injection in
patients with diverse cancers [8, 61]. Owing to its specificity

towards CEA, good targeting properties in patients and lim-
ited complexation with circulating CEA, '*'I- NP-4, in the
form of intact IgG, was considered the candidate of choice
for imaging and therapy of CEA-expressing tumours.

Goldenberg and co-workers were also involved in the
study of other anti-CEA candidates for therapy, either in
animal or in human models [8, 59, 61-64]. The pharma-
cokinetics, toxicity, dosimetry as well as antitumour activ-
ity of P!I-labelled NP4 1gG1 (IMMU-4; Immunomedics.
Inc., Morris Plains, NJ) were investigated in a phase I/I1
clinical trial enrolling 57 patients with small-volume CEA-
expressing metastatic cancers (including 29 CRC). The clini-
cal response rates in these patients were comparable to the
response rates of conventional chemotherapeutic regimens,
but with fewer side effects, suggesting that in small-volume
disease RIT might be superior to conventional chemother-
apy [62]. Tumour dosimetry indicated that small tumours
received substantially higher radiation doses, supporting the
findings of earlier preclinical studies that tumour dose and
consequently the potential therapeutic success is inversely
related to tumour size.

The use of two fragments of 1231 labelled NP-4 (F(ab")2
and Fab') to image colorectal cancer was reported in a pro-
spective, randomized multicentre study enrolling 62 CRC
patients [64]. Clinical findings suggested that '**I-labelled
NP-4 Fab' combined with CT provided greater accuracy in
the detection and localization of recurrent or metastatic colo-
rectal cancer sites than CT alone (100% versus 78%). The
clinical feasibility of RIT with '*I-labelled NP-4 F(ab')2
was later demonstrated in 13 patients with small-volume
(3 cm in diameter) or minimal residual disease [63]. Favour-
able tumour targeting was observed and the therapy resulted
in disease stabilization in some of the patients. However,
the efficacy of the treatment was modest despite the small
volume of the tumours. In brief, it has been concluded that
RIT of patients with small-volume disease was possible
and, because of their generally poor prognosis, future dose-
intensification trials should be considered in these patients.

A second-generation panel of anti-CEA monoclonal anti-
bodies was generated and compared to the first-generation
panel of NP mAbs [65]. Four of them, identified as MN-2,
MN-6, MN-14 and MN-15, showed similar specificities.
MN-15, like its NP-1 equivalent, reacts with NCA, MA and
CEA. MN-2 has properties similar to NP-2, being reactive
with MA and CEA. In animal studies, both MN-2 and MN-6
showed similar imaging limitations in CEA-expressing
tumours as observed before for NP-2 and NP-3. Like NP-2,
both MN-2 and MN-3 targeted bone marrow, and MN-6
accumulates in normal colon as found for NP-3. The murine
mAb MN-14, with a tenfold higher affinity (9 x 10° M~!)
than NP-4, has demonstrated superior tumour-targeting
ability in a human colon carcinoma xenograft model com-
pared with NP-4 [65]. In a phase I clinical trial enrolling 22
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cancer patients, Sharkley et al. have demonstrated the safety
and excellent targeting sensitivity of '*'I-labelled MN-14
mADb for detecting CEA-rich tumours, even in patients with
extremely elevated serum CEA levels [66].

To circumvent immunogenicity issues associated with the
murine form of MN-14, a less immunogenic, humanized,
CDR-grafted, version has been developed (hMN-14) [67].
Human MN-14 (hMN, labetuzumab from Immunomed-
ics, Inc., Morris Plains, NJ) has shown high affinity, and
good tumour targeting in a human colon carcinoma xeno-
graft model, as well as clinically, in a pilot trial enrolling
19 patients with a prior history of CEA-expressing cancers.
Biodistribution, tumour targeting, and pharmacokinetic
behaviour of '*'I-hMN-14 IgG ("3'I-labetuzumab) were sim-
ilar to those of the murine form. Based on these preclinical
and clinical data, a phase I clinical therapy trial was initi-
ated to determine the pharmacokinetics, organ and tumour
dosimetry, and dose-limiting toxicity (DLT) of *'I-labetu-
zumab in patients with advanced metastatic gastrointestinal
and colorectal cancer. In general, 31 1abetuzumab showed
good tumour targeting and an acceptable toxicity profile,
although no objective responses were observed in this subset
of patients [68].

Hepatic resection still remains the gold standard treat-
ment for patients with colorectal liver metastasis (CLM).
Yet, approximately 70% of patients will eventually relapse,
probably because of occult micrometastases present at the
time of resection. Thus, adjuvant systemic therapeutic regi-
mens have been explored to improve the outcome of patients
who underwent complete resection of CLM. However, such
trials had failed to provide significant survival benefit [69,
70]. In up to 40% of these patients, the liver remains the only
site of metastasis [71]. Consequently, innovative therapeu-
tic strategies are still needed to improve patient outcomes
such as prolonging the time to progression and increasing
overall survival. In previous reports, Liersch and colleagues
have demonstrated that RIT with a single administration of
BIL_labetuzumab after complete resection of colorectal liver
metastases was well tolerated by CRC patients and signifi-
cantly improved survival compared with a control group
that did not receive RIT [72, 73]. This promising result of
single RIT after salvage resection of colorectal liver metas-
tases has encouraged the same researchers to investigate the
safety and long-term therapeutic effects of repeated RIT in
a phase II prospective clinical trial enrolling a larger group
of CRC patients [74]. The main conclusion drawn from this
study was that repeated RIT with '*'I-labetuzumab was fea-
sible, but was associated with higher than anticipated acute
haematotoxicity. Nevertheless, median time to progression
(16 months) and overall survival (55 months) observed were
encouraging enough to provide a proof of concept for the
effectiveness of this adjuvant treatment option in the case
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of occult, micrometastatic disease after salvage resection of
colorectal liver metastases.

Targeting TAG-72

Tumour-associated glycoprotein 72 (TAG-72) is a high
molecular weight glycoprotein (240—400 KDa) with mucin-
like characteristics isolated from the LS-174 T human colon
cancer xenograft [75]. Owing to its expression in most ade-
nocarcinomas, TAG-72 was considered a potential antigen
target for RIT in several carcinomas, including colorectal
cancer. TAG-72 is expressed in 80% of colorectal carcino-
mas, with relatively little expression in normal tissues [76].

The murine monoclonal antibody B72.3 (m-B72.3)
against TAG-72 was initially generated by immunization of
mice with a membrane-enriched fraction of a human breast
carcinoma [77]. The potential of 125/1311 labelled-m-B72.3
to selectively localize primary and metastatic lesions in
colorectal cancer patients has been demonstrated by several
research groups [6, 78, 79]. However, it has been observed
that one administration of a relatively low dose of m-B72.3
(1-5 mg range) led to a HAMA response in approximately
50% of patients [80]. In an effort to overcome this limi-
tation, chimeric mouse/human antibodies were generated
aiming to reduce the amount of foreign protein while pre-
serving antitumour specificity. The IgG4 chimeric version
of murine B72.3 (ch-B72.3) was accomplished by fusion of
cDNA sequences encoding the heavy and light chain vari-
able regions of B72.3 with genomic DNA encoding human
IgG4 and K constant regions [81, 82]. 311 labelled-ch-B72.3
was evaluated by Meredith et al. in a phase I clinical trial
involving 12 CRC patients [83]. Since ch-B72.3 had dem-
onstrated limited utility as a means of delivering multiple
therapeutic doses of '3!1 in the majority of patients enrolled
in this clinical study, the authors suggested that other alter-
native strategies, such as the use of anti-TAG-72 monoclonal
antibodies with higher affinity should be followed. Also, the
use of other chimeric isotypes, chimeric antibody fragments
or novel genetically engineered molecules could eventually
provide better radioimmunotherapeutic agents [84]. A rec/
ch-B72.3 with a human IgG1 constant region, designated
cB72.3(I1gG1), was labelled with '3'I and its in vitro/in vivo
biological behaviour was compared with both '*!1-B72.3 and
13 1I—ch—B72.3(IgG4) [85]. However, no clinical studies have
been reported.

A second generation of anti-TAG-72 monoclonal anti-
bodies, named as CC (for colon cancer), was proposed [86,
87]. Among them, the murine IgG CC49, with a sixfold
higher affinity for TAG-72 than B72.3, has been the most
explored. In a comparative clinical study, '*'I-CC49 was
superior to '*'I-B72.3 for localizing colorectal carcinoma
[88]. Ten patients with CRC metastasis received B72.3
and CC49 simultaneously prior to biopsy. Although both
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antibodies showed comparable uptake in tumour, tumour to
serum ratios were significantly higher for '*'I-CC49. Two
RIT trials with "*'1-CC49 to determine dose-limiting toxic-
ity and therapeutic efficacy were reported later in metastatic
colorectal cancer patients [89, 90]. In a phase II clinical trial,
15 refractory metastatic CRC patients were treated with
BIL.CC49 [89. Despite good visualization of metastasis, no
objective tumour responses were observed. In a subsequent
phase I trial enrolling 24 patients with advanced CRC, Divgi
et al. confirmed the excellent localization characteristics
and relative lack of toxicity of '*'1-CC49 [90]. Although
the treatment was well tolerated, no major responses were
observed.

Further studies were performed aiming to improve
tumour uptake using the biologic response modifier inter-
feron, which has been shown to upregulate TAG-72 and
CEA expression in tumour cells [91-93], or to reduce
bone marrow toxicity by using interleukin 1 (IL-1) or other
growth factors [69, 94].

Meredith et al. carried out a dual-antibody clinical trial
directed to TAG-72 and carcinoembryonic antigen (CEA) in
an attempt to enhance antibody localization and efficacy as
compared to prior trials with BI1.CC49 alone [89, 90, 95] or
combined with interleukin 1 [96]. *'I-CC49 (anti-TAG-72)
and *'I-COL-1 (anti-CEA) were simultaneously given to
14 patients with metastatic CRC. Interferon (a-IFN) was
also administered subcutaneously to enhance the expres-
sion of both antigens in the tumour. No relevant responses
were achieved, with four patients remaining stable while ten
progressed. The combination of these two complementary
antibodies with a-IFN seemed to increase radiation doses
at tumour sites as compared to historical controls. Yet, the
amount of radiation delivered to the tumour was below the
required to cause tumour regression in metastatic CRC [97].

In an attempt to overcome the shortcomings of murine
and intact IgG and to profit from the excellent specific
reactivity of CC49, Slavin-Chiorini bioengineered a CDR-
grafted humanized monoclonal antibody with a C;2 domain
deletion (ACH?2) [98]. Deletion of the Cy;2 domain of IgG
had already been reported to result in faster tumour uptake
and more rapid blood clearance [99-101]. The recombinant
IgG molecule HuCC49ACH2 combined, for the first time, a
fast blood clearance with the reduced potential for eliciting
a HAMA response. As anticipated, radioiodinated (}2¥13')
HuCC49ACH2 constructs demonstrated faster blood clear-
ance in both athymic and SCID mice bearing human colon
carcinoma xenografts and effective localization to tumour
xenographs while showing minimal deposition in healthy
tissues [98, 101, 102]. Despite favourable pharmacokinet-
ics and relevant tumour accumulation of radioiodinated
HuCC49ACH?2, together with the reduced ability to elicit
HAMA responses, no clinical studies have been reported
to date.

Targeting A33

The human A33 antigen is a transmembrane glycoprotein
member of the immunoglobulin superfamily that is over-
expressed in normal human colonic and small bowel epi-
thelium and in>95% of human colon cancers [103, 104].
It is absent in most other human tissues and tumour types
and is not secreted or shed into the blood stream. In several
preclinical and clinical studies, this antigen has been targeted
using the radioiodinated murine IgG2a mAb A33 [16, 105,
106]. The latter accumulated selectively in tumour metas-
tases of advanced colorectal cancer patients [105]. Welt
et al. conducted two phase I/II clinical trials to determine
the therapeutic efficacy, the toxicity and the maximum tol-
erated dose of '*'*'I-mAb A33 [16, 106]. In the first trial,
23 patients with advanced colorectal cancer were treated
with escalating doses of '*!'I-mAb A33. No major responses
were observed, but three patients had evidence of mixed
responses to therapy and the serum CEA levels decreased
in two patients. In the second clinical study, 21 patients
with advanced chemotherapy-resistant colon cancer were
treated with '>’I-mAb A33. The modest antitumour activity
observed was still encouraging because of the lack of toxic-
ity in the bowel and bone marrow at the doses studied (up
to 350 mCi/m?).

The excellent characteristics of anti-A33, such as long
retention time in tumour, high tumour uptake, and minimal
gut toxicity, observed in these trials, led to the generation
of a humanized version, huA33, to allow repeated dosing
without HAMA response [107]. The safety and efficacy of
huA33, alone and combined with chemotherapy, was dem-
onstrated in patients with colorectal carcinoma [108, 109].
Subsequent phase I clinical trials, conducted in patients
with metastatic colorectal carcinoma, have shown the abil-
ity of radiolabelled huA33 to selectively and rapidly target
primary and metastatic colorectal tumours and to penetrate
into large necrotic metastatic lesions [110, 111]. Although
radioimmunotherapy using *'I-huA33 held some promise
in targeting colorectal tumours, its clinical application has
not been explored further.

Targeting EpCAM

The epithelial cell adhesion molecule (EpCAM) was ini-
tially described as a colorectal carcinoma-specific anti-
gen [112, 113]. This glycosylated transmembrane protein
(40-kDa) gained interest as a potential therapeutic target
for antibody-based approaches due to its wide-spectrum
expression in many epithelial malignancies, including colo-
rectal carcinomas. The different designations proposed for
EpCAM, including KSA, KS1/4 or 17-1 antigen, are asso-
ciated with the monoclonal antibodies specific for the cell
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surface antigen or cDNA clones used to characterize the
antigen [114, 115]. Unlike CEA, EpCAM is not generally
shed into circulation, which made this antigen a promising
target for RIT. EpCAM-binding antibodies are rapidly inter-
nalized into the cell, displaying excellent tumour uptake and
retention. A phase I clinical trial enrolling 53 patients (25
with CRC) that were treated with '*I-CO 17-1A, a radioio-
dinated murine anti-EpCAM antibody, was reported [15].
The results of this study underlined the potential clinical
utility of therapy with monoclonal antibodies to treat certain
patients with gastrointestinal malignancy, even at late stages
of disease.

A chimeric version of 17-1A (c-17-1A) has been gen-
erated by joining the variable region of the murine 17-1A
with human IgG1 heavy chain and kappa light chain
sequences [116]. It has been shown that both 125c-17-1A
and '»I-murine 17-1A exhibited identical biological behav-
iour concerning internalization, cytotoxicity and growth
inhibition of human colon cancer xenografts in nude mice.
Moreover, both forms were equally effective in producing
antibody-dependent cell-mediated cytotoxicity [117]. A
pilot clinical trial with '%I-c17-1A, enrolling patients with
metastatic colorectal cancer, has subsequently demonstrated
that high-dose outpatient radioimmunotherapy with an
125]-]abelled internalizing antibody can be achieved without
significant patient toxicity or radiation hazard [14].

Breast cancer

Breast cancer (BC), the most common cancer among
women worldwide, is still characterized by high mor-
bidity and mortality. According to GLOBOCAN 2020,
female BC has surpassed lung cancer as the leading cause
of global cancer incidence, with an estimated 2.3 million
new cases, representing 11.7% of all cancer cases. It is the
fifth leading cause of cancer mortality worldwide, with
685,000 deaths [50]. Among women, BC accounts for one
in four cancer cases and for one in six cancer deaths, rank-
ing first for incidence and mortality in the vast majority of
countries [50]. BC is a heterogeneous disease character-
ized by a variety of clinical and histological forms, ranging
from discrete metastatic lesions to diffuse and multiple
organ involvement, with variable outcomes. Thus, one of
the major challenges has been to identify predictive and
prognostic biomarkers that can help to select the patients
who can benefit most from more aggressive and potentially
curative options. Nowadays, breast cancer patients have
many more therapeutic choices to treat the disease; how-
ever, when failure to conventional therapies occurs, newer
treatment options such as RIT could offer some benefit.
Several active targets useful for RIT have been identi-
fied in BC, including TAG-72, MUC-1, L6, and CEA, and
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antibodies targeting these antigens have also been evalu-
ated in BC over the years. The anti-TAG-72 monoclonal
antibody CC49, labelled with either !”’Lu or '*'I, has been
evaluated in breast cancer patients [118—120]. Tumour
localization was excellent, and in the patients receiving
B11.CC49, a-IFN was also administered to upregulate the
expression of the TAG-72 antigen. As expected, a-IFN was
capable of enhancing TAG-72 antigen expression and, to
a lesser degree, tumour uptake of '3'I-labelled CC49 in
breast cancer patients. However, this was not sufficient to
significantly increase the accumulation of radioactivity in
tumours [119].

Tumour-associated antigen L6, a 24-kDa cell surface
glycoprotein overexpressed in several oncologic malignan-
cies, including breast carcinoma [121], has also attracted
some interest as a therapeutic target for murine humanized
antibodies [122-125]. In a phase I dose escalation trial, a
radioiodinated human chimeric antibody, 1311_chL6, was
administered in multiple cycles to ten women with meta-
static breast cancer who had failed standard therapy. All the
patients received an imaging dose of '*'I-chL6, followed
by a therapeutic dose of *'I-chL6 (20-70 mCi/m?). Clini-
cally measurable tumour responses (5 lasting 1.5-5 months)
were reported, suggesting that the responses could be related
to the combined effects of targeted radiation and the bio-
logical activity of the antibody [124]. Although some effort
was made to generate antibodies with high affinity to tar-
get breast cancer antigens, '>'I-labelled antibodies have not
played a particularly important role in radioimmunotherapy
of breast cancer.

The role of HER2-directed antibodies, affibodies and
nanobodies. as vehicles for imaging and therapy approaches
in breast cancer, has been reviewed in detail recently [126].
Anti-HER2-VHH1 was explored as a lead compound to
target HER2-receptor, which is also overexpressed in some
breast carcinomas. A %®Ga-labelled anti-HER2-VHH1 nan-
obody (*®Ga-NOTA-HER?) is under clinical development
for PET imaging of HER2 receptor expression in cancer.
A phase I trial enrolling 20 breast cancer patients has been
successfully conducted and multiple phase II trials are still
ongoing [127, 128]. Recent preclinical studies have dem-
onstrated the excellent tumour-targeting characteristics and
most adequate in vivo biodistribution of '3!I-labelled anti-
HER2-VHH]1 ("*'I-GMIB-anti-HER2-VHH1). The favour-
able biological profile, combined with the theranostic fea-
tures of '*'T had triggered interest in the use of this antibody
as a potential theranostic tool in cancer treatment [129]. The
encouraging results of this study have prompted a multi-
center dose escalation and therapeutic clinical investigation
(NCT02683083) of '*'I-GMIB-anti-HER2-VHH1 in patients
with HER2-positive breast cancer.

Trastuzumab, used either alone or in combination with
chemotherapy, is considered as a standard treatment option
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as it significantly improves the survival time in patients with
HER2+ metastatic breast cancer compared with treatment
with chemotherapy alone [130]. Recent preclinical studies in
both BT-474 and MDA-MB-453 cells and in tumour-bearing
animals have demonstrated the potential of '3'I-trastuzumab
for breast cancer treatment [131].

Prostate cancer

Prostate cancer is the third most frequent malignancy
(after breast and lung cancer) and the fifth leading cause
of cancer death in men worldwide, accounting for almost
1.4 million new cases, and 375,000 deaths in 2020 [18,
50]. Targeted therapies based on radiolabelled specific
antibodies may play an important role towards improving
the clinical efficacy and overall survival of prostate cancer
patients.

The first successful radiolabelled antibody was reported
approximately 40 years ago by Goldenberg and co-workers
who showed that *'I-labelled rabbit antibody IgG against
prostatic acid phosphatase could locate primary and meta-
static tumours of prostatic origin [132]. Later, in 1994,
results from a phase II clinical trial of 13'1-CC49, target-
ing TAG-72 in 15 patients with hormonally unresponsive
metastatic prostate cancer, were reported by Meredith et al.
[95]. No acute adverse reactions occurred, but all patients
had evidence of an immune response to CC49 by 4 weeks.
Although six of ten symptomatic patients had bone pain
relief, neither of them met the radiographic or PSA crite-
ria for objective response. The results of a following phase
II trial using '*'1-CC49 with adjuvant a-IFN, conducted in
15 hormone-resistant metastatic prostate cancer patients,
showed a tendency for enhanced tumour uptake and anti-
tumour effects as compared to the prior phase II trial of
131-CC49 alone [133].

One of the most important membrane antigens antici-
pated for targeted therapy is prostate-specific membrane
antigen (PSMA), also known as N-acetyl-alpha-linked acidic
dipeptidase I (NAALA-Dase), glutamate carboxy-peptidase
IT (EC 3.4.17.21) or folate hydrolase. PSMA, a type Il mem-
brane glycoprotein of about 100 kDa, is highly expressed
in prostate cells. The expression of PSMA is upregulated
in malignant disease, with the highest level detected in
metastatic androgen-independent prostate cancer. PSMA, a
cell surface protein, is not released into circulation, being
internalized after antibody binding by receptor-mediated
endocytosis. These features make PSMA an excellent tar-
get for prostate cancer and have encouraged the develop-
ment of a set of potential PSMA ligands for SPECT/PET
imaging and therapy [134, 135]. Radiolabelled monoclonal
antibody therapy that targets PSMA showed some promise

and has been an area of active investigation. J591, a IgG
monoclonal antibody, has demonstrated to be the most suc-
cessful for targeting the extracellular domain of PSMA. This
antibody has been thoroughly tested in preclinical studies
and has also been humanized for clinical studies. Preclini-
cal studies evaluating B 177 0-, and 2°Y-1abelled J591 in
LNCaP cells, subcutaneously implanted in mice, showed
dose-dependent responses with all radionuclides. However,
%0Y- and '""Lu-labelled J591 could be given as fraction-
ated doses and showed a favourable dosimetry over '3!I-
J591 due to the shorter intracellular half-life of *'T [136].
More recently, PSMA-targeted radionuclide therapy with a
small urea-based molecule and lutetium-177 has emerged
as a promising new approach for treating metastatic castra-
tion-resistant prostate cancer (mCRPC) [137]. The phase
IIT VISION clinical trial NCT03511664 demonstrated that
""Lu-PSMA-617 significantly improved overall survival
and radiographic progression-free survival for men with
progressive PSMA-positive mCRPC [138]. Based on this
unprecedented accomplishment, the US Food and Drug
Administration has granted Breakthrough Therapy desig-
nation (BTD) to !”"Lu-PSMA-617 [139].

Pancreatic cancer

Pancreatic ductal adenocarcinoma, or pancreatic cancer,
is one of the most severe cancers and is predicted to rise
up to the number two cancer killer by 2030. Based on
GLOBOCAN 2020 estimates, pancreatic cancer accounts
for almost as many deaths (466,000) as cases (496,000)
because of its poor prognosis, and is the seventh lead-
ing cause of cancer death worldwide [50]. Particularly for
unresectable cases, the median survival is shorter than
1 year, with few long-term survivors [140]. Pancreatic
cancer is still one of the cancers with the poorest outcome
due mainly to the ineffective treatment options available
as well as to its silent course and late clinical symptoms.

MUC-1 is an attractive target for RIT since the vast
majority of pancreatic cancers cases are mucin-expressing
adenocarcinomas [141, 142]. Early preclinical studies have
demonstrated the ability of murine monoclonal antibody
PAM4 directed against MUC-1 to target CaPanl human
pancreatic carcinoma in athymic nude mice [143]. A pilot
investigation performed in two patients with pancreatic
cancer indicated the favourable tumour-targeting potential
in vivo of 3I-PAMA4, with the overall results of the study
encouraging further clinical studies [144]. Although some
RIT studies using '*'I-PAM4 have demonstrated signifi-
cant antitumour effects in mice bearing human pancreatic
cancer xenografts [143, 145], a study reported by Cardillo
et al. has demonstrated the advantage of *°Y over *'I as
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the radionuclide of choice for PAM4-targeted radioimmu-
notherapy of xenografted pancreatic cancer [146].

Hepatocellular carcinoma

Primary liver cancer, which includes hepatocellular carci-
noma (HCC—comprising 75%—-85% of cases) and intrahe-
patic cholangiocarcinoma (10%-15%), as well as other rare
types, is the sixth most commonly diagnosed cancer and the
third leading cause of cancer death worldwide in 2020, with
approximately 906,000 new cases and 830,000 deaths [50,
147]. Chronic liver disease and cirrhosis remain the most
important risk factors for the development of HCC, of which
viral hepatitis and excessive alcohol intake are the leading
risk factors worldwide [148]. Only 15% of HCC patients are
eligible for surgical management involving hepatic resection
or transplantation. Five-year survival rates of >70% can be
achieved in these patients, but recurrences are inevitable.
The vast majority of HCC patients are not candidates for
surgical intervention and the long-term survival for these
patients is poor, with a median survival shorter than 1 year
[149]. In the majority of cases, treatment of HCC is largely
palliative. Cytoreduction and sequential tumour excision
give a new hope for non-operable HCC patients. RIT using
radiolabelled antibodies could be an encouraging approach
for tumour cytoreduction.

The first RIT clinical trials with '*!I-anti-alpha-feto-
protein (AFP) and '*!'I-anti-ferritin in unresectable HCC
patients have yielded mixed results [150-152]. However,
these studies suggested that, in some cases, RIT could suc-
cessfully convert unresectable tumours to resectable status.
B311_Hepama-1 mAb (DGDK-1) was the first RIT agent
developed for targeting a membrane antigen of liver car-
cinoma cells. In a phase I clinical study the treatment of
32 unresectable HCC patients with a peripheral intravenous
infusion of '3'I-Hepama-1 mAb has demonstrated to be safe
and well tolerated and the 1-year overall survival rate was
reported to be 31% (60% for patients without metastases)
[153].

The expression of CD147/HAb18G in hepatocellular
carcinoma represents a significantly unfavourable prog-
nostic factor. This HCC-associated antigen, expressed in
approximately 60% of HCC patients, is associated with
increased metastatic potential and worse disease outcomes
compared with those who are CD147 negative [154].
Blocking CD147 with CD147 mAb or B _metuximab,
the bivalent F(ab’)2 fragment of a murine monoclonal
antibody specifically raised against CD147, has been
reported to inhibit HCC growth and metastasis in vivo
[155]. Treatment with '*'I-metuximab (Licartin) pro-
vided survival benefits in patients with unresectable HCC
in several non-randomised studies [155—158]. The clinical
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efficacy of adjuvant '*'I-metuximab treatment in prevent-
ing tumour recurrence and prolonging survival have also
been shown in advanced HCC patients undergoing liver
transplantation, and in those who have undergone ablative
treatment for early HCC [159, 160]. Results from a recent
randomized controlled trial, reporting on the use of radio-
immunotherapy as an adjuvant strategy after hepatectomy
for HCC, support the clinical efficacy of *'I-metuximab
as an adjuvant treatment after surgical resection of HCC
[161].

Vascular endothelial growth factor receptor 2
(VEGFR2) is traditionally regarded as an important thera-
peutic target in a wide variety of malignancies, including
HCC. High VEGFR?2 expression in liver cancer, as com-
pared to normal liver tissues, has been associated with the
poor outcome of these patients [162]. The murine—human
chimeric Fab antibody, FA8HI, a potential therapeutic
agent against solid tumours overexpressing VEGFR2,
was labelled with '*'T (13'[-FA8H1) and its therapeutic
efficacy was investigated in two HCC xenograft models.
The reduction in tumour weight and volume observed after
BI1_.FA8H1 administration has confirmed its therapeutic
effect, suggesting a potential application for targeted ther-
apy of VEGFR2 overexpressing HCC [164].

Brain tumours

With an incidence of 308,102 new cases in 2020, primary
brain tumours account for 1.6% of all cancer cases. [50].
These malignant tumours still remain the most lethal of
all cancer types with an estimated annual mortality rate of
251,329 worldwide according to GLOBOCAN2020 [50].
Gliomas, cancer cells that originate from glial precursors,
represent about 75% of all malignant primary brain tumours
in adults and are characterized by a poor outcome. In chil-
dren, primary brain tumours are the most common of the
solid tumours and the second most frequent cause of cancer
death after leukaemia. The most common benign intracranial
tumour is meningioma comprising 10-15% of all brain neo-
plasms. Gliomas are the most prevalent type of adult brain
tumour (approximately 30% of all brain tumours) [165].
Glioblastoma multiforme (GBM) is a fast-growing glioma
that develops from star-shaped glial cells (astrocytes and
oligodendrocytes). GBM, often referred to as a grade IV
astrocytoma (or grade IV glioma), is the deadliest primary
brain tumour. These gliomas are very aggressive and spread
very rapidly and their outcome is still very disappointing,
as they usually do not respond effectively to conventional
therapies such as surgery, radiotherapy or chemotherapy.
All treatments tried so far are merely palliative and associ-
ated with severe side effects. GBM patients usually present
a median overall survival of less than 1 year [166].
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The global incidence of brain metastases in patients with
systemic cancer is about ten times higher than that of pri-
mary brain tumours, and approximately 10-30% of patients
with metastatic cancer will develop brain metastases [167].
Metastasis to the central nervous system is an indicator of
poor prognosis and is almost always lethal [168—170]. While
lung cancer accounts for the majority of metastatic brain
disease, melanoma has the highest propensity to dissemi-
nate to the brain and nearly 50% of patients with advanced
melanoma will eventually develop brain metastases [170].

Several antigens, such as epidermal growth factor recep-
tor (EGFR) or tenascin, have been reported in the literature
as potential therapeutic targets for brain disorders and some
preclinical and clinical trials were carried out with promis-
ing results. A brief overview of the more relevant studies
using radioiodinated antibodies is given below (Table 6).

EGFR targeting

The epidermal growth factor receptor is a transmembrane
glycoprotein whose expression has been identified in
19-85% of primary malignant gliomas, mainly in GBM, but
is very low in normal brain [171]. Earlier studies showed
that all gliomas with the amplified EGFR gene overex-
pressed EGFR protein. Overexpression without gene ampli-
fication was observed in some of the low-grade gliomas and
few GBM.

The monoclonal antibody anti-EGFR-425 is an IgG2a
that binds to human EGFR [172]. Early evidence of the effi-
cacy of anti-EGFR-425 was demonstrated in a pilot study
reported by Brady et al. in 1990 [173]. Fifteen patients with
recurrent malignant glioma were treated with >I-labelled
anti-EGFR-425. In this study there was one surgically docu-
mented complete response, two partial responders and five
patients with stable disease. A phase II trial with the same
radioiodinated antibody enrolling 25 patients with malignant
astrocytoma (10 astrocytoma with anaplastic foci and 15
GBM) was later reported by the same researchers [174]. The
patients received multiple infusions and cumulative doses
following surgical resection and adjuvant external beam
radiotherapy. A significant and promising increase in median
survival was reported for both groups, with more than 60%
of patients still alive 1 year after treatment. In a following
phase II clinical study, 180 patients, of which 118 had a
glioblastoma diagnosis, received intravenous or intra-arterial
RIT as an adjuvant therapy after surgery or radiotherapy,
with and without chemotherapy. The overall median survival
for the glioblastoma group was reported to be 13.4 months,
with a subgroup of patients less than 40 years old showing
a median survival of 25.4 months [175].

Some years later, Li and colleagues published the results
of a phase II clinical trial to assess the efficacy of adjuvant
RIT with *I-labelled anti-EGFR-425 in 192 patients with

newly diagnosed GBM [176]. Among these 192 patients,
132 were treated with '*I-labelled anti-EGFR-425 alone,
and 60 were treated with '*I-labelled anti-EGFR-425 plus
temozolomide. An additional 81 GBM patients served as a
historical control group. Both therapeutic options demon-
strated to be safe and well tolerated with little added toxicity.
Median survival following RIT alone was reported to be
14.5 months, while acombination of RIT and temozolomide
provided the greatest survival benefit with a median survival
of 20.4 months.

Approximately, one-half of patients with EGFR amplifi-
cation also present a specific mutation, known as EGFRVIII,
which results in the deletion of an extracellular domain seg-
ment of the EGFR, including the ligand-binding region
[177]. Further studies to develop improved RIT agents
have been carried out with EGFRvIII-targeting monoclo-
nal antibodies, such as mAb806 and L8A4 [178-181]. The
monoclonal antibody L8A4 labelled with N-succinimidyl
4—guanidinomethyl—3—[lzsl]iodobenzoate (['*1]1SGMIB-
L8A4) was compared to various !’’Lu-labelled conjugates
of L8A4 in an animal study [180, 181]. However, better
results were obtained with the radiometallated antibodies
['""Lu]-1B4M-DTPA-L8A4 and ['""Lu]-MeO-DOTA-L8A4,
suggesting no clear advantage of ['2I]SGMIB-L8A4 for
clinical RIT of malignant brain tumours.

Tenascin targeting

Tenascin, which has probably been the most investigated
target for brain tumours, is an extracellular matrix hexabra-
chion glycoprotein expressed ubiquitously in the extracellu-
lar matrix of gliomas [182, 183]. Tenascin is also expressed
in breast, lung, and squamous cell carcinomas, but not in
normal adult or foetal brain [184]. The primary structure of
human tenascin has been established in 1991 by sequenc-
ing cDNA clones which cover its complete coding region
[185]. Tenascin is mainly made up of three groups of
sequences with a high homology to epidermal growth fac-
tor (EGF), fibronectin (FN) type Ill repeat and fibrinogen.
The deduced amino acid sequence shows that human tenas-
cin is mainly made up of 14 and half EGF-like repeats and
15 FN-like repeats, fibrinogen-like sequences and potential
N-glycosylation sites. Several murine antibodies have been
developed against tenascin C, including BC-2, BC-4, 8§1C6,
ST2146, ST2485, F16, and P12. All these antibodies have
been labelled with '*'I. A chimeric antibody against tenascin
C, ch81C6, has been reported as well [186].

BC-2 and BC-4 are IgG monoclonal antibodies that react
with two distinct epitopes on the tenascin molecule [185].
BC-4 recognizes an epitope within the EGF-like sequence,
while BC-2 recognizes an epitope within the FN-like type Ill
repeats. '*'I-BC-2 was used to treat ten patients with bulky
brain glioblastoma, recurring after surgery, radiotherapy or

@ Springer



Clinical and Translational Imaging

chemotherapy. Although RIT failed to show any encourag-
ing results in four patients, a favourable outcome, classified
as partial (2) or complete remission (1), was observed in
three of the ten patients (30%). At the same time, stabiliza-
tion of the disease was observed in three other patients for
a median of 8 months, thus improving survival and quality
of life [187]. This therapeutic approach was later confirmed
using the other anti-tenascin monoclonal antibody. Both
antibodies, labelled with *'1, were given intratumourally
to 30 patients with recurrent glioblastomas with compa-
rable results and no evidence of systemic adverse effects
were observed [188]. Fifty patients with recurrent (26) or
newly diagnosed (24) malignant glioma were later treated
locally with '3'I-BC-2 and '*'I-BC-4 [189]. The overall
response rate was 40% (34.6% recurrent and 45.8% newly
diagnosed), which represents an encouraging result in such
highly aggressive and untreatable tumours. No systemic
or cerebral adverse effects were detected. Progression of
tumour was only reported in 19 cases (13 recurrent and 6
newly diagnosed). A major phase I/II clinical trial enrolled
111 malignant glioma patients, including 91 with glio-
blastoma, that were treated with '*'I-BC-2 and *'I-BC-4
injected directly into the tumour site. Overall, 58 were newly
diagnosed and 53 were recurrent tumours. 20 patients (17
with GBM) were recruited in a phase I study and 91 (74
with GBM) in a phase II trial [190]. The results for phase I
patients revealed a maximal tolerated dose of 2,590 MBq.
Among the 70 GBM patients evaluated in phase II, 33 have
experienced favourable outcomes (1CR +9PR +23NED)
and most of them were free of disease for at least 20 months.

81C6 is a murine immunoglobulin G, that binds an
epitope within the alternatively spliced fibronectin type
III region of tenascin [184, 191]. Cell studies and a pre-
clinical study in xenograft model systems have confirmed
the specificity and efficacy of *'I-labelled m81C6 therapy
[192-194]. In clinical studies, Zalutsky’s research group
first confirmed the specificity and selectivity of '*'I-labelled
m81C6 in patients with malignant glioma (MG) [182, 195,
196]. A series of phase I clinical trials was performed by
Zalutsky and colleagues to establish the maximum toler-
ated dose (MTD) of "*'I-labelled murine 81C6 (m81C6)
mADb injected directly into surgery created resection cavities
(SCRC) in malignant glioma patients. Dose-limiting tox-
icity was neurologic and defined the MTD to be 3.7 GBq
for recurrent patients and 4.44 GBq for newly diagnosed
patients [197, 198]. Patients with recurrent and newly diag-
nosed glioblastoma multiforme (GBM) treated on these
phase I studies had achieved median survivals of 56 and
69 weeks, respectively [198, 199]. A subsequent phase II
study demonstrated a median survival of 79 weeks among
newly diagnosed GBM patients treated with 4.44 GBq
(120 mCi) of "*'I-m81C6 [200]. The difficulties found in
producing murine 8§1C6 in sufficient quantity to support a
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multi-institutional randomized trial led the same researchers
to develop a human/mouse chimeric 81C6 mAb (ch81C6)
that could allow bulk production [186]. The specificity and
binding affinity of both ch81C6 and m81C6 were virtu-
ally identical, but the chimeric isoform unexpectedly also
demonstrated increased tumour uptake in human glioma
xenografts and enhanced in vivo stability when compared
to m81C6 [201]. A phase I therapeutic trial to determine the
MTD, dosimetry and evidence of clinical benefit was per-
formed in either newly diagnosed or untreated (19), newly
diagnosed following radiotherapy (16) or recurrent patients
(12) [186]. Median survival was 89 and 65 weeks for newly
diagnosed and recurrent patients, respectively. Although
median survival was encouraging, '*'1-ch81C6 was asso-
ciated with greater haematologic toxicity, probably due to
the enhanced stability of the IgG2 construct, as compared
with '*'T-murine 81C6 and its clinical development has been
discontinued.

Other human recombinant antibodies (F16 and P12)
specific to the alternatively spliced domains Al and D of
the large isoform of tenascin-C were generated by antibody
phage technology [202]. The tumour-targeting properties of
F16 and P12 labelled with 25T were assessed by biodistri-
bution studies in tumour xenografts using the antibodies in
small immunoprotein (SIP) format. 1251 1abelled SIP(F16)
selectively accumulated in tumour in a U87 glioblastoma
model and was rapidly cleared from other organs. Tumour
accumulation of '*I-labelled SIP(P12) was lower and per-
sistent levels of radioactivity were observed in the intestine.
As far as we are aware no clinical trials have been reported
to date with any of these antibodies.

Other molecular targets in brain tumours

Other promising molecular targets aimed to treat brain
tumours have also been identified, including human neu-
ral cell adhesion molecule (NCAM), the extra domain B of
fibronectin (EDB) or disialoganglioside GD2. These targets
have not been so extensively explored, but some clinical
trials using '*'I-labelled mAbs have been reported in the
literature and are briefly summarized below.

The neural cell adhesion molecule is an immunoglobulin-
like neuronal surface glycoprotein that binds to a variety of
other cell adhesion proteins to mediate adhesion, guidance,
and differentiation during neuronal growth [203]. Due to its
ubiquitous localization in several cancers, including brain
cancers, NCAM-based target therapy has attracted consider-
able interest. Several radiolabelled monoclonal antibodies
have been developed against NCAM, namely '*'I-ERIC-1
and "'1-UJ13A, and evaluated in preclinical and clinical
trials [204-206].

Tumour angiogenesis has been established as a cancer
hallmark, and thus, considerable efforts have been made
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Table 6 (continued)

&

Ref.

Remarks/outcomes

Dose/frequency

Route

Phase

Antigen/antibody

GD2

Springer

[224]

No survival benefit compared to

222-1036 /kg

[AY

Children with metastatic neuroblast

Bl m3F8

unlabelled3F8
Responses were similar to those with

*

I

BI1_3F8 + bevacizumab

1311_3F8 alone

patient with relapsed/
refractory neuroblast

[225]

Improvement in overall

survival

Patients with relapsed central nervous

BI1.m3F8 (cRIT)

system neuroblast

[226]

cRIT with 3'1-m3F8 is safe, main-

BI1,n3F8 (cRIT)

tains remission in high-risk/recur-
rent medulloblastomas when added

to salvage therapy

10 years follow-up

AAF astrocytoma with anaplastic foci, cRIT compartmental radioimmunotherapy, CTL control group, GBM glioblastoma multiforme, i.v. intravenous, i.a. intra-arterial, i.z. intratumoural, mos

months, MS median survival, TMZ temozolomide, NED no evidence of the disease, SCRC surgically created resection cavities, *NCT00450827

recently to image and to disrupt tumour blood vessels.[207,
208]. One striking target for both approaches is the splice
variant of fibronectin containing extra domain B (EDB).
The latter is abundantly expressed around the vasculature
of a variety of human cancers (both primary tumours and
metastases), but is absent in the majority of normal tissues
[209-211]. A human recombinant scFv fragment, designated
L19, targeting an epitope of EDB of fibronectin was devel-
oped [212]. Several other L19 formats were constructed,
including dimeric scFv [(scFv)2], a human bivalent “small
immunoprotein” (SIP, ~80 kDa), and a full human IgGl
[213]. Radiolabelled L.19 constructs have been evaluated in
tumour-bearing nude mice to select a conjugate for clinical
RIT, and the most favourable therapeutic index was found
for *'I-L19-SIP [213-216]. RIT with '*'I-L19-SIP at max-
imum tolerated dose improved survival in several animal
models [214-216]. Preliminary results of a study with the
human antibody IBI11,19SIP (radretumab) in combination
with whole brain radiation treatment (WBRT) were reported
by Virotta et al.[217]. 4 patients with brain metastatic lesions
were treated with radretumab and underwent PET/CT scans
with '8F-FDG and '**I-L19SIP for diagnostic and dosimetric
purposes. The significant reduction of glucose metabolism
observed in the lesions has suggested the potential clinical
efficacy of radretumab. However, no further studies were
reported to confirm these preliminary results, particularly
in patients with lower stage of disease.
Anti-disialoganglioside (GD2) antibodies have been
widely evaluated in preclinical and clinical studies in the
past two decades and GD2-targeted immunotherapy and
radioimmunotherapy have already been extensively reviewed
elsewhere [218]. Gangliosides are lipid-sugar compounds
thought to influence a variety of cellular functions includ-
ing those affecting tumourigenesis. A murine monoclonal
IgG3 antibody (3F8) that recognizes disialoganglioside
GD2, which is homogeneously distributed on the cell mem-
brane of solid tumours of neuroectodermal origin, including
medulloblastoma [218-220], retains its immunoreactivity
when labelled with '**I or '*'1 [221, 222]. Intravenous anti-
GD2 therapy is standard of care for patients with metastatic
neuroblastoma [223, 224]. Intravenous anti-GD2 *'I-3F8
has been tested in children with metastatic neuroblastoma
at high doses (6-28 mCi/kg), but did not add any survival
benefit compared to unlabelled 3F8 [224]. In a subsequent
phase I trial of *'I-3F8 in combination with bevacizumab
(NCTO00450827) in patients with relapsed/refractory neu-
roblastoma, the responses were similar to those with 131
3F8 alone. Improvement in overall survival has been noted
with the incorporation of intraventricular '*'I-labelled 3F8
compartmental radioimmunotherapy (cRIT) in patients with
relapsed central nervous system neuroblastoma [225]. On
a phase II clinical trial carried out at Memorial Sloan Ket-
tering Cancer Center (MSKCC), between 2006 and 2016,
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cRIT with *'I-labelled 3F8 has demonstrated to be safe and
has suggested some clinical utility in maintaining remission
in high-risk or recurrent medulloblastomas when added to
salvage therapy [226]. The clinical feasibility of cRIT with
311 labelled 3F8 was also demonstrated in another phase I
study enrolling patients with GD2-expressing leptomenin-
geal neoplasms [227].

In an attempt to improve tumour specificity, targeted anti-
neoplastic agents, such as tumour necrosis therapy (TNT)
agents, have emerged as an alternative treatment to solid
tumours. [228-230]. "*'I-chTNT-1/B mAb (Cotara®, Per-
egrine Pharmaceuticals Inc., CA, USA) is a TNT agent that
provides targeted radioimmunotherapy for the treatment of
cancers such as high-grade glial neoplasms [231]. Clinical
experience with Cotara as a treatment agent for malignant
gliomas has been reviewed in detail elsewhere.[232]. Cotara
is a genetically engineered chimeric murine mAb with varia-
ble regions specific for an universal intracellular antigen (i.e.
histone H1 complexed to deoxyribonucleic acid) exposed
in the necrotic core of malignant solid tumours [231, 233,
234]. Although several variants of radiolabelled TNT-1/B
mAb were investigated in a number of malignancies, such
as cervical [230] colon [235] and lung [236, 237] cancers as
well as hepatic metastases [238]. The largest clinical expe-
rience with Cotara has been in the treatment of malignant
gliomas [233, 234, 239]. Patel et al. reported the findings of
a phase I dose-defining clinical study [233]. In this study 12
patients with recurrent glioblastoma received Cotara infu-
sions by convection-enhanced delivery (CED). Data from
this trial indicated that 1.0 and 1.5 mCi/cm? clinical target
volume (CTV) could be administered to patients safely and
produced a tolerable radiation effect. CTV was defined for
these studies as the baseline gadolinium-enhanced tumour
volume, including non-enhancing areas of central necrosis.
These activities were then administered alone and in com-
bination to treat an expanded patient population in a phase
II study. A total of 39 patients were treated, 16 of whom
received two infusions at least 8 weeks apart, with each infu-
sion at the above determined dosage. A phase II trial with
Cotara for dose confirmation in patients with GBM at first
relapse (NCT00677716) has been completed in November
2011 [240]. In this open-label, dose confirmation study, 41
patients received CED infusions of Cotara. Interim results
were presented at the Annual Meeting of the American Soci-
ety of Clinical Oncology (ASCO). [239]. Survival analysis
showed a promising 41-week median survival, with two
patients still alive at least 3 years after the treatment. How-
ever, this result has not been confirmed in a phase III trial
and as far as we are aware no further clinical developments
using Cotara for GBM treatment have been reported since
2011.

Radioimmunotherapy of B-cell non-Hodgkin
lymphoma (NHL)

Both Hodgkin's disease (sometimes referred to as Hodg-
kin’s lymphoma) and non-Hodgkin’s lymphoma (NHL) are
cancers that originate in lymphocytes, which are important
components of the immune system. The distinction between
Hodgkin’s disease and non-Hodgkin’s lymphoma is made
upon examination of the cancer cells from a biopsy or
aspiration of the tumour tissue. The type of abnormal cells
identified in the sample determines whether a lymphoma
is classified as Hodgkin’s disease or non-Hodgkin’s lym-
phoma. Non-Hodgkin’s lymphoma is much more common
than Hodgkin's disease. NHL comprises a very large group
of diseases, often with very different symptoms, treatment,
and outcomes. Non-Hodgkin lymphoma is responsible for
544,000 new cases and 260,000 deaths in 2020 worldwide
[50].

Aggressive non-Hodgkin's lymphoma, such as high-grade
or intermediate-grade lymphoma, usually grows fast in the
body. Surprisingly, aggressive NHL often responds better to
treatment, and the majority of patients with aggressive NHL
achieve remission after initial treatment with chemotherapy
with or without radiation therapy if they are diagnosed early.
The most common aggressive lymphoma is diffuse large
B-cell lymphoma (DLBCL).

Low-grade NHL, on the other hand, grows slowly, and
these lymphomas are therefore called indolent NHL. The
most common indolent lymphoma is follicular lymphoma
(FL). This kind of lymphoma does not give rise to too many
symptoms, but they are also long-standing and are less likely
to be cured. In approximately one third of patients, low-
grade NHL transforms into a higher-grade histology that is
associated with an accelerated rate of growth and a poorer
prognosis. Advanced-stage follicular B-cell lymphoma is
considered incurable. Rituximab, a genetically engineered
monoclonal chimeric antibody targeting the CD20 antigen
expressed on B cells, was the first monoclonal antibody
approved by FDA in 1997, for the treatment of relapsed or
refractory low-grade or follicular non-Hodgkin's lymphoma
and by the European Agency for the Evaluation of Medicinal
Products (now European Medicines Agency, EMA) in 1998,
for therapy of patients with stage III/IV, follicular, chem-
oresistant or relapsed NHL. However, only few patients can
be permanently cured with single-agent therapy: fewer than
half of follicular NHL patients respond to rituximab with
median response duration of about a year, since they may
not respond or may develop resistance to antibody therapy
[241, 242].

Therapeutic strategies incorporating the use of radi-
olabelled monoclonal antibodies reactive with lymphoid-
associated antigens have shown some promise for NHL

@ Springer
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treatment, as lymphomas are highly radiosensitive and a
variety of lymphoid lineage-specific antigens have been
identified as potential targets for antibody-based therapies.
The CD20 B-lymphocyte-associated surface-membrane
antigen presents favourable features as a target for NHL
radioimmunotherapy. This 35-kd transmembrane glycopro-
tein is abundantly expressed by more than 95% of B-cell
NHL [243, 244]. Upon antibody binding CD20 is not shed
into the circulation nor is internalized, which provides a
prolonged antibody residence time on the cell surface and,
consequently, an extended exposure of the tumour to radia-
tion [245, 246].

Two anti-CD20 radiolabelled murine monoclonal anti-
bodies have been approved in the USA for the treatment
of relapsed follicular or transformed lymphoma (Zevalin,
90Y-ibritumomab tiuxetan, IDEC-Y2B8; from IDEC Phar-
maceuticals, San Diego, CA; and Bexxar, BIT_tositumomab;
from Corixa Corp, Seattle, WA). Several studies have dem-
onstrated the efficacy of both antibodies in relapsed/ refrac-
tory indolent B-cell lymphoma and indolent lymphoma in
the front-line setting, and available evidence for the pre-
clinical and clinical development of these two agents have
been extensively reviewed in the literature [247-249]. In
this manuscript we briefly examine the clinical trials with
B _tositumomab reported in the literature (Table 7).

Chemotherapy-relapsed/refractory indolent B-cell
NHL

Tositumomab (previously referred to as anti-B1 antibody)
is a mouse immunoglobulin G2a (IgG2a) monoclonal anti-
body specific for CD20 [243]. Given the favourable preclini-
cal data already available on tositumomab [250], a phase
I/IT study of !*'I-tositumomab was initiated in 1990 (from
April 1990 to January 1996) enrolling NHL patients who
had relapsed after having received at least one chemotherapy
regimen or who had had no response to at least one regimen.
Early results obtained in this study suggested high response
rates and an excellent tolerability to the drug [251-253].
The updated results on the entire cohort of this unique set of
patients, including long-term safety and survival data up to
8 years after treatment were reported in 2000 by Kaminski
and colleagues [254]. Forty two (71%) of 59 patients with
relapsed/refractory follicular lymphoma enrolled in the study
responded. 20 (34%) complete responses and 22 (36%) par-
tial responses were observed. Response rates were higher for
low-grade or transformed NHL than for de novo intermediate-
grade NHL (83% vs 41%). For all 42 responders, the median
progression-free survival was 12 months and 20.3 months for
those with complete responses.

A multicentre phase II study confirmed the efficacy and
safety of BI_tositumomab [255]. In this trial 45 of 47 patients

@ Springer

with chemotherapy-relapsed/refractory low-grade or trans-
formed low-grade NHL were treated with a single dosimetric
and therapeutic dose of BI_tositumomab. 27 patients (57%)
responded to the treatment. The overall response rate was
similar in patients with low-grade or transformed low-grade
NHL (57% vs 60%) with a median duration of 9.9 months. A
complete response with a median duration of 19.9 months was
observed in 15 (32%) patients, including five patients with
transformed low-grade NHL. The median PFS was 12 months
for all responders and 22 months for complete responders.

The encouraging results from these two trials led to a phase
III multicentre study enrolling 60 patients with an even poorer
prognosis. This group of patients had failed multiple chemo-
therapy regimens and had either not responded to or responded
and experienced disease progression within 6 months of com-
pletion of their last qualifying chemotherapy regimen (LQC)
were treated with '3'I-tositumomab [256]. This clinical trial
was designed to compare the therapeutic efficacy of LQC reg-
imen with the efficacy of '3'I-tositumomab treatment. After
treatment with a single course of '*!I-tositumomab, a partial
or complete response was observed in 39 (65%) patients com-
pared with 17 (28%) after their LQC regimen. The median
duration of response after '3!I-tositumomab was longer than
that on the LQC regimen (6.5 vs 3.4 months). Only two (3%)
of 60 patients had achieved a CR on the LQC regimen, while
12 (20%) achieved a CR on '3'I-tositumomab. The promising
results have demonstrated that a single course of *'I-tosi-
tumomab was significantly more efficacious than the LQC
received by this poor-prognostic and heavily pre-treated group
of patients.

In 2003, following a prospective phase II study, '3'I-tositu-
momab (Bexxar) was then approved by FDA for the treatment
of patients with CD20-positive, relapsed or refractory, low-
grade, follicular, or transformed non-Hodgkin’s lymphoma,
including patients with rituximab-refractory non-Hodgkin’s
lymphoma. Other studies have also demonstrated the benefit
of ¥!-tositumomab in rituximab failure [257]. In a clinical
trial enrolling 40 patients with low-grade or transformed low-
grade or follicular large-cell lymphoma whose disease had
not responded to or had progressed after rituximab therapy,
the safety and efficacy of Bexxar therapeutic regimen (tosi-
tumomab and 3'T tositumomab) has been demonstrated.
80% of patients met the definition of “rituximab refractory”
(defined as no response or response of less than 6 months in
duration). Clinical benefit was based on evidence of durable
responses without any evidence of an effect on survival. Con-
firmed overall response (65%) and complete response (38%)
rates were not significantly associated with prior rituximab
response. With a median follow-up of 3.3 years, the median
progression-free survival was 10.4 months and 24.5 months
for responders. The results of this study were supported by
demonstration of durable objective responses in 4 single-
arm studies enrolling 190 patients evaluable for efficacy with
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rituximab-naive, follicular non-Hodgkin’s lymphoma with
or without transformation, who had relapsed following or
were refractory to chemotherapy. In these studies, the overall
response rates ranged from 47 to 64% and the median dura-
tions of response ranged from 12 to 18 months.

Indolent lymphoma in the front-line setting

Given the encouraging results observed in patients who had
a relapse after extensive chemotherapy or whose disease
was refractory to chemotherapy or to rituximab, the safety
and efficacy of Bexxar therapeutic regimen was then evalu-
ated as initial treatment for advanced follicular lymphoma.
Between June 1996 and April 1999, in a phase II single-
center study, 76 patients with previously untreated stage III/
IV follicular lymphoma [258] received as initial therapy a
single course of treatment consisting of a dosimetric dose
of tositumomab and '*'I-tositumomab that was followed 1
week later by a therapeutic dose of 75 cGy of radiation. 72
patients (95%) responded to the therapy with most of them
presenting regression of palpable tumours within 2 weeks.
CR were observed in 57 patients (75%). An estimated 77%
of patients with a complete remission remained disease-free
at five years. The study demonstrated that a single one-week
treatment with '*!'I-tositumomab therapy induced rates of
overall and complete responses higher than those observed
with *'I-tositumomab therapy in previously treated patients.
Although the reason for this difference was not very clear
the promising results greatly suggested the early use of RIT
in the course of follicular lymphoma. Updated results of this
phase II trial (reporting period June 1996 to May 2009) were
reported later in 2009 and had demonstrated that a single
course of treatment with Bexxar therapeutic regimen could
produce durable responses, especially durable complete
responses lasting over a decade in patients with untreated
follicular lymphoma [259]. After a median follow-up of
10 years, the median duration of response was 6 years, with
approximately 40% remaining progression-free at 10 years.
For the 57 complete responders, median progression-free
survival was 10.9 years. Ten-year overall survival was
approximately 82%.

Although the high response rates achieved with
B3!-tositumomab in first-line management of FL were
encouraging, combination regimens of chemotherapy
followed by RIT could offer some potential benefits.
Debulking before RIT can reduce both overall tumour
burden and bone marrow involvement improving treat-
ment efficacy, thus allowing RIT in patients who would
otherwise be ineligible for RIT because of extensive mar-
row disease. Three clinical trials were reported in previ-
ously untreated subjects with low- to intermediate-grade
NHL. Patients were treated with '3!I-tositumomab imme-
diately after completion of systemic chemotherapy either

with cyclophosphamide—adriamycin—oncovin—prednisone
(CHOP), fludarabine or with cyclophosphamide—vincris-
tine—prednisolone (CVP). All these studies showed initial
promise, with patients attaining very high overall response
rates (80% to 100%) with minimal toxicities [260-262].
The safety and efficacy of a sequential treatment regimen
consisting of an abbreviated course (three cycles) of fludara-
bine followed 6-8 weeks later by iodine '*!I-tositumomab
was evaluated in 35 patients with previously untreated fol-
licular NHL [260]. The single-agent fludarabine is a purine
analogue that typically achieves response rates of 29% to
75% in indolent lymphoma. After fludarabine, the overall
response rate was 89% (31 of 35 patients). Three of these
31 patients (9%) achieved a complete response (CR), 28
achieved a PR, and 4 patients (11%) demonstrated stable
disease. All 35 patients (100%) responded to the full regi-
men of fludarabine plus '*'I-tositumomab, 30 (86%) patients
achieved CR, and 5 (14%) achieved partial response, with
a S-year estimated PFS rate of 60%. This sequential treat-
ment regimen has shown to be highly effective as front-line
therapy for follicular lymphoma and can reduce bone mar-
row involvement, when needed, to allow the use of RIT.
Since fludarabine has been sometimes associated with
immunosuppression, cytopenias, and secondary malignan-
cies [263], Link et al. sought to investigate the efficacy and
safety of a sequential regimen consisting of six cycles of
CVP followed by one cycle of tositumomab and '*'I-tosi-
tumomab therapy in a group of 30 patients with untreated
low-grade FL [261]. The efficacy results of this study were
encouraging because all patients responded to this regimen,
with 53% of patients achieving CR after the CVP chemo-
therapy and 93% achieving a confirmed CR following the
combination therapy. Five-year progression-free and overall
survival rates were 56% and 83%, respectively. Furthermore,
12 of 14 patients with bone marrow involvement and 14 of
15 patients with bulky disease achieved a complete response.
Although Bexxar had a good opportunity when it was
approved in June 2003 it missed its last big chance in 2011
when the Southwest Oncology Group (SWOG) together
with Cancer and Leukemia Group B compared the safety
and efficacy of two immunochemotherapeutic regimens
for follicular non-Hodgkin lymphoma in a phase III rand-
omized intergroup protocol (SWOG S0016). Data from this
long-term study, between March 2001 and September 2008,
and that enrolled 554 patients was presented at the Ameri-
can Society of Hematology [264]. In one arm of the study,
patients received six cycles of cyclophosphamide, doxoru-
bicin, vincristine, and prednisone (CHOP) chemotherapy at
3-week intervals with six doses of rituximab (CHOP-R).
In another arm of the study, patients received six cycles
of CHOP followed by tositumomab and '*!!-tositumomab
consolidative RIT (CHOP-RIT). Both regimens used in this
trial produced outstanding outcomes in advanced follicular
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lymphoma, with more than 60% of patients estimated to be
in progression-free 5 years after treatment. Overall survival
was similarly impressive, with 80% of patients estimated
to be alive 8 years after treatment with either regimen. The
excellent progression-free survival (PFS) and overall sur-
vival (OS) rates observed for the CHOP-RIT arm in this
trial were already predicted by the preceding phase II study
(SWOG S9911) [265, 266]. Both treatments were excellent,
but no statistically significant improvement in complete
response rate, or survival time, was observed for patients
receiving Bexxar (CHOP-RIT) [262]. On February 2014
GlaxoSmithKline (GSK) announced that the withdrawal of
the drug would be voluntarily discontinued due to a pro-
jected decline in sales and to the availability of other anti-
CD20 monoclonal antibodies.

Although not so used in routine practice, radioimmuno-
therapy of indolent NHL has achieved objective response
rates in clinical trials comparable with standard rituximab
with cyclophosphamide, doxorubicin, vincristine, and
prednisone chemotherapy. In a phase II clinical trial of
B rituximab RIT carried out by Leahy and colleagues and
enrolling 142 consecutive patients, objective response rates
of 67%, with complete response in 50% and median overall
survival of 32 months, matched the response rates and com-
pared favourably with those reported for '3'I-tositumomab
or *Y-ibritumomab tiuxetan [267]. Building upon on their
former experience with '*'I-rituximab RIT in recurrent and
refractory indolent NHL, the same research group performed
a prospective phase II study of first-line '*'I-rituximab out-
patient RIT in 68 newly diagnosed, advanced stage, symp-
tomatic follicular non-Hodgkin lymphoma patients fol-
lowed for up to 7 years [268, 269]. Overall response rate at
3 months was 99%. Clinical results have demonstrated that
B rituximab RIT in this newly diagnosed subset of NHL
patients is an effective, practical and affordable alternative
to existing conventional chemotherapies, with lower toxicity
and durable remissions.

Conclusions and future perspectives

Owing to their unique nuclear properties, iodine radioiso-
topes (1231241231317) have reached a key role in biomedicine
and nuclear medicine. !>I-labelled molecules are routinely
used in radiometric binding assays as well as relevant tools
for translating preclinical results into humans since the
replacement of %I by 12°I delivers a probe with suitable
characteristics for SPECT imaging. Additionally, translation
to PET molecular imaging can also be accomplished with
the positron emitter '**I. Finally, the f/y emitter '*'I is the
“classic theranostic agent” as coined by Silberstein [270]
and can be used for both diagnostic and therapy. The lat-
ter radioisotope together with °°Y have been used in>95%

@ Springer

of RIT trials and represent the current standard to which
all other radionuclides are compared to. Their efficacy for
the treatment of both haematological and solid malignan-
cies has been demonstrated in a wide variety of published
clinical trials. *'I is a relatively inexpensive radioisotope
with a long successful history of treating several malignan-
cies, especially the simplest inorganic form, '3'I~, which
is used since the 1940s to treat thyroid cancer. As regards
biomedical applications of radioiodinated high molecular
weight molecules such as antibodies, further achievements
must take into consideration both the in vivo dehalogenation
of proteins by endogenous enzymes and their usually long
half-lives (e.g. around 24 h for IgG antibodies). Whereas the
first is mainly dependent on the molecule, the latter can be
tuned upon reduction of the molecular weight while keeping
the antigen binding properties with improvement of certain
features such as stability. Within this context, engineered
antibody fragments such as diabodies, single-chain variable
fragments or single-domain antibody fragments hold great
potential for molecular imaging and/or radionuclide ther-
apy and important breakthroughs are expected in the near
future. For the sake of example, let us refer to the work of
D' Huyvetter et al. where a new '3!I-labelled single-domain
antibody, namely '*'I-GMIB-anti-human epidermal growth
factor receptor type 2 (HER2)-VHH1, has been proposed
for HER2-targeted radionuclide therapy in breast cancer
patients [271]. Moreover, an extensive clinical trial enroll-
ing 70 patients (NCT04467515) is currently underway to
evaluate the safety, tolerability, dosimetry, and preliminary
efficacy of an HER2-targeting single-domain antibody
linked to iodine-131 in patients with advanced/metastatic
HER2-positive breast, gastric, and gastro-esophageal junc-
tion cancer [272]. Brought together, these studies confirm
that engineered target-specific antibody fragments linked to
therapeutic radionuclides such as iodine-131 hold potential
to address clinical unmet needs in clinical oncology.
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