
Send Orders for Reprints to reprints@benthamscience.ae 

 Current Topics in Medicinal Chemistry, 2018, 18, 1-19 1 

REVIEW ARTICLE 

  1568-0266/18 $58.00+.00 © 2018 Bentham Science Publishers  

Computational Approaches in Antibody-drug Conjugate Optimization for 
Targeted Cancer Therapy 

Rita Meloa,b,#,*, Agostinho Lemosc,#, António J. Pretob, José G. Almeidab, João D.G. Correiaa,  
Ozge Sensoyd, and Irina S. Moreirab,e  

aCentro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada 
Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; bCNC - Center for Neuroscience and Cell Biology; Rua 
Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, 3004-517; Coimbra, Portugal; cGIGA Cyclotron Research 
Centre In Vivo Imaging, University of Liège, 4000 Liège, Belgium; dIstanbul Medipol University, The School of 
Engineering and Natural Sciences, 34810, Istanbul, Turkey; eBijvoet Center for Biomolecular Research, Faculty of 
Science - Chemistry, Utrecht University, Utrecht, 3584CH, the Netherlands 

 

 

 

 

 

 

A R T I C L E  H I S T O R Y 

Received: May 04, 2018 
Revised: June 08, 2018 
Accepted: July 25, 2018 
 
DOI:  
10.2174/1568026618666180731165222 
 

Abstract: Cancer has become one of the main leading causes of morbidity and mortality worldwide. 
One of the critical drawbacks of current cancer therapeutics has been the lack of the target-selectivity, as 
these drugs should have an effect exclusively on cancer cells while not perturbing healthy ones. In addi-
tion, their mechanism of action should be sufficiently fast to avoid the invasion of neighbouring healthy 
tissues by cancer cells. The use of conventional chemotherapeutic agents and other traditional therapies, 
such as surgery and radiotherapy, leads to off-target interactions with serious side effects. In this respect, 
recently developed target-selective Antibody-Drug Conjugates (ADCs) are more effective than tradi-
tional therapies, presumably due to their modular structures that combine many chemical properties si-
multaneously. In particular, ADCs are made up of three different units: a highly selective Monoclonal 
antibody (Mab) which is developed against a tumour-associated antigen, the payload (cytotoxic agent), 
and the linker. The latter should be stable in circulation while allowing the release of the cytotoxic agent 
in target cells. The modular nature of these drugs provides a platform to manipulate and improve selec-
tivity and the toxicity of these molecules independently from each other. This in turn leads to generation 
of second- and third-generation ADCs, which have been more effective than the previous ones in terms 
of either selectivity or toxicity or both. Development of ADCs with improved efficacy requires knowl-
edge at the atomic level regarding the structure and dynamics of the molecule. As such, we reviewed all 
the most recent computational methods used to attain all-atom description of the structure, energetics 
and dynamics of these systems. In particular, this includes homology modelling, molecular docking and 
refinement, atomistic and coarse-grained molecular dynamics simulations, principal component and 
cross-correlation analysis. The full characterization of the structure-activity relationship devoted to 
ADCs is critical for antibody-drug conjugate research and development. 
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1. INTRODUCTION 

Cancer is the most wide-spread disease across countries, 
cultures and ethnicities, affecting both developed and devel-
oping regions [1]. It is defined as the formation of abnormal 
cells caused by uncontrolled cell division, and it is the lead-
ing cause of morbidity and mortality with an estimated 
14,100,000 new cases in 2012 and 8,200,000 deaths world- 
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wide [2]. Cancer has a complex aetiology that often starts 
with a mutation in cell’s DNA in which the cell loses normal 
functionality and instead gains the ability to indefinitely mul-
tiply until impairing normal tissue properties [3]. Many as-
pects that contribute to its development and progression are 
still not fully understood. Therefore, there is an emerging 
need for development of novel approaches that help potenti-
ate innovative therapeutic targets and effective drugs. There 
are currently ca. 200 different types of cancer identified, 
including solid tumours such as breast and lung cancer, as 
well as blood-based malignancies, namely, leukaemia and 
lymphoma [4]. Breast, prostate and lung cancer are common 
types whereas 22% of rest of cancers are considered as rare 
[5] appearing in a small percentage of the population [6]. 
The “hallmarks of cancer” can be categorized in 6 sections 
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as indicated in Hanahan et al. [7]. The first is Self-Sufficiency 
in Growth Signals. Unlike normal cells, cancer cells are able 
to move to an active proliferative state without extracellular 
signalling which are received by transmembrane receptors. 
Second, insensitivity towards antigrowth signals- meaning 
that in cancer cells antigrowth mechanisms do not work 
properly, but rather they provoke the cells to grow and repli-
cate continuously. The third hallmark is the, evading apopto-
sis, while cell proliferation is a stimulatory factor in the on-
set of cancer, the cell death avoidance is an alternative way 
for the cancer development. Fourth, Limitless replicative 
potential: this acquired capability emerges as a combination 
of the previous three stimulators, that result in lack of com-
munication between the cell and environment, either envi-
ronmental or self-cell related. This causes tumour cells to 
escape from a limit that usually applies to normal cells, 
above which they can no longer replicate. Sustained angio-
genesis is the fifth hallmark. Angiogenesis, which is known 
as the promotion of the generation of new blood vessels, 
allows cancer cells to provide enough supplies. Cancer cells 
can interfere with angiogenesis by releasing angiogenesis 
promoting factors, such as Vascular Endothelial Growth Fac-
tor (VEGF) or by regulating proteases, that can degrade the 
existing factors[8]. Lastly, tissue invasion and the metasta-
sis: the previous steps result in an overstepping of a set of 
cells’ boundaries into new areas where they should not be in 
high numbers otherwise. This occurrence requires changes in 
cells’ interactions with surroundings, otherwise they would 
be recognized by the immune system and would be forced to 
undergo apoptosis. Cancer cells tend to have proteins re-
sponsible for communication with the altered environment, 
such as Cell-cell Adhesion Molecules (CAM) – members of 
the immunoglobulin and calcium-dependent cadherin fami-
lies that mediate cell-cell interactions – and integrins that 
facilitate cell-extracellular adhesion. Furthermore, extracel-
lular proteases can be activated, thus promoting the elimina-
tion of extracellular communication factors. 

 
Despite the genetic factors, the high incidence of cancer 

is widely related to changes in diet, physical inactivity, 
smoking and excessive alcohol consumption as well as envi-
ronmental changes [9]. To combat with this disease, preven-
tion is always a better approach than treatment. This can be 
done, primarily, by avoiding the external factors mentioned 
above. Furthermore, early detection of primary tumours 
should be done to avoid cancer progression and metastases. 
Medical imaging technologies, which provide a better diag-
nosis, have grown rapidly over the past few years [10], and 
can be used in all phases of cancer management including 
diagnosis and staging, using specific markers, as well as 
treatment follow-up [11]. Recently, the simultaneous combi-
nation of imaging with therapy, named theranostic, has 
gained importance in both research and in the clinical field 
[12] as it provides an understanding of underlying molecular 
mechanisms, better diagnosis strategies and therapeutic effi-
ciency [13]. That leads to a shift from traditional chemother-
apy to targeted cancer therapy. This new approach has been 
enhanced by distinguishing specific features of tumour cells 
to provide a framework for development of more selective 
drugs [14]. 

1.1. The Concept of Antibody-drug Conjugates (ADCs) 

ADCs are humanized or fully human monoclonal anti-
bodies (mAbs) that are covalently bound to highly cytotoxic 
small molecules (cytotoxic payloads) through chemical link-
ers. Due to the high binding specificity of mAbs for tumour-
specific cell-surface antigens (found uniquely on the surface 
of tumour cells) and for tumour-associated cell-surface anti-
gens (found overexpressed on the surface of tumour cells, 
but also present in healthy cells) [15-16], these immunocon-
jugates may combine the anticancer efficacy of small-
molecule chemotherapeutics with high selectivity, stability, 
and favourable Pharmacokinetics/Pharmacodynamics 
(PK/PD) profile of mAbs. The ADCs can be recognized as 
sophisticated delivery systems for drugs with anticancer ac-
tivity, in which the antibody may effectively guide the cyto-
toxic drug to target tumour cells, where the drug can be 
chemically and/or enzymatically released from the immuno-
conjugate to induce the cytotoxic activity [17]. Structurally, 
the ADCs can be divided into three main structural units: a 
humanized or a fully human mAb, a stable linker, and a cy-
totoxic payload (Fig. 1).  

 
Fig. (1). Schematic description of an ADC. 

It is utmost importance to understand the key features of 
each of the three components, and so the mechanism of ac-
tion, in order to be able to develop ADCs with clinical effi-
cacy. A general mechanism of action of ADCs is represented 
in Fig. (2). In order to avoid the proteolytic degradation of 
mAbs by gastric acids and proteolytic enzymes, the ADCs 
are preferentially administered via the intravenous route and 
released into the bloodstream (Fig. 2, step 1). When circulat-
ing into the bloodstream the mAb component of ADCs is 
recognized by tumour-specific or tumour-associated cell-
surface antigens (Fig. 2, step 2) and, subsequently, the ADC-
target antigen complex is primarily internalized via clathrin-
mediated endocytosis (Fig. 2, step 3) [18]. After the forma-
tion of a clathrin-coated early endosome, the acidic environ-
ment of endosomes promoted by an influx of H+ ions enables 
the association of the mAb unit of a fraction of ADCs to hu-
man neonatal Fc Receptors (FcRns) present in early en-
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dosomes. The ADC-FcRn complexes are released into the 
bloodstream, where the physiological pH of 7.4 facilitates 
the dissociation of the ADC from the FcRn (Fig. 2, step 4) 
[19]. Inside the cancer cell, the remaining unbound ADCs in 
the endosome form the late endosome. Afterwards, the late 
endosomes fuse with the cell lysosomes, allowing the 
lysosomal degradation of the immunoconjugate (Fig. 2, step 
5) and subsequent release of the cytotoxic drug in its bioac-
tive form (Fig. 2, step 6). The released cytotoxic drug inter-
feres with the cellular machinery through various mecha-
nisms of cell death, depending on the class of the cytotoxic 
drugs [20].  

From the intravenous administration of ADCs and circu-
lation into the bloodstream to the molecular target located in 
the tumour tissues, the ADCs are exposed to different condi-
tions on their journey. The understanding of the mechanism 
of action of ADCs at cellular and molecular level as well as 
the distinct challenges faced by ADCs in each step may pro-
vide new insights for the design of novel immunoconjugates 
with desirable pharmacokinetic and pharmacodynamics 
properties through optimization of each of ADC components 
[21]. The first-generation of ADCs were typically used to 
selectively deliver clinically approved chemotherapeutic 
drugs such as methotrexate (a competitive inhibitor of dihy-
drofolate reductase), doxorubicin (a DNA intercalating 
agent), and vinblastine (an inhibitor of microtubule forma-
tion) with a well-established mechanism of action and a 
well-known toxicity profile [22-23]. These early experiments 
which were made to create an effective ADC have revealed 

to be unsuccessful for various reasons including the low po-
tency of the loaded chemotherapeutic drugs, the restricted 
number of cytotoxic drug molecules that can be carried on 
the mAb without impairing the antibody-antigen interaction, 
the use of unstable linkers, the low antigen selectivity, and 
the restricted number of antigen molecules on the surface of 
the tumour cells, all of which limit the therapeutic efficacy 
of these immunoconjugates [24]. Moreover, the first-
generation ADCs, which were achieved by using murine 
mAbs, have shown to induce a significant immunogenicity, 
which is a major determinant for half-life of ADCs when 
circulating in the blood. The unwanted immunogenicity 
compromises the clinical efficacy of these immunoconju-
gates [25-26]. To overcome these challenges and failures, 
several technical approaches have been focused intensively 
on the optimization of the functionality of each component 
of the ADCs (the antibody, the cytotoxic payload, and the 
linker) for the construction of drug delivery systems with 
improved efficacy and tolerability.  

The selection and optimization of antibodies have been 
extremely relevant in the ADC design. For direct delivery of 
cytotoxic drugs to tumour cells, the humanized and/or fully 
human mAbs with high target-affinity and target-specificity 
to the same antigen determinant are preferentially used to 
minimize immunogenicity issues [25-26]. The ideal antibody 
also needs to target well-characterized and tumour-specific 
or tumour-associated antigens with sufficient binding affinity 
and specificity. In addition, the antigen-binding characteris-
tics of antibodies are needed to be maintained when con-

 
Fig. (2). Mechanism of action of ADCs. 
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nected to the required number of cytotoxic drug molecules 
via linker [27].  

The choice of cytotoxic payloads is of maximum impor-
tance for the development of highly effective ADCs [28]. It 
is imperative that the cytotoxic drug loaded on the ADC pos-
sesses a sustained stability for circulation in the blood stream 
in order to avoid the damage of non-tumour cells and in-
crease the drug bioavailability in tumour cells. Most of these 
cytotoxic drugs target mainly the DNA (these are cytotoxic 
for tumour and non-tumour cells) or the microtubules (these 
are cytotoxic for tumour cells), and should possess a cyto-
toxic potency in the nano-molar or pico-molar concentra-
tions so that only a small number of cytotoxic drug mole-
cules can be loaded [29]. In addition, the solubility of the 
cytotoxic drugs is also a critical factor. In fact, the lipophilic 
drugs can pass the cell membranes and, therefore, after the 
lysosomal degradation of the ADC complex, the cytotoxic 
drug has the ability to escape from the lysosome. On the 
other hand, the cytotoxic payload must be sufficiently hy-
drophilic to enable conjugation with the antibody in aqueous 
solutions since the use of high concentrations of organic sol-
vent can promote the denaturation of mAbs. The problem of 
low water solubility of many drug candidates may be solved 
by using hydrophilic linkers [30].  

The linker chemistry plays an important role since it may 
greatly influence the safety, the therapeutic index, the speci-
ficity, the pharmacokinetic, and the pharmacodynamics pro-
files of ADC species [26, 31]. The ideal linkers must fulfil a 
set of requirements towards the development of ADCs with 
potential clinical efficacy [32]. Firstly, they need to be stable 
in the bloodstream to ensure that the ADCs remain intact 
until being recognized by tumour-specific or tumour-
associated antigens of cancer cells and reaching the molecu-
lar target. Instability of the linker moiety can induce the 
premature release of the cytotoxic drug, leading to an unde-
sired damage of healthy cells and to other adverse effects as 
well [33-34]. Simultaneously, once the ADC species are in-
ternalized into the cancer cells, the linkers need to be labile 
to allow a rapid cleavage and release of the cytotoxic drug in 
the active form [33-34]. Based on these parameters, research 
efforts have been focused in the design of novel ADC linker 
structures. The latter can be classified into two major classes 
based on the mechanism of release of the cytotoxic drug 
from immunoconjugate: cleavable and non-cleavable linkers. 
Cleavable linkers have the characteristic to be cleaved by 
proteolytic enzymes in the lysosome or by responding to 
environmental differences present between conditions of 
blood stream and the intracellular region within tumour cells. 
The majority of ADC species possess cleavable linkers. 
Once the ADC-antigen complex is internalized, the change 
of environmental conditions promotes the cleavage of the 
linker and subsequent release of the cytotoxic drug mole-
cules in their active form [35]. Cleavable linkers have the 
ability to respond to different cancer-specific intracellular 
conditions and they include the linkers that are sensitive to 
lysosomal degradation (e.g. dipeptide linkage consisting of 
valine and citrulline along with a p-aminobenzylcarbamate 
linker [36]), which are sensitive to an acidic pH (e.g. hydra-
zones) [37], and reduced by glutathione such as disulfide 
linkers [38]. Contrary to the cleavable linkers, the non-
cleavable linkers rely on cytosolic and lysosomal proteases 

to ensure the complete cleavage of the mAb component of 
ADC species. After the cleavage, a single amino acid residue 
(usually a lysine or a cysteine) derived from the degraded 
mAb is still attached to the linker and the cytotoxic drug 
molecule [39]. Subsequently, the cytotoxic drug-linker-
amino acid residue complex is then liberated into the cyto-
plasm to become the active drug. Examples of non-cleavable 
linkers include the thioether linker Succinimidyl-4-(N-
Maleimidomethyl) Cyclohexane-1-Carboxylate (SMCC) and 
maleimidocaproic acid linker [40]. In this case, the structure 
of the cytotoxic drug must be precisely designed so that the 
cytotoxic drug can induce a similar or an improved antican-
cer activity in a modified form. Additionally, the toxicity, 
pharmacodynamic, and pharmacokinetic profiles of all pos-
sible products of degradation of ADC species containing 
non-cleavable linkers need to be carefully examined [39].  

The conjugation chemistry has been also a crucial com-
ponent for the construction and activity of ADCs and novel 
conjugation techniques are continuously being developed. 
Chemical and enzymatic conjugation are two techniques that 
are presently in use for the association of mAb and the cyto-
toxic payload components. [41]. Traditional strategies for the 
association of cytotoxic drugs to mAbs have been focused on 
the presence of reactive side chains of solvent accessible 
naturally occurring amino acid residues including the epsi-
lon-amino end of the lysine residues and the thiol groups of 
cysteine residues in the reduced form, as attractive sites for 
conjugation [42-44]. This linking strategy involving native 
amino acid residues does not require a prior modification or 
processing of the antibody. However, the conjugation of the 
cytotoxic drug is restricted to the amino acid sequence of 
mAb, limiting the control over the number and the site of the 
loaded cytotoxic drugs. Consequently, a heterogenous mix-
ture of ADC species with variable Drug-Antibody Ratios 
(DARs) and distinct tethering positions will be generated. 
The heterogeneity of DAR among ADC species is a major 
shortcoming of these types of non-specific conjugation tech-
niques, influencing the stability, the efficacy, and the toxicity 
of ADC species [45-46]. In fact, a broad distribution of the 
number of cytotoxic drug molecules tethered per antibody, 
leads to a small percentage of ADC species being therapeuti-
cally active and, therefore, contributes to a reduced therapeu-
tic efficacy. The attachment of too few cytotoxic molecules 
will reduce the efficacy. On the other hand, loading too 
many cytotoxic molecules on the antibody may affect the 
stability of ADCs, may lead to the premature release of the 
cytotoxic payload into the bloodstream and alter the Pharma-
cokinetics (PK) properties, including high plasma clearance 
and reduced half-life [45-46]. Moreover, the inactive ADC 
species can indirectly reduce the ADC efficacy by interact-
ing with a restricted number of tumour-specific or tumour-
associated antigens of tumour cells or by blocking the inter-
action of active ADC species [45-46]. The development of 
site-specific drug conjugation strategies has emerged as a 
promising strategy for the production of homogenous ADC 
species with the desired DAR, potentially enhancing the 
therapeutic window, decreasing the off-target toxicity, and 
improving the PK profile. Various approaches used to in-
crease the site specificity of ADC conjugation involve the 
incorporation of more discriminate residues, in particular 
non-natural amino acids (e.g. Selenocysteine (Sec) [47], p-
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AcetylPhenylalanine (pAcPhe) [48], p-AzidoMethyl-L-
phenylalanine (pAMF) [49], N6-((2-azidoethoxy)carbonyl)-
L-lysine [50]), the use of ligating enzymes to catalyse bond 
formation between specific amino acid sequences or chemi-
cal groups (e.g. Sortase A (Sort A) [51], Bacterial TransGlu-
taminases (BTGs) [52-53], Formylglycine-Generating En-
zyme (FGE) [54]), the incorporation of aldehyde groups on 
N-glycan terminus of Asp297 residue of IgG using β-1,4-
GalactosylTransferase (GalT) and α-2,6-SialylTransferase 
(SialT) [55] [56]. In general, the introduction of selectively 
reactive molecules at specific positions enables a more con-
trol over the number and the position of the loaded cytotoxic 
drug molecules. 

1.2. Applications of ADCs in Clinical Therapeutics 

Advances in the research and development of novel 
ADCs have allowed the approval of several of this type of 
targeted drugs by the US Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) for clinical 
use [57]. Moreover, a large number of complexes are still 
under clinical trials. The ADCs are being tested in both hae-
matological malignancies such as leukaemia and in solid 
tumours [58] in which breast cancer is the most common 
target [59-60]. Currently approved ADCs and those under 
advanced clinical development (Phases III and II) are listed 
in Table 1. 

The knowledge of the detailed three-dimensional (3D) 
structure is fundamental for full understanding and develop-
ment of ADCs with higher efficacy. In this review, we fo-
cused on a variety of up-to-date methods that can be used to 
attain 3D structure, energetics and dynamics of these emerg-
ing systems including their interactions with the target pro-
tein (antigen). 

1.3. Computational Methodologies Used for Optimization 
of ADCs 

With the aim of developing ADCs with high specificity 
and efficacy various computational approaches are currently 
in use. In particular, the computational methods which rely 
on Machine-Learning (ML) approaches, can be used as ef-
fective tools for the selection of the best target for ADCs. 
Also, homology modelling and molecular docking and re-
finement can help devise the most probable fit between anti-
bodies and antigens and to understand the linker-drug inter-
action. This is a crucial step in ADC development, as it de-
termines the specificity of the molecules in the overall sys-
tem. Molecular dynamics (MD) is also another tool to clarify 
aspects that consider antibody and antigen. Particularly, MD 
can be used to help for the selection of the best drug candi-
date by exploring possible conformations that the antibody 
might acquire, rendering important information on drug-
antibody complementarity. Other tools have been also dis-
cussed in order to assess the best approaches for selecting the 
best ADC candidates by considering their selectivity and 
effectivity, which is mostly inherent to the drug. 
1.3.1. Computational Selection of ADC Targets 

Within the scope of targeted cancer treatment, we should 
also take into consideration the properties of the target anti-
gen in addition to those of the ADCs [86]. Target selection is 

based on the following criteria: i) target expression on tu-
mour cells - the target must be overexpressed exclusively on 
the respective tumour cell while its population must be as 
low as possible on other cells. This allows the ADC to be 
specific; ii) the outcome associated with the target’s expres-
sion – chemogenomics information is the key aspect regard-
ing this step. Fundamentally, it is an umbrella term that en-
compasses high-throughput techniques for simultaneous 
screening of both cell and compound libraries. By doing so, 
a high dimensional information can be produced regarding 
genomic information of cells and biological activity of com-
pounds studied [87]; iii) extraction of relevant data regarding 
the target from the literature – several approaches for Text-
Mining (TM) have been developed and are reviewed in Yang 
et. al [88], iv) target’s subcellular location. TMs typically 
focus on determining likely target-disease or network-
disease associations. Some tools also provide a mean to ana-
lyse data that come from microarray and mass spectrometry 
and to establish important phenotype-genotype relations; and  

A recent ML approach, which is based on the existence 
of some receptors on the cell surface, microarray data and 
cell characterization methods for epithelial, mesenchymal or 
mixed, have been developed for the selection of targets of 
ADC [89]. ML was used mainly to classify the cells’ recep-
tor expression using gene expression data and to classify the 
cells as epithelial, mesenchymal and mixed. Genes were 
identified as good targets for ADC therapy considering their 
normal/cancer expression ratio. The method reported Human 
Epidermal growth factor Receptor 2 (HER2) as the most 
probable target, for which trastuzumab emtansine – an ADC 
– interacts as given in Table 1.  

Pharmacokinetics-pharmacodynamics models have also 
been used for development of ADCs. The key aspect of these 
models is the determination of the stability, permanence, 
binding kinetics and efficacy of ADC in vivo. While these 
priorities can be assessed via in vitro models, in silico ap-
proaches, which are based on mathematical modelling of 
ADC pharmacokinetics and pharmacodynamics [90], can 
also be used. The Conjugation in ADC development refers to 
the computational process used to investigate the structural 
basis of antibody-drug assembly. For this process, a linker 
can also be used. A simple minimization step could be im-
plemented to ensure that the most realistic conformation is 
achieved [91-92]. There is also an interest in statistical mod-
els to correlate the Drug-to-Antibody Ratio (DAR) with 
other ADC characteristics, such as drug load distribution 
[93]. This kind of approaches allow researchers to perform a 
lower number of experiments to investigate the optimal DAR 
when aiming to reach an optimal value.  

The study of ADCs must also focus on drug resistance 
mechanisms. Proteins associated with drug resistance, such 
as Multi-drug Resistance Proteins (MRP), Permeability-
Glycoprotein (P-gp) and Breast Cancer Resistance Protein 
(BCRP) [94] are needed to be studied in detail, in order to 
prevent expelling of drugs/toxins from the inside of the cell 
to the outside which causes an increase in the dosage used 
[95]. For instance, there are strategies to blockade these pro-
teins by adjuvant drugs that prove that conjugated cytotoxic 
drugs are a poor substrate for the drug transporter [29]. To 
this and, an MD simulation on the protein, which displays
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Table 1. Selected ADCs in clinical development. 

ADC Main Indication Target Antigen Antibody Type Cytotoxic Drug Status/Phase Reference 

Gemtuzumab ozogamicin acute myelogenous 
leukemia 

CD33 Humanized IgG4 Calicheamicin FDA approved 
in 2000. 

[24, 58] 

Brentuximab vedotin Relapsed Hodgkin 
lymphoma and 
systemic anaplastic 
large cell lymphoma 

CD30 Chimeric IgG1 Monomethyl Aur-
istatin E (MMAE) 

FDA approved 
in 2011. 

[61] 

Trastuzumab emtansine 
(T-DM1) 

Degenerated or 
chemotherapy resis-
tant HER2-positive 
breast cancer 

HER2 Humanized IgG1 Emtansine (DM1) FDA approved 
in 2013. 

[62] 

Inotuzumab ozogamicin Acute lymphoblas-
tic leukaemia 

CD22 Humanized IgG4 Calicheamicin Phase III [63] 

Depatuxizumab Ma-
fodotin (ABT-414) 

Glioblastoma multi-
forme 

EGFR ABT-806 Monomethyl Aur-
istatin F (MMAF) 

Phase II/III [64-65] 

Pinatuzumab vedotin 
(RG-7593) 

Diffuse large B-cell 
lymphoma 
(DLBCL) and fol-
licular non-
Hodgkin's lym-
phoma 

CD22 Humanized IgG1 Monomethyl Aur-
istatin E (MMAE) 

Phase I/II [66] 

Polatuzumab Vedotin 
(DCDS4501A, RG7596) 

DLBCL and follicu-
lar non-Hodgkin's 
lymphoma 

CD79b Humanized IgG1 MMAE Phase II [67] 

Lifastuzumab vedotin 
(RG-7599) 

Non-small-cell lung 
cancer; ovarian 
tumour 

NaPi2b Humanized IgG1 MMAE Phase II [24] 

Glembatumumab vedotin Breast cancer, mela-
noma 

Glycoprotein 
NMB 

Human IgG2 MMAE Phase II [68] 

Coltuximab Ravtansine 
(SAR-3419) 

DLBCL; acute 
lymphoblastic leu-
kaemia 

CD19 Chimeric IgG1 DM4 Phase II [69-72] 

Lorvotuzumab mer-
tansine (IMGN-901) 

Small-cell lung 
cancer 

CD56 Humanized IgG1 DM1 Phase II [73-74] 

Indatuximab Ravtansine 
(BT-062) 

Multiple myeloma CD138 Chimeric IgG DM4 Phase II [75-76] 

PSMA Prostate cancer Prostate-specific 
membrane anti-
gen (PSMA) 

Human IgG1 MMAE Phase II [77] 

Labetuzumab-SN-38 Colorectal cancer carcinoembry-
onic cell adhe-
sion molecule 5 
(CEA 

Humanized IgG1 Irinotecan metabo-
lite (SN-38)
  

Phase II [78] 

MLN-0264 Gastrointestinal 
tumour; solid tu-
mours 

Guanylyl cyclase 
C 

Human IgG MMAE Phase II [79] 

IMMU-130 Colorectal cancer CEACAM5 Labetuzumab SN-38 Phase II [80-81] 

MM-302 Epithelial cancer 
HER2 positive 
metastatic breast 
cancer 

HER2 anti-HER2 scFv 
antibody via a 
polyethylene 
glycol spacer 
(PEG-DSPE). 

Liposomal 
doxorubicin 

Phase II [82-85] 

 

drug resistance, together with the bound drug can be per-
formed to determine the binding affinity and the expulsion 
possibility of the drug from the cell as done for P-gp for op-
timal drug delivery [96]. 

The current methods used for production of ADCs can 
lead to a heterogeneous mix where some of the molecules 
have poor performance. For such, more complex methods 
are required to increase the homogeneity of the conjugates 
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[97]. For example, site-specific cysteine conjugation can be 
used to increase the homogeneity of the produced conju-
gates. To this end, three coordinate files regarding the drug, 
the antibody and the linker were selected from the Protein 
Data Bank (PDB). Subsequently, these could serve as input 
for THIOMABTM [98], which refers to antibodies with engi-
neered reactive cysteine residues. According to it, the mole-
cules are chosen and engineered to include cysteine residues 
that can be used to link the three components. The molecules 
can then be aligned according to well-defined equations, 
changing the relative positions of the atoms by Affine trans-
formations. This procedure allows the preservation of the 
points, lines and planes while rotating and translating the 
atoms and residues to a proper conformation [99]. A more 
thorough explanation of the whole procedure can be found at 
Filntisi et al. [100]. Voynov et al. has also computationally 
designed antibody cysteine variants through homology mod-
elling and evaluated them for their Spatial Aggregation Pro-
pensity (SAP) [101]. Besides using antibody-cysteine vari-
ants, it is also possible to incorporate amino acids into the 
backbone of the antibody or enzyme, an approach that ex-
ploit short peptide sequences involved in posttranslational 
modifications [102]. Independent of the method, molecular 
modelling approaches –in general- provide a platform for 
systematic ADC generation, thus shortening the experimen-
tal time required for development of effective ADCs. 
1.3.2. Molecular Docking of Antibody-antigen Complexes 

The successful application of ADC as anticancer thera-
peutics is particularly dependent on the cytotoxic potency of 
the cytotoxic payload and the ability of antibodies or immu-
noglobulins to selectively recognize unique conformations 
and spatial hot points located at the surface of antigens with 
exquisite specificity and a high binding affinity. The associa-
tion of the antibody molecule to the cognate antigen is driven 
by a considerable number of non-covalent interactions taking 
place between the binding site of antigens and antibodies, 
which are known as respectively the epitope and the para-
tope. Among them are electrostatic interactions, hydrogen 
bonds, van der Waals interactions, and hydrophobic interac-
tions [103-104]. Structural understanding of antibody-
antigen interactions has been the focus in the field of immu-
nological research and pharmaceutical applications, includ-
ing the design and synthesis of novel epitopes that can be 
used as vaccines, and novel antibodies with optimized prop-
erties. For a holistic understanding of the structural basis of 
antigen-antibody complexes, the knowledge regarding the 
3D structure of these complexes is fundamental. The struc-
ture determination of protein-protein complexes has been 
mainly accomplished by two experimental techniques: X-ray 
crystallography and Nuclear Magnetic Resonance (NMR) 
Spectroscopy. In fact, inherent fluctuations of atoms that 
make up protein-protein complexes make the crystallization 
difficult, while the structures of complexes formed by high-
molecular weight proteins are difficult to study with NMR 
Spectroscopy [105]. Such technical shortcomings associated 
with these experimental approaches have been reflected by 
the disparity between the number of experimentally solved 
protein-protein complexes which are deposited in the PDB 
and the number of complexes of structures of the individual 
proteins [106]. Over the past decade, the development of a 
large number of algorithms for predicting structure of pro-

tein-protein complexes by computational docking has con-
tributed to gain additional insights on the structure of bio-
logically/biochemically relevant protein-protein interactions, 
as in the case of antigen-antibody complexes. In fact, pro-
tein-protein docking has emerged as one of the most focal 
points in computational proteomics and structural biology. It 
predicts the most likely quaternary structure for protein-
protein complexes using the information coming from indi-
vidual proteins that make up the complex [107-109]. The 
first key step is the generation of the structures of the indi-
vidual antigen and the antibody. In a “bound” docking pro-
cedure, the protein structures within a co-crystalized com-
plex are dissociated and re-docked using a docking algo-
rithm. No conformational changes are involved in this pro-
cedure, so that the interfaces of the protein structures can 
match ideally. The “bound” docking is unlikely to provide 
additional structural information if an experimentally deter-
mined protein-protein complex is already available. In an 
“unbound” docking procedure, the separated proteins are 
originated from experimentally determined structures either 
in the free form or associated with a different binding part-
ner. The approaches of “unbound” docking have to deal with 
the drastic conformational changes occurring between the 
unbound and bound protein structures, as in the case of anti-
body-antigen complexes [110]. When no 3D structure infor-
mation of the interacting proteins is available, the accurate 
prediction of the most likely bound conformation of protein-
protein complexes can be a major bottleneck, particularly 
due to the inclusion of errors associated with “double model-
ing” (the modeling of the separated proteins and the model-
ing of the protein-protein complex) [109]. Homology model-
ing techniques can be employed for the construction of 
atomic resolution model of the target proteins by using its 
query amino acid sequence and an experimentally available 
3D structure of a related homologous protein, which can be 
used as a template. Modeller software, which is one of the 
widely used homology modelling tools[111], provides a 
simplified approach for modelling by using a single tem-
plate. There are also more complex endeavors which con-
sider multiple templates, and include various parameters 
such as secondary structure, salt-bridges, and many other 
characteristics. In the context of antibody-antigen com-
plexes, a plethora of computational tools has been used for 
the prediction of the structure of antibodies and for the map-
ping of epitopic regions. A special focus to the prediction of 
antibody structure and antigenic epitopes is given below. 
Having chosen or generated the starting structures of anti-
body and the antigen, both proteins are then brought together 
by a specific docking algorithm. The identification of the 
most likely conformations of both proteins to form a stable 
complex must involve the exploration of a large conforma-
tional space representing various potential binding poses of 
the binding partners and the prediction of the interaction 
energy associated to each of the predicted binding poses 
[107-109]. In order to find the correct orientation, the rela-
tive position of the binding partners is constantly changed 
through a cyclic and iterative process, in which the different 
binding conformations are evaluated by scoring functions, 
until converging to a minimum energy conformation. The 
speed and effectiveness are two critical parameters in a con-
formational search procedure, in order to cover the relevant 
conformational space [107-109]. Subsequently, the most 
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likely conformations of the docking partners of a protein-
protein complex can be discriminated from the inaccurate 
ones by using other scoring functions. The correct binding 
conformation is assumed to be the most energetically fa-
vored, and thus the conformation with the lowest energy. In 
sum, scoring functions are estimated mathematical functions 
that should include and appropriately weigh all the physico-
chemical parameters, including intermolecular interactions, 
desolvation, and entropic effects. In principle, the greater the 
number of evaluated physicochemical parameters or the bet-
ter they are evaluated, the greater the accuracy of the scoring 
function [107-109]. Nevertheless, as the computational cost 
also increases proportionally with the number of included 
parameters, an effective scoring function should provide a 
perfect combination between the accuracy and the speed of 
the calculation. Several software packages have been used 
for antibody-antigen docking, including Profacgen [112], 
SnugDock [113], surFIT [114], PIPER [115] with the anti-
body-Decoy As the Reference State (antibody-DARS) poten-
tial [116], Zhiping DOCKing (ZDOCK) [117] with the anti-
body i-Patch potential [118]. 
1.3.3. Prediction of Antibody Structure 

Antibodies or immunoglobulins are large glycoproteins 
that consist of a tetramer of two identical pairs of polypep-
tide chains, namely the heavy and the light chains, which are 
linked by disulphide bonds to form the arms of a Y-shaped 
structure (Fig. 3). 

Each arm is composed of two variable domains (VH in 
the heavy chain and VL in the light chain) and two constant 
domains (CH1 in the heavy chain and CL in the light chain) 
[120]. The interaction of CH1 and VH domains of heavy 
chains with the CL and VL domains of light chains composes 
the Fragment, antigen binding (Fab) or the “arms” of the Y. 
Within the Fab, the VH and VL domains dimerize to make up 
the FV fragment which is located at the NH2-terminal domain 
of each arm and it is responsible for antigen binding [120]. 
The FV fragment is a central region for the occurrence of 
complex processes of V(D)J recombination and somatic hy-
permutation [121-122]. These events are responsible for the 

production of a highly diverse repertoire of antibodies, 
which are able to recognize a variety of antigenic determi-
nants, the so-called epitopes. The VH and VL domains of FV 
fragment are subdivided into the HyperVariable (HV) and 
the Framework Regions (FRs). While HV regions display a 
high amino acid sequence variability among different anti-
bodies, the FR regions are highly conserved both in sequence 
and in conformation. Within the VH and VL domains, three 
HV regions of each chain (L1-L3 for the light chain and H1-
H3 in the heavy chain), often referred as Complementarity 
Determining Regions (CDR), form the region of the anti-
body, the so-called paratope, which is in direct contact with 
the surface of the antigen. The four FR regions of variable 
domains form β-sheets that provide the structural scaffolding 
to hold the HV loops in contact with the antigen. For each 
heavy chain, two additional constant domains, CH2 and CH3, 
build up the crystallizable (Fc) region which is able to bind to 
various cell receptors and determines the mechanism of the 
immune system depending on the antibody isoform (IgG, 
IgM, IgA, IgE, and IgD).  

The primary differences among distinct antibody mole-
cules reside on the conformation, structural context, and the 
amino acid sequence of the β-sheet part of the variable do-
mains of the FV fragment that governs the specific binding of 
the antibody. The prediction methods which are developed 
for prediction of structures of antibodies have been focused 
on modeling the FV region. This prediction is critical for elu-
cidation of the principles that govern antibody-antigen rec-
ognition and also for development of novel antibodies with 
an enhanced affinity and specificity. From an experimental 
point of view, the task of predicting the structure of an anti-
body involves mainly two fundamental steps: i) the predic-
tion of the structurally conserved FRs and ii) that of the HV 
loops. The structural conservation of FRs is remarkably high 
among the FV fragments that belonging to distinct antibodies 
which makes construction of reliable models of FRs possible 
[123-125]. However, the FRs of light and heavy chains 
might need to be modelled using different antibody tem-
plates, which can be problematic for assembling the heavy 
and the light chains of the variable domains. A correct pack-

 
Fig. (3). A) The 3D structure of an antibody molecule (PDBid: 1IGT) [119]. B) A schematic representation of the antibody scaffold. 
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ing of the heavy and the light chains is crucial for an accu-
rate orientation of the antigen-binding site of the FV domain 
[126].  

On the other hand, the structure prediction of CDR loops 
either by homology modeling techniques or ab initio calcula-
tions still remains as a challenging task [127-128]. Despite 
the high amino acid sequence variability, the investigation of 
crystal structures of antibodies has shown that the conforma-
tional diversity in five of the six CDR loops (L1, L2, L3, H1, 
and H2) is limited. In fact, these five loops can adopt a few 
number of different conformations, forming a set of discrete 
conformational classes, which is known as canonical struc-
tures [129-130]. Interestingly, the canonical conformations 
adopted by a specific CDR loop depend exclusively on its 
length and the identity of specific amino acid residues which 
are located in key positions both within and outside of the 
loops. The identification of a specific pattern of amino acid 
residues at certain positions, which are thought to dictate the 
structure, can be used to predict the canonical class of a CDR 
loop with unknown structure with high accuracy solely from 
its amino acid sequence [131-132]. In contrast to the other 
five CDR loops, no such canonical structures have ever been 
established for the H3 loops due to the large variability on 
the loop length, amino acid sequence, and the structure. Ad-
ditionally, the H3 loop is located at the interface of VH and 
VL domains and interacts with residues located at both 
chains. The preservation of VL–VH domain orientation is of 
utmost importance in the process of antibody engineering in 
order to maintain the original topology of the antigen-
binding site. Therefore, the VL–VH domain orientation needs 
to be optimized during the modelling of H3. The accurate 
modeling of H3 loops and the preservation of VL–VH domain 
orientation remain as the most challenging tasks in the field 
of antibody structure prediction [133-134]. Several algo-
rithms developed for predicting the protein loop structures 
can be mainly divided into two categories, depending on 
how they generate the pool of conformations: i) knowledge-
based, where databases of fragments are searched to find 
possible conformations and ii) ab initio, where conforma-
tions are generated computationally from scratch. These al-
gorithms include the AntiBody structure GENeration algo-
rithm (ABGEN) [135], Accelrys Tools [136], BioLuminate 
and Prime [137], CODA [138], FREAD [139], H3Loopred 
[140], Kotal Antibody Builder [141], Molecular Operating 
Environment (MOE) [142], Prediction of ImmunoGlobulin 
Structure (PIGS) [143], RosettaAntibody [144], SmrtAnti-
body [145], Sphinx [146], Web Antibody Modeling (WAM) 
[147] (Fig. 4). 
1.3.4. Prediction of Antigen Epitopes  

Antigen epitopes, often referred to as B-cell epitopes, are 
molecular structures contained in the antigen that make spe-
cific interactions with the antibody paratopes. On the antigen 
side of the interaction, an accurate identification and charac-
terization of epitopes on target antigens is of utmost impor-
tance for immunological research and other medical applica-
tions. Experimental methodologies used for the identification 
of antigenic epitopes, namely X-ray crystallography, phage 
display, mass spectrometry, and mutagenesis analysis have 
shown to be expensive, labour-intensive, time-consuming, 
and ineffective for the identification of many epitopes. 

Therefore, there is an urgent need for development of man-
ageable and reliable computational tools for the prediction of 
the presence and the location of antigenic epitopes. The 
problem of predicting potential epitopes for antibody-antigen 
complexes has been widely explored by several research 
groups using various in silico tools [149-150]. In general, the 
epitopes are described as linear or continuous, when the an-
tibody interacts with a continuous stretch of amino acid resi-
dues located on the surface of an antigen, and as conforma-
tional or discontinuous, when the antibody interacts with 
segments of amino acid residues that are distantly separated 
in the protein sequence, but are brought into physical prox-
imity within the folded protein 3D structure (Fig. 5) [151]. 
The specificity of Linear Epitopes (LEs) is driven by the 
sequence and conformation of amino acid residues that make 
up the protein antigen. On the other hand, the specificity of 
Conformational Epitopes (CEs) is dependent on the 3D fold-
ing and conformation of LEs [152]. In the past, researchers 
had been focusing on the development of algorithms for the 
prediction of LEs that rely on properties that can be extracted 
from the linear sequence of the antigen. Currently, several 
algorithms are available for the prediction of LEs, including 
ABCpred [153], BCEPred [154], BCPreds [155], BepiPred 
[156], BEPITOPE [157], B-cell Epitope prediction using 
Support vector machine Tool (BEST) [158], COBEpro 
[159], Linear B-cell epitope (LBtope) [160], Linear Epitope 
Prediction System (LEPS) [161-162], Predictive Estimation 
Of Protein Linear Epitopes (PEOPLE) [163]. In general, 
most of these algorithms evaluate a number of physico-
chemical properties, namely hydrophilicity, secondary struc-
ture, segmental mobility, flexibility, antigenicity, and surface 

 
Fig. (4). Representation of the variable region of the antibody 
(PDBid 4G6F) [148]. Algorithms which are used for the structure 
prediction of CDR loops of antibodies are shown in blue rectan-
gles.  
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accessibility to predict antigenicity, the amino acid residues 
of antigen sequence, and then employ several ML algo-
rithms, such as Support Vector Machine (SVM) or Artificial 
Neural Network (ANN) algorithms, to predict LEs. How-
ever, it has been estimated that approximately 90% of all 
antigenic epitopes are CEs [164], and therefore the focus on 
the identification of CEs is a more practical and profitable 
approach. The prediction of CEs has demonstrated to be a 
tremendous challenge in bioinformatics. The existing in 
silico methodologies for the prediction of CEs require the 3D 
structures of the antigen and/or antigen-antibody complexes. 
The use of CEs derived from available X-ray structures can 
be extremely complex. The reduced available data on CEs in 
different antigens compared to the data of LEs and the rela-
tively small number of solved structures of antigen-antibody 
complexes can restrain the development of reliable and accu-
rate methods for the prediction of CEs [165]. For CE predic-
tion, several algorithms have been developed including B-
cell Epitope prediction by Evolutionary information and 
Propensity (BEEPro) [166], BepiPred-2.0 [167], B-Pred 
[168], Bpredictor [169], Conformational B-cell epitope 
(CBtope) [170], Conformational Epitope prediction based on 
Knowledge-based Energy and Geometrical neighbouring 
residue contents (CE-KEG) [171], Conformational Epitope 
Prediction (CEP) [172], DiscoTope [165], DiscoTope-2.0 
[173], ElliPro [174], Epitope Prediction by ConsEnsus Scor-
ing (EPCES) [175], EPITOPIA [176], Epitope Prediction by 
Support Vector Regression (EPSVR) [177], PEPITO [178], 
PEPOP [179], Spatial Epitope Prediction of Protein Antigens 
(SEPPA) [180], SEPPA-2.0 [181]. 
1.3.5. Computational Methods Used to Calculate Energy of 
ADCs 

In this section, we reviewed computational tools which 
are used to estimate binding free energy of an ADC to its 
target antigen which is exclusively expressed on the surface 
of the tumour cell. In particular, we focus on methods such 

as umbrella sampling and steered MD simulations, to which 
Jarzynski’s equality is applied, for estimation of the free en-
ergy. Moreover, we also focus on computational techniques 
used to investigate changes in membrane dynamics upon 
ADC-antigen complex formation. This kind of knowledge 
will not only allow getting an insight on the global properties 
of the system but also help dissect details of the interaction 
between the ADC and the antigen at the atomic level, thus 
guiding experimental studies to improve binding affinities 
and physicochemical properties of this emerging class of 
therapeutic molecules. 
1.3.5.1. In Silico Estimation of Binding Free Energy of 
ADC-antigen Complex 

In silico estimation of free energy of binding of an ADC 
to its antigen requires Cartesian coordinates of the complex, 
which as already mentioned can be provided by either X-
crystallography or NMR data. In the absence of any experi-
mental structure, homology modeling can be done as long as 
an appropriate template is available as discussed in detail in 
Section 1.3.1. If only the coordinates of individual compo-
nents of the system are available, but not the complex as a 
whole, then molecular docking can be used to get possible 
optimum conformation of the ADC. Before any calculation 
is made the system should be first minimized to eliminate 
bad atomic contacts. Subsequently, it should also be relaxed 
in the presence of both water and membrane to let atoms 
reorganize themselves in a physiologically similar environ-
ment.  
1.3.5.2. Umbrella Sampling 

Upon obtaining the equilibrated ADC/antigen complex, 
the free energy of binding can be estimated via umbrella 
sampling [182-183]. In this technique, the reaction coordi-
nate,! , which best describes the process studied, can be re-
strained, but not constrained, via biased potentials to drive 
ADC/antigen complex from one thermodynamic state to 

 
Fig. (5). Schematic representation of the antibody-linear epitope and antibody-conformational epitope interactions. The distinct in silico tools 
used for the prediction of linear and conformational epitopes of a protein antigen are described in green rectangles. 
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another (bound and unbound). It should be chosen properly 
otherwise artificially lower/higher energy values may be 
obtained [184]. In general,! , is defined as distance, torsion, 
or the Root-Mean-Square Deviation (RMSD) between given 
two reference points. The probability distribution of the sys-
tem along !  can be calculated by integrating out all degrees 
of freedom but ξ:  

           

  (1) 

where 
kT
1=! , and k and T correspond, respectively, to 

Boltzmann constant and temperature. !! dQ )( can be given 
as the probability of finding the system around! within a cut-
off of !d . From this, the free energy along the reaction co-
ordinate can be expressed as follows:  

 )(ln/1)( !"! QA #=                            (2) 

The phase-space integrals, which are given in Equation 1, 
are impossible to calculate in computer simulations. On the 
other hand, if the system is ergodic, that is to say, if ensem-
ble average is equal to the time-average, then the ensemble 
average, )(!Q , becomes equal to the time-average, (P )! , 
which is given as the following:  

 
                       

 (3) 

The intermediate states in the given process, in particular 
unbinding of ADC from its antigen, can be covered by cer-
tain numbers of windows, each of which is subjected to a 
separate MD run. This is done to ensure efficient sampling in 
all regions of ! . In each window, the system is kept close to 
the reference point ref

i! of the respective window i  by means 
of, usually, a simple harmonic biased potential with strength 
of K:  

 2)(2/)( ref
ii Kw !!! "=                         (4) 

The strength of the bias potential, K, has to be deter-
mined a priori. In general, it should be large enough to drive 
the system from its starting state towards the target state. On 
the other hand, too large K may cause very narrow distribu-
tions leading to generation of non-overlapping windows. 
This, in turn, necessitates addition of extra windows to fill 
the gap present in distributions of the neighbouring win-
dows, which is costly in terms of Central Processing Unit 
(CPU) time. In general, it is suggested to have many win-
dows rather than having fewer windows which are subjected 
to longer simulation times. This leads to better overlap be-
tween windows and thus having smaller statistical errors 
[185]. If available, experimental data can also be used to 
determine the most appropriate bias parameters [186]. After 
simulations are done, as long as overlapping distributions are 
achieved, the free energy curves obtained in each window 
can be combined together by using either Weighted Histo-
gram Analysis Method (WHAM) or umbrella integration. 
The main difference between WHAM and umbrella integra-

tion is that the unbiased distributions of the conformations 
obtained in each window are averaged out in the former, 
whereas the mean force is averaged out in the latter. This, in 
turn, allows estimation of the statistical error associated with 
the free energy in umbrella integration [187]. Subsequently, 
this can be used for determination of appropriate strength of 
the bias, K, as well as the optimum number of windows. As 
a side note, due to the modular nature of ADCs and the as-
sumption that binding of ADC to the target antigen is not 
affected by the linker and the payload the abovementioned 
calculations can be done by considering only the antibody 
part of the ADC.  
1.3.5.3. Steered MD Simulations with Application of 
Jarzynski’s Equality 

In contrast to umbrella sampling, steered MD simulations 
rely on non-equilibrium dynamics of the system, in which 
the motion is driven continuously along the reaction coordi-
nate,! , by an external potential function, u. This is done to 
drive the system from state A to B (in the case of ADC-
antigen complex, bound-unbound). The original system is 
called the intrinsic system and described by the Hamilto-
nian, ),(0 pqH . On the other hand, the perturbed system is 
called as the extended system and described as the follow-
ing: 

 ))(,(),())(,,( 000 truprHtprH !! +=           (5) 

where )(0 t!  is used to restrain the system in state A at time 
0, and in state B at time ! . If the reaction coordinate )(r! is 
a function of atom positions, )),(( tru ! is known as a steering 
function, which is, in general, centered on a given reference 
reaction coordinate, )(0 t!  and chosen harmonic: 

 2
0 ))()((2),( trktru !! "=                        (6) 

where k is the harmonic constant. In this technique, pulling 
of molecules is usually done by applying a force on one sin-
gle atom [188-190] in an effort to mimic an Atomic Force 
Microscopy (AFM) experiment, where! is given as the dis-
tance between the pulled and a fixed atom. Alternatively, 
! can also be given as the distance between the center of 
Mass (CM) of protein (e.g. target antigen) and the CM of the 
ligand (e.g. antibody part of the ADC). In the latter, this cor-
responds to uniformly applying a force to each atom in the 
given molecule, which is proportional to its mass. On the 
other hand, these approaches are not appropriate for big pro-
tein complexes bound by a strong interaction like 
ADC/antigen complex since these two methods can induce 
either distortions of the tertiary structure or partial unfolding 
before unbinding. In addition, if the interaction between the 
ADC and the antigen is spread over a large surface perpen-
dicular to the pulling direction this leads to rotation of the 
proteins, instead of separating them from each other. To 
avoid possible distortions and rolling artefacts an alternative 
scheme can be used [191]. According to it, the reference 
position of an atom is determined with respect to CM of the 
respective unit to which it belongs (e.g., ADC if one consid-
ers the antibody part). A harmonic potential energy, which is 
centered on the reference point, is applied only to the z coor-
dinate of the atom, while the movements on the other direc-
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tions remain free. The positions of the restrained atoms in 
the two proteins (the ADC and the antigen) are shifted uni-
formly along the z coordinate in opposite directions. By do-
ing so, in each unit, the reference regions do not change 
while the CM distance is increased. The free energy differ-
ences from steered MD simulations can be recovered using 
the Jarzynski’s identity [192]. In a non-equilibrium process, 
the external work done on the system from time 0 to ! can 
be given as follows: 

 ))(,,()( 0
0

tpr
t
HdtW !"

"

# $
$=

                      
 (7) 

where )(!w  corresponds to the work done by the extended 
system. The work, )(!w , in a non-equilibrium process de-
pends on the path taken between the initial and the target 
state, and hence on the starting condition at time 0. Accord-
ing to the second law of thermodynamics the average work 
cannot be smaller than the free energy difference between 
the initial and the final state, WG !" . Equality holds only 
if the process is reversible that is to say, if the work is inde-
pendent of the path. On the other hand, Jarzynski demon-
strated that this equality holds regardless of the speed of the 
process:  

 
0

WG ee !! "#" =
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where TkB
1=! . Here, the average is taken over different 

trajectories each of which starts with different initial veloc-
ity, thus having independent canonical distributions. In order 
to have an accurate estimation of the exponential average it 
is required to have a large number of trajectories [193-196]. 
The initial conformations which will be used in individual 
Steered Molecular Dynamics (SMD) runs can be obtained in 
two ways. Either independent configurations can be selected 
from a long reference simulation at equilibrium or, alterna-
tively, different replicas can be run in parallel each of which 
is started with a different initial random velocity. With the 
latter approach one can provide a better convergence be-
cause: 1) the structures obtained at the end of each short run 
do not deviate much from the reference one as opposed to 
those obtained from a long trajectory due to inherent MD 
inaccuracies, and 2) more diversity is obtained at the end of 
independent equilibrations than that can be obtained from 
consecutive frames of a long run. Finally, the bias and errors 
can be calculated using the scheme developed in [197] and 
used in [198] for systems having small number of pulling 
experiments as long as the collection of individual runs dis-
plays Gaussian-like distributions.  
1.3.5.4. In Silico Investigation of Changes in Membrane 
Dynamics Upon Formation of ADC/Antigen Complex: 
Possible Hint on the Capability of the ADC to Undergo 
Receptor-mediated Endocytosis 

In order for ADCs to act properly on the target tissue 
they must be efficiently taken inside of the cell. Since the 
formation of the ADC/antigen complex initiates receptor-
mediated endocytosis, it is crucial to consider interactions 
between the complex and the membrane at the atomic level 

for efficient design of this class of emerging molecules. On 
the other hand, considering both the time- (on the minute 
time-scale) and length-scales at which endocytosis occur in 
mammalian cell lines it is apparent that the process is far 
beyond the reach of atomistic MD simulations. Therefore, 
instead of representing whole process, representative part of 
it, namely remarkable increase in the membrane curvature, 
can be used as a hint to get an insight on the intrinsic capa-
bility of the ADC for undergoing receptor-mediated endocy-
tosis. For instance, the more the membrane curved it is more 
likely for ADC/receptor complex to undergo endocytosis.  

Related to this, a multiscale computational approach has 
been developed to quantify remodelling of membrane bilay-
ers by multi-helical membrane proteins [199]. In particular, 
G-Protein-Coupled Receptors (GPCRs) have been shown to 
display ligand-dependent membrane deformations. Here, the 
details of the method will not be given and can be found in 
Shan et al. [200]. A similar approach can be applied for in-
vestigating changes in the membrane curvature by using a 
collection of ADCs bound to the target antigen. To this end, 
as a first step, the coarse-grained representation of the sys-
tem is constructed, which can be done by using Martini force 
field [201], and the system is simulated until equilibrium is 
reached in terms of membrane curvature. Subsequently, the 
system can be back-transformed to atomistic representation 
to get insight into the global properties at the atomistic level. 
Similar methodology regarding back transforming has been 
shown to capture successfully the membrane insertion pref-
erences of GPCR transmembrane helices [202-203]. 

CONCLUSION 

Cancer is one of the lethal diseases worldwide, for which 
the development of novel therapeutics with clinical efficacy 
is challenging. Currently, targeted immunotherapy acts as an 
emergent approach as the immune system plays a crucial role 
in cancer progression. In fact, the use of antibodies provides 
a selective recognition of specific structures in the body 
which makes them an attractive tool for selective drug deliv-
ery. This constitutes the general basis of ADCs as antibodies 
are used to transport a cytotoxic drug directly to the specific 
cancer cell releasing the drug inside of them. Due to its 
specificity, ADC development is a complex, time-
consuming, and expensive process. On the other hand, com-
putational methods can be used to optimize each of these 
steps effectively. The knowledge of the 3D structure of these 
complexes as well as their conformational dynamics are fun-
damental for developing selective antibodies with high affin-
ity. They also allow for a deeper understanding of the inter-
action between antibodies and their antigens, and the ways to 
manipulate it. In particular, ML algorithms, molecular dock-
ing and MD simulations can be used to predict the best anti-
gen target in silico. To elucidate the molecular mechanism in 
which antibody, cytotoxic drug and target antigen interact 
with each other, more robust quantum mechanics approaches 
should be considered. Furthermore, in order to estimate bind-
ing free energy of an ADC to its target antigen umbrella 
sampling and steered MD simulations can be used. Changes 
in membrane dynamics upon ADC-antigen complex forma-
tion can be predicted using these methodologies which may 
give a hint on the tendency of the complex to undergo endo-
cytosis. To conclude, developing a functional ADC is re-
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markably challenging but it can still be achieved as long as 
the experimental methods are complemented with appropri-
ate computational ones.  

LIST OF ABBREVIATIONS 

ABGEN = the AntiBody structure GENeration algo-
rithm 

ADC = Antibody-Drug Conjugate 
AFM = Atomic Force Microscopy 
ANN = Artificial Neural Networks 
Bcl-2 = B-cell lymphoma-2 
BCRP = Breast Cancer Resistance Protein  
BEEPro = B-cell Epitope prediction by Evolutionary 

information and Propensity 
BEST = B-cell Epitope prediction using Support 

vector machine Tool 
BTG = Bacterial TransGlutaminase 
CAM = Cell-cell Adhesion Molecules 
CBtope = Conformational B-cell epitope 
CDR = Complementarity Determining Region 
CE = Conformational Epitopes 
CE-KEG = Conformational Epitope prediction based on 

Knowledge-based Energy and Geometrical 
neighboring residue contents 

CEP = Conformational Epitope Prediction 
CM = Center of Mass 
CPU = Central Processing Unit 
DAR = Drug-Antibody Ratio 
DARS = Decoy As the Reference State 
DLBCL = Diffuse Large B-Cell Lymphoma  
EMA = European Medicines Agency 
EPCES = Epitope Prediction by ConsEnsus Scoring 
EPSVR = Epitope Prediction by Support Vector Re-

gression 
FcRn = Neonatal Fc Receptor 
FDA = Food and Drug Administration 
FGE = Formylglycine-Generating Enzyme  
FR = Framework Region 
GalT = β-1,4-GalactosylTransferase  
GPCR = G-Protein-Coupled Receptor 
HER 2 = Human Epidermal growth factor Receptor 2 
HV = HyperVariable 
LBtope = Linear B-cell epitope 
LEPS = Linear Epitope Prediction System 
MAb = Monoclonal Antibody 
MD = Molecular Dynamics 

ML = Machine Learning 
MOE = Molecular Operating Environment 
MRP = Multidrug Resistance Protein 
P-gp = Permeability-glycoprotein 
pAcPhe = p-AcetylPhenylalanine  
pAMF = p-AzidoMethyl-L-phenylalanine  
PD = PharmacoDynamics  
PDB = Protein Data Bank 
PDGF = Platelet-Derived Growth Factor 
PEOPLE = Predictive Estimation Of Protein Linear 

Epitopes 
PK = PharmacoKinetics 
PIGS = Prediction of ImmunoGlobulin Structure 
pRb = Retinoblastoma protein 
SAP = Spatial Aggregation Propensity 
SE = Sequential Epitopes 
Sec = Selenocysteine 
SEPPA = Spatial Epitope Prediction of Protein Anti-

gens 
SialT = α-2,6-SialylTransferase  
SMCC = Succinimidyl-4-(N-Maleimidomethyl) Cy-

clohexane-1-Carboxylate  
SMD = Steered Molecular Dynamics 
SortA = Sortase A 
SVM = Support Vector Machine 
TGFα = Tumour Growth Factor α 
TM = Text Mining 
VEGF = Vascular Endothelial Growth Factor 
WAM = Web Antibody Modeling 
WHAM = Weighted Histogram Analysis Method 
ZDOCK = Zhiping DOCKing 

CONSENT FOR PUBLICATION 

Not applicable. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest, financial or 
otherwise. 

ACKNOWLEDGEMENTS 

Irina S. Moreira acknowledges support by the Fundação 
para a Ciência e a Tecnologia (FCT) Investigator programme 
- IF/00578/2014 (co-financed by European Social Fund and 
Programa Operacional Potencial Humano), and a Marie 
Skłodowska-Curie Individual Fellowship MSCA-IF-2015 
[MEMBRANEPROT 659826]. This work was also financed 
by the European Regional Development Fund (ERDF), 
through the Centro 2020 Regional Operational Programme 



14    Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 00 Melo et al. 

under project CENTRO-01-0145-FEDER-000008: Brain-
Health 2020, and through the COMPETE 2020 - Operational 
Programme for Competitiveness and Internationalisation and 
Portuguese national funds via FCT, under project POCI-01-
0145-FEDER-007440. Rita Melo acknowledges support 
from the FCT (FCT—SFRH/BPD/97650/2013). This work 
has been partially supported by the Fundação para a Ciência 
e Tecnologia (FCT), Portugal, through the 
UID/Multi/04349/2013 project in Centre for Nuclear Sci-
ences and Technologies (C2TN). 

REFERENCES 
[1] Global Burden of Disease Cancer, C., The Global Burden of Can-

cer 2013. JAMA oncology 2015, 1 (4), 505-527. 
[2] Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; 

Mathers, C.; Rebelo, M.; Parkin, D.; Forman, D.; Bray, F., GLO-
BOCAN 2012 v1. 0, Cancer Incidence and Mortality Worldwide: 
IARC CancerBase No. 11 [Internet]. 2013; Lyon, France: Interna-
tional Agency for Research on Cancer. globocan. iarc. fr/Default. 
aspx 2014. 

[3] Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R. 
A., DNA repair pathways as targets for cancer therapy. Nature re-
views. Cancer 2008, 8 (3), 193. 

[4] Crosta, P., Cancer: Facts, Causes, Symptoms and Research. Diak-
ses tanggal 2016, 6. 

[5] Pillai, R. K.; Jayasree, K., Rare cancers: Challenges & issues. The 
Indian Journal of Medical Research 2017, 145 (1), 17-27. 

[6] Mallone, S.; De Angelis, R.; van der Zwan, J. M.; Trama, A.; Sies-
ling, S.; Gatta, G.; Capocaccia, R., Methodological aspects of esti-
mating rare cancer prevalence in Europe: the experience of the 
RARECARE project. Cancer Epidemiol 2013, 37 (6), 850-6. 

[7] Hanahan, D.; Weinberg, Robert A., Hallmarks of Cancer: The Next 
Generation. Cell 144 (5), 646-674. 

[8] Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M., Angio-
genesis in Cancer. Vascular Health and Risk Management 2006, 2 
(3), 213-219. 

[9] Davies, N. J.; Batehup, L.; Thomas, R., The role of diet and physi-
cal activity in breast, colorectal, and prostate cancer survivorship: a 
review of the literature. British Journal of Cancer 2011, 105 (Suppl 
1), S52-S73. 

[10] Weissleder, R., Molecular imaging in cancer. Science 2006, 312 
(5777), 1168-1171. 

[11] Fass, L., Imaging and cancer: A review. Molecular Oncology 2008, 
2 (2), 115-152. 

[12] Sumer, B.; Gao, J., Theranostic nanomedicine for cancer. 2008. 
[13] Ahmed, N.; Fessi, H.; Elaissari, A., Theranostic applications of 

nanoparticles in cancer. Drug Discovery Today 2012, 17 (17), 928-
934. 

[14] A. Baudino, T., Targeted Cancer Therapy: The Next Generation of 
Cancer Treatment. Current Drug Discovery Technologies 2015, 12 
(1), 3-20. 

[15] Harris, M., Monoclonal antibodies as therapeutic agents for cancer. 
The Lancet Oncology 2004, 5 (5), 292-302. 

[16] Panchal, R. G., Novel therapeutic strategies to selectively kill can-
cer cells. Biochemical pharmacology 1998, 55 (3), 247-252. 

[17] Kratz, F.; Müller, I. A.; Ryppa, C.; Warnecke, A., Prodrug Strate-
gies in Anticancer Chemotherapy. ChemMedChem 2008, 3 (1), 20-
53. 

[18] Bareford, L. M.; Swaan, P. W., Endocytic mechanisms for targeted 
drug delivery. Advanced drug delivery reviews 2007, 59 (8), 748-
758. 

[19] Ritchie, M.; Tchistiakova, L.; Scott, N., Implications of receptor-
mediated endocytosis and intracellular trafficking dynamics in the 
development of antibody drug conjugates. mAbs 2013, 5 (1), 13-21. 

[20] Sievers, E. L.; Senter, P. D., Antibody-drug conjugates in cancer 
therapy. Annual review of medicine 2013, 64, 15-29. 

[21] Ducry, L.; Stump, B., Antibody−Drug Conjugates: Linking Cyto-
toxic Payloads to Monoclonal Antibodies. Bioconjugate Chemistry 
2010, 21 (1), 5-13. 

[22] Shefet-Carasso, L.; Benhar, I., Antibody-targeted drugs and drug 
resistance--challenges and solutions. Drug resistance updates : re-

views and commentaries in antimicrobial and anticancer chemo-
therapy 2015, 18, 36-46. 

[23] Pietersz, G.; Krauer, K., Antibody-Targeted Drugs for the Therapy 
of Cancer. Journal of Drug Targeting 1994, 2 (3), 183-215. 

[24] Perez, H. L.; Cardarelli, P. M.; Deshpande, S.; Gangwar, S.; 
Schroeder, G. M.; Vite, G. D.; Borzilleri, R. M., Antibody–drug 
conjugates: current status and future directions. Drug Discovery 
Today 2014, 19 (7), 869-881. 

[25] Hock, M. B.; Thudium, K. E.; Carrasco-Triguero, M.; Schwabe, N. 
F., Immunogenicity of Antibody Drug Conjugates: Bioanalytical 
Methods and Monitoring Strategy for a Novel Therapeutic Modal-
ity. The AAPS Journal 2015, 17 (1), 35-43. 

[26] Hughes, B., Antibody-drug conjugates for cancer: poised to de-
liver? Nature reviews. Drug discovery 2010, 9 (9), 665-7. 

[27] Zolot, R. S.; Basu, S.; Million, R. P., Antibody-drug conjugates. 
Nat Rev Drug Discov 2013, 12 (4), 259-260. 

[28] Widdison, W. C.; Chari, R. V. J., Factors Involved in the Design of 
Cytotoxic Payloads for Antibody–Drug Conjugates. In Antibody-
Drug Conjugates and Immunotoxins: From Pre-Clinical Develop-
ment to Therapeutic Applications, Phillips, G. L., Ed. Springer 
New York: New York, NY, 2013; pp 93-115. 

[29] Peters, C.; Brown, S., Antibody–drug conjugates as novel anti-
cancer chemotherapeutics. Bioscience reports 2015, 35 (4), 
e00225. 

[30] Zhao, R. Y.; Wilhelm, S. D.; Audette, C.; Jones, G.; Leece, B. A.; 
Lazar, A. C.; Goldmacher, V. S.; Singh, R.; Kovtun, Y.; Widdison, 
W. C., Synthesis and evaluation of hydrophilic linkers for anti-
body–maytansinoid conjugates. Journal of medicinal chemistry 
2011, 54 (10), 3606-3623. 

[31] Flygare, J. A.; Pillow, T. H.; Aristoff, P., Antibody-Drug Conju-
gates for the Treatment of Cancer. Chemical Biology & Drug De-
sign 2013, 81 (1), 113-121. 

[32] Lu, J.; Jiang, F.; Lu, A.; Zhang, G., Linkers Having a Crucial Role 
in Antibody-Drug Conjugates. International journal of molecular 
sciences 2016, 17 (4), 561. 

[33] Teicher, B. A.; Chari, R. V. J., Antibody Conjugate Therapeutics: 
Challenges and Potential. Clinical Cancer Research 2011, 17 (20), 
6389-6397. 

[34] Feld, J.; Barta, S. K.; Schinke, C.; Braunschweig, I.; Zhou, Y.; 
Verma, A. K., Linked-in: design and efficacy of antibody drug con-
jugates in oncology. Oncotarget 2013, 4 (3), 397-412. 

[35] Jaracz, S.; Chen, J.; Kuznetsova, L. V.; Ojima, I., Recent advances 
in tumor-targeting anticancer drug conjugates. Bioorganic & me-
dicinal chemistry 2005, 13 (17), 5043-5054. 

[36] Polson, A. G.; Calemine-Fenaux, J.; Chan, P.; Chang, W.; Chris-
tensen, E.; Clark, S.; de Sauvage, F. J.; Eaton, D.; Elkins, K.; 
Elliott, J. M., Antibody-drug conjugates for the treatment of non–
hodgkin's lymphoma: target and linker-drug selection. Cancer re-
search 2009, 69 (6), 2358-2364. 

[37] Patil, R.; Portilla-Arias, J.; Ding, H.; Konda, B.; Rekechenetskiy, 
A.; Inoue, S.; Black, K. L.; Holler, E.; Ljubimova, J. Y., Cellular 
Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage 
Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic 
Acid). International Journal of Molecular Sciences 2012, 13 (9), 
11681-11693. 

[38] Balendiran, G. K.; Dabur, R.; Fraser, D., The role of glutathione in 
cancer. Cell biochemistry and function 2004, 22 (6), 343-52. 

[39] Alley, S. C.; Okeley, N. M.; Senter, P. D., Antibody-drug conju-
gates: targeted drug delivery for cancer. Current opinion in chemi-
cal biology 2010, 14 (4), 529-37. 

[40] Dosio, F.; Brusa, P.; Cattel, L., Immunotoxins and anticancer drug 
conjugate assemblies: the role of the linkage between components. 
Toxins 2011, 3 (7), 848-883. 

[41] Tsuchikama, K.; An, Z., Antibody-drug conjugates: recent ad-
vances in conjugation and linker chemistries. Protein & cell 2016, 
1-14. 

[42] Chari, R. V. J., Targeted Cancer Therapy: Conferring Specificity to 
Cytotoxic Drugs. Accounts of Chemical Research 2008, 41 (1), 98-
107. 

[43] Sun, M. M. C.; Beam, K. S.; Cerveny, C. G.; Hamblett, K. J.; 
Blackmore, R. S.; Torgov, M. Y.; Handley, F. G. M.; Ihle, N. C.; 
Senter, P. D.; Alley, S. C., Reduction−Alkylation Strategies for the 
Modification of Specific Monoclonal Antibody Disulfides. Biocon-
jugate Chemistry 2005, 16 (5), 1282-1290. 



Computational Approaches in Antibody-drug Conjugate Optimization Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 00    15 

[44] Lyon, R. P.; Meyer, D. L.; Setter, J. R.; Senter, P. D., Conjugation 
of anticancer drugs through endogenous monoclonal antibody cys-
teine residues. Methods in enzymology 2012, 502, 123-38. 

[45] Boylan, N. J.; Zhou, W.; Proos, R. J.; Tolbert, T. J.; Wolfe, J. L.; 
Laurence, J. S., Conjugation Site Heterogeneity Causes Variable 
Electrostatic Properties in Fc Conjugates. Bioconjugate Chemistry 
2013, 24 (6), 1008-1016. 

[46] Acchione, M.; Kwon, H.; Jochheim, C. M.; Atkins, W. M. In Im-
pact of linker and conjugation chemistry on antigen binding, Fc re-
ceptor binding and thermal stability of model antibody-drug conju-
gates, MAbs, Taylor & Francis: 2012; pp 362-372. 

[47] Hofer, T.; Skeffington, L. R.; Chapman, C. M.; Rader, C., Molecu-
larly Defined Antibody Conjugation through a Selenocysteine In-
terface. Biochemistry 2009, 48 (50), 12047-12057. 

[48] Axup, J. Y.; Bajjuri, K. M.; Ritland, M.; Hutchins, B. M.; Kim, C. 
H.; Kazane, S. A.; Halder, R.; Forsyth, J. S.; Santidrian, A. F.; 
Stafin, K., Synthesis of site-specific antibody-drug conjugates us-
ing unnatural amino acids. Proceedings of the National Academy of 
Sciences 2012, 109 (40), 16101-16106. 

[49] Zimmerman, E. S.; Heibeck, T. H.; Gill, A.; Li, X.; Murray, C. J.; 
Madlansacay, M. R.; Tran, C.; Uter, N. T.; Yin, G.; Rivers, P. J.; 
Yam, A. Y.; Wang, W. D.; Steiner, A. R.; Bajad, S. U.; Penta, K.; 
Yang, W.; Hallam, T. J.; Thanos, C. D.; Sato, A. K., Production of 
Site-Specific Antibody–Drug Conjugates Using Optimized Non-
Natural Amino Acids in a Cell-Free Expression System. Bioconju-
gate Chemistry 2014, 25 (2), 351-361. 

[50] VanBrunt, M. P.; Shanebeck, K.; Caldwell, Z.; Johnson, J.; 
Thompson, P.; Martin, T.; Dong, H.; Li, G.; Xu, H.; D’Hooge, F., 
Genetically encoded azide containing amino acid in mammalian 
cells enables site-specific antibody–drug conjugates using click cy-
cloaddition chemistry. Bioconjugate chemistry 2015, 26 (11), 2249-
2260. 

[51] Madej, M. P.; Coia, G.; Williams, C. C.; Caine, J. M.; Pearce, L. 
A.; Attwood, R.; Bartone, N. A.; Dolezal, O.; Nisbet, R. M.; Nut-
tall, S. D.; Adams, T. E., Engineering of an anti-epidermal growth 
factor receptor antibody to single chain format and labeling by Sor-
tase A-mediated protein ligation. Biotechnology and bioengineer-
ing 2012, 109 (6), 1461-70. 

[52] Jeger, S.; Zimmermann, K.; Blanc, A.; Grünberg, J.; Honer, M.; 
Hunziker, P.; Struthers, H.; Schibli, R., Site‐specific and 
stoichiometric modification of antibodies by bacterial transglu-
taminase. Angewandte Chemie International Edition 2010, 49 (51), 
9995-9997. 

[53] Dennler, P.; Chiotellis, A.; Fischer, E.; Brégeon, D.; Belmant, C.; 
Gauthier, L.; Lhospice, F.; Romagne, F. o.; Schibli, R., Transglu-
taminase-based chemo-enzymatic conjugation approach yields ho-
mogeneous antibody–drug conjugates. Bioconjugate chemistry 
2014, 25 (3), 569-578. 

[54] Albers, A. E.; Garofalo, A. W.; Drake, P. M.; Kudirka, R.; de Hart, 
G. W.; Barfield, R. M.; Baker, J.; Banas, S.; Rabuka, D., Exploring 
the effects of linker composition on site-specifically modified anti-
body–drug conjugates. European Journal of Medicinal Chemistry 
2014, 88, 3-9. 

[55] Zhou, Q.; Stefano, J. E.; Manning, C.; Kyazike, J.; Chen, B.; 
Gianolio, D. A.; Park, A.; Busch, M.; Bird, J.; Zheng, X.; Simonds-
Mannes, H.; Kim, J.; Gregory, R. C.; Miller, R. J.; Brondyk, W. H.; 
Dhal, P. K.; Pan, C. Q., Site-Specific Antibody–Drug Conjugation 
through Glycoengineering. Bioconjugate Chemistry 2014, 25 (3), 
510-520. 

[56] Beck, A.; Goetsch, L.; Dumontet, C.; Corvaia, N., Strategies and 
challenges for the next generation of antibody-drug conjugates. Na-
ture reviews. Drug discovery 2017, 16 (5), 315-337. 

[57] Parslow, A. C.; Parakh, S.; Lee, F.-T.; Gan, H. K.; Scott, A. M., 
Antibody–Drug Conjugates for Cancer Therapy. Biomedicines 
2016, 4 (3), 14. 

[58] Diamantis, N.; Banerji, U., Antibody-drug conjugates—an emerg-
ing class of cancer treatment. British Journal of Cancer 2016, 114 
(4), 362-367. 

[59] Rostami, S.; Qazi, I.; Sikorski, R. The Clinical Landscape of Anti-
body-drug Conjugates 2014. 

[60] Deng, S.; Lin, Z.; Li, W., Recent advances in antibody-drug conju-
gates for breast cancer treatment. Curr Med Chem 2017. 

[61] Zhao, B.; Chen, R.; O'Connor, O. A.; Gopal, A. K.; Ramchandren, 
R.; Goy, A.; Matous, J. V.; Fasanmade, A. A.; Manley, T. J.; Han, 

T. H., Brentuximab vedotin, an antibody–drug conjugate, in pa-
tients with CD30‐positive haematologic malignancies and hepatic 
or renal impairment. British Journal of Clinical Pharmacology 
2016, 82 (3), 696-705. 

[62] Lambert, J. M.; Chari, R. V. J., Ado-trastuzumab Emtansine (T-
DM1): An Antibody–Drug Conjugate (ADC) for HER2-Positive 
Breast Cancer. Journal of Medicinal Chemistry 2014, 57 (16), 
6949-6964. 

[63] Yilmaz, M.; Richard, S.; Jabbour, E., The clinical potential of 
inotuzumab ozogamicin in relapsed and refractory acute lympho-
cytic leukemia. Therapeutic Advances in Hematology 2015, 6 (5), 
253-261. 

[64] Gan, H. K.; Papadopoulos, K. P.; Fichtel, L.; Lassman, A. B.; Mer-
rell, R.; Bent, M. J. V. D.; Kumthekar, P.; Scott, A. M.; Pedersen, 
M.; Gomez, E. J.; Fischer, J. S.; Ames, W.; Xiong, H.; Lee, H.-J.; 
Munasinghe, W.; Roberts-Rapp, L.; Ansell, P.; Holen, K. D.; Lai, 
R.; Reardon, D. A., Phase I study of ABT-414 mono- or combina-
tion therapy with temozolomide (TMZ) in recurrent glioblastoma 
(GBM). Journal of Clinical Oncology 2015, 33 (15_suppl), 2016-
2016. 

[65] Phillips, A. C.; Boghaert, E. R.; Vaidya, K. S.; Mitten, M. J.; Nor-
vell, S.; Falls, H. D.; DeVries, P. J.; Cheng, D.; Meulbroek, J. A.; 
Buchanan, F. G., ABT-414, an antibody–drug conjugate targeting a 
tumor-selective EGFR epitope. Molecular cancer therapeutics 
2016, 15 (4), 661-669. 

[66] Advani, R. H.; Lebovic, D.; Chen, A.; Brunvand, M.; Goy, A.; 
Chang, J. E.; Hochberg, E.; Yalamanchili, S.; Kahn, R.; Lu, D., 
Phase I Study of the Anti-CD22 Antibody–Drug Conjugate Pinatu-
zumab Vedotin with/without Rituximab in Patients with Re-
lapsed/Refractory B-cell Non-Hodgkin Lymphoma. Clinical Can-
cer Research 2016. 

[67] Polson, A. G.; Yu, S.-F.; Elkins, K.; Zheng, B.; Clark, S.; Ingle, G. 
S.; Slaga, D. S.; Giere, L.; Du, C.; Tan, C.; Hongo, J.-A.; Gogineni, 
A.; Cole, M. J.; Vandlen, R.; Stephan, J.-P.; Young, J.; Chang, W.; 
Scales, S. J.; Ross, S.; Eaton, D.; Ebens, A., Antibody-drug conju-
gates targeted to CD79 for the treatment of non-Hodgkin lym-
phoma. Blood 2007, 110 (2), 616-623. 

[68] Ott, P. A.; Pavlick, A. C.; Johnson, D. B.; Hart, L. L.; Infante, J. R.; 
Luke, J. J.; Lutzky, J.; Rothschild, N.; Spitler, L.; Cowey, C. L.; 
Alizadeh, A.; Salama, A.; He, Y.; Bagley, R. G.; Zhang, J.; Hamid, 
O., A phase 2 study of glembatumumab vedotin (GV), an antibody-
drug conjugate (ADC) targeting gpNMB, in advanced melanoma. 
Annals of Oncology 2016, 27 (suppl_6), 1147P-1147P. 

[69] Coiffier, B.; Thieblemont, C.; de Guibert, S.; Dupuis, J.; Ribrag, 
V.; Bouabdallah, R.; Morschhauser, F.; Navarro, R.; Le Gouill, S.; 
Haioun, C.; Houot, R.; Casasnovas, O.; Holte, H.; Lamy, T.; 
Broussais, F.; Payrard, S.; Hatteville, L.; Tilly, H., A phase II, sin-
gle-arm, multicentre study of coltuximab ravtansine (SAR3419) 
and rituximab in patients with relapsed or refractory diffuse large 
B-cell lymphoma. British Journal of Haematology 2016, 173 (5), 
722-730. 

[70] Hong, E. E.; Erickson, H.; Lutz, R. J.; Whiteman, K. R.; Jones, G.; 
Kovtun, Y.; Blanc, V.; Lambert, J. M., Design of Coltuximab 
Ravtansine, a CD19-Targeting Antibody–Drug Conjugate (ADC) 
for the Treatment of B-Cell Malignancies: Structure–Activity Rela-
tionships and Preclinical Evaluation. Molecular Pharmaceutics 
2015, 12 (6), 1703-1716. 

[71] Kantarjian, H. M.; Lioure, B.; Atallah, E.; Leguay, T.; Kelly, K.; 
Marolleau, J.-P.; Escoffre-Barbe, M.; Thomas, X. G.; Kim, S. K.; 
Cortes, J.; Jabbour, E.; O'Brien, S.; Bories, P.; Oprea, C.; Hat-
teville, L.; Dombret, H., A Phase 2 Study of Coltuximab 
Ravtansine (SAR3419) Monotherapy in Patients with Relapsed or 
Refractory Acute Lymphoblastic Leukemia (ALL). Clinical lym-
phoma, myeloma & leukemia 2016, 16 (3), 139-145. 

[72] Sloss, C. M.; O'Callaghan, K.; Deckert, J.; Tsui, J.; Lanieri, L.; 
Romanelli, A., Coltuximab Ravtansine (SAR3419) Demonstrates 
Enhanced Activity in Combination with Bendamustine, Gemcit-
abine and Novel Targeted Agents Such As PI3K Inhibitors in Pre-
Clinical Models of Relapsed and/or Refractory Non-Hodgkins 
Lymphoma (NHL). Blood 2015, 126 (23), 5125-5125. 

[73] Socinski, M. A.; Kaye, F. J.; Spigel, D. R.; Kudrik, F. J.; Ponce, S.; 
Ellis, P. M.; Majem, M.; Lorigan, P.; Gandhi, L.; Gutierrez, M. E.; 
Nepert, D.; Corral, J.; Ares, L. P., Phase 1/2 Study of the CD56-
Targeting Antibody-Drug Conjugate Lorvotuzumab Mertansine 



16    Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 00 Melo et al. 

(IMGN901) in Combination With Carboplatin/Etoposide in Small-
Cell Lung Cancer Patients With Extensive-Stage Disease. Clinical 
Lung Cancer 2017, 18 (1), 68-76.e2. 

[74] Chanan-Khan, A.; Wolf, J. L.; Garcia, J.; Gharibo, M.; Jagannath, 
S.; Manfredi, D.; Sher, T.; Martin, C.; Zildjian, S. H.; O'Leary, J.; 
Vescio, R., Efficacy Analysis From Phase I Study of Lorvotuzu-
mab Mertansine (IMGN901), Used as Monotherapy, In Patients 
with Heavily Pre-Treated CD56-Positive Multiple Myeloma - A 
Preliminary Efficacy Analysis. Blood 2010, 116 (21), 1962-1962. 

[75] Ludwig, H.; Hilbe, W.; Zojer, N., New drugs on the horizon. 
Treatment of myeloma in 2020, a perspective. memo-Magazine of 
European Medical Oncology 2015, 8 (1), 16-21. 

[76] Schönfeld, K.; Zuber, C.; Pinkas, J.; Häder, T.; Bernöster, K.; 
Uherek, C., Indatuximab ravtansine (BT062) combination treat-
ment in multiple myeloma: pre-clinical studies. Journal of Hema-
tology & Oncology 2017, 10, 13. 

[77] DiPippo, V. A.; Olson, W. C.; Nguyen, H. M.; Brown, L. G.; Ves-
sella, R. L.; Corey, E., Efficacy studies of an antibody‐drug conju-
gate PSMA‐ADC in patient‐derived prostate cancer xenografts. 
The Prostate 2015, 75 (3), 303-313. 

[78] Govindan, S. V.; Cardillo, T. M.; Moon, S.-J.; Hansen, H. J.; 
Goldenberg, D. M., CEACAM5-targeted therapy of human colonic 
and pancreatic cancer xenografts with potent labetuzumab-SN-38 
immunoconjugates. Clinical Cancer Research 2009, 15 (19), 6052-
6061. 

[79] Mullard, A., Maturing antibody-drug conjugate pipeline hits 30. 
Nature reviews. Drug discovery 2013, 12 (5), 329. 

[80] Dotan, E.; Starodub, A.; Berlin, J.; Lieu, C. H.; Guarino, M. J.; 
Marshall, J.; Hecht, J. R.; Cohen, S. J.; Messersmith, W. A.; Mali-
akal, P. P., A new anti-CEA-SN-38 antibody-drug conjugate 
(ADC), IMMU-130, is active in controlling metastatic colorectal 
cancer (mCRC) in patients (pts) refractory or relapsing after iri-
notecan-containing chemotherapies: Initial results of a phase I/II 
study. American Society of Clinical Oncology: 2015. 

[81] Dotan, E.; Berlin, J.; Starodub, A.; Guarino, M. J.; Cohen, S. J.; 
Maliakal, P. P.; Govindan, S. V.; Wegener, W. A.; Sharkey, R. M.; 
Goldenberg, D. M., Activity of IMMU-130 anti-CEACAM5-SN-38 
antibody-drug conjugate (ADC) on metastatic colorectal cancer 
(mCRC) having relapsed after CPT-11: Phase I study. American 
Society of Clinical Oncology: 2014. 

[82] Wickham, T.; Futch, K., Abstract P5-18-09: a phase I Study of 
MM-302, a HER2-targeted liposomal doxorubicin, in patients with 
advanced, HER2-positive breast cancer. AACR: 2012. 

[83] LoRusso, P.; Krop, I.; Miller, K.; Ma, C.; Siegel, B. A.; Shields, A. 
F.; Molnar, I.; Wickham, T.; Reynolds, J.; Campbell, K., Abstract 
CT234: A phase I study of MM-302, a HER2-targeted PEGylated 
liposomal doxorubicin, in patients with HER2+ metastatic breast 
cancer. AACR: 2015. 

[84] Espelin, C. W.; Leonard, S. C.; Geretti, E.; Wickham, T. J.; Hen-
driks, B. S., Dual HER2 targeting with trastuzumab and liposomal-
encapsulated doxorubicin (MM-302) demonstrates synergistic anti-
tumor activity in breast and gastric cancer. Cancer research 2016, 
76 (6), 1517-1527. 

[85] Miller, K.; Cortes, J.; Hurvitz, S. A.; Krop, I. E.; Tripathy, D.; 
Verma, S.; Riahi, K.; Reynolds, J. G.; Wickham, T. J.; Molnar, I.; 
Yardley, D. A., HERMIONE: a randomized Phase 2 trial of MM-
302 plus trastuzumab versus chemotherapy of physician’s choice 
plus trastuzumab in patients with previously treated, anthracycline-
naïve, HER2-positive, locally advanced/metastatic breast cancer. 
BMC Cancer 2016, 16, 352. 

[86] Sassoon, I.; Blanc, V., Antibody–Drug Conjugate (ADC) Clinical 
Pipeline: A Review. In Antibody-Drug Conjugates, Ducry, L., Ed. 
Humana Press: Totowa, NJ, 2013; pp 1-27. 

[87] Bredel, M.; Jacoby, E., Chemogenomics: an emerging strategy for 
rapid target and drug discovery. Nat Rev Genet 2004, 5 (4), 262-75. 

[88] Yang, Y.; Adelstein, S. J.; Kassis, A. I., Target discovery from data 
mining approaches. Drug Discov Today 2009, 14 (3-4), 147-54. 

[89] Fauteux, F.; Hill, J. J.; Jaramillo, M. L.; Pan, Y.; Phan, S.; Famili, 
F.; O'Connor-McCourt, M., Computational selection of antibody-
drug conjugate targets for breast cancer. Oncotarget 2016, 7 (3), 
2555-71. 

[90] Singh, A. P.; Shin, Y. G.; Shah, D. K., Application of Pharmacoki-
netic-Pharmacodynamic Modeling and Simulation for Antibody-
Drug Conjugate Development. Pharm Res 2015, 32 (11), 3508-25. 

[91] Filntisi, A.; Vlachakis, D.; Matsopoulos, G. K.; Kossida, S., Com-
putational Construction of Antibody-Drug Conjugates Using Sur-
face Lysines as the Antibody Conjugation Site and a Non-cleavable 
Linker. Cancer Inform 2014, 13, 179-86. 

[92] Vlachakis, D.; Kossida, S., Antibody Drug Conjugate bioinformat-
ics: drug delivery through the letterbox. Comput Math Methods 
Med 2013, 2013, 282398. 

[93] Kim, M. T.; Chen, Y.; Marhoul, J.; Jacobson, F., Statistical model-
ing of the drug load distribution on trastuzumab emtansine (Kad-
cyla), a lysine-linked antibody drug conjugate. Bioconjug Chem 
2014, 25 (7), 1223-32. 

[94] Bates, S. E.; Robey, R.; Miyake, K.; Rao, K.; Ross, D. D.; Litman, 
T., The role of half-transporters in multidrug resistance. J Bioenerg 
Biomembr 2001, 33 (6), 503-11. 

[95] Leslie, E. M.; Deeley, R. G.; Cole, S. P. C., Multidrug resistance 
proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP 
(ABCG2) in tissue defense. Toxicology and Applied Pharmacology 
2005, 204 (3), 216-237. 

[96] Ferreira, R. J.; Ferreira, M. J.; Dos Santos, D. J., Insights on P-
Glycoprotein's Efflux Mechanism Obtained by Molecular Dynam-
ics Simulations. J Chem Theory Comput 2012, 8 (6), 1853-64. 

[97] Behrens, C. R.; Liu, B., Methods for site-specific drug conjugation 
to antibodies. MAbs 2014, 6 (1), 46-53. 

[98] Bhakta, S.; Raab, H.; Junutula, J. R., Engineering THIOMABs for 
site-specific conjugation of thiol-reactive linkers. Methods Mol Biol 
2013, 1045, 189-203. 

[99] Berger, M., Convexity. The American Mathematical Monthly 1990, 
97 (8), 650-678. 

[100] Filntisi, A.; Vlachakis, D.; Matsopoulos, G. K., A Bioinformatics 
Method for the Production of Antibody-Drug Conjugates Through 
Site-Specific Cysteine Conjugation. In Bioinformatics - Updated 
Features and Applications, Abdurakhmonov, I. Y., Ed. InTech: Ri-
jeka, 2016; p Ch. 02. 

[101] Voynov, V.; Chennamsetty, N.; Kayser, V.; Wallny, H.-J.; Helk, 
B.; Trout, B. L., Design and Application of Antibody Cysteine 
Variants. Bioconjugate Chemistry 2010, 21 (2), 385-392. 

[102] Tumey, L. N.; Li, F.; Rago, B.; Han, X.; Loganzo, F.; Musto, S.; 
Graziani, E. I.; Puthenveetil, S.; Casavant, J.; Marquette, K.; Clark, 
T.; Bikker, J.; Bennett, E. M.; Barletta, F.; Piche-Nicholas, N.; 
Tam, A.; O'Donnell, C. J.; Gerber, H. P.; Tchistiakova, L., Site Se-
lection: a Case Study in the Identification of Optimal Cysteine En-
gineered Antibody Drug Conjugates. Aaps j 2017, 19 (4), 1123-
1135. 

[103] Absolom, D. R.; van Oss, C. J., The nature of the antigen-antibody 
bond and the factors affecting its association and dissociation. CRC 
Critical reviews in immunology 1986, 6 (1), 1-46. 

[104] van Oss, C. J.; Good, R. J.; Chaudhury, M. K., Nature of the anti-
gen-antibody interaction. Primary and secondary bonds: optimal 
conditions for association and dissociation. Journal of chromatog-
raphy 1986, 376, 111-9. 

[105] Dominguez, C.; Boelens, R.; Bonvin, A. M. J. J., HADDOCK:  A 
Protein−Protein Docking Approach Based on Biochemical or Bio-
physical Information. Journal of the American Chemical Society 
2003, 125 (7), 1731-1737. 

[106] Fahmy, A.; Wagner, G., TreeDock:  A Tool for Protein Docking 
Based on Minimizing van der Waals Energies. Journal of the 
American Chemical Society 2002, 124 (7), 1241-1250. 

[107] Lemos, A.; Leão, M.; Soares, J.; Palmeira, A.; Pinto, M.; Saraiva, 
L.; Sousa, M. E., Medicinal Chemistry Strategies to Disrupt the 
p53–MDM2/MDMX Interaction. Medicinal Research Reviews 
2016, 36 (5), 789-844. 

[108] Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R., Principles of dock-
ing: An overview of search algorithms and a guide to scoring func-
tions. Proteins: Structure, Function, and Bioinformatics 2002, 47 
(4), 409-443. 

[109] Vakser, Ilya A., Protein-Protein Docking: From Interaction to 
Interactome. Biophysical Journal 2014, 107 (8), 1785-1793. 

[110] Rini, J.; Schulze-Gahmen, U.; Wilson, I., Structural evidence for 
induced fit as a mechanism for antibody-antigen recognition. Sci-
ence 1992, 255 (5047), 959-965. 

[111] Webb, B.; Sali, A., Comparative Protein Structure Modeling Using 
MODELLER. Current protocols in bioinformatics / editoral board, 
Andreas D. Baxevanis ... [et al.] 2016, 54, 5.6.1-5.6.37. 



Computational Approaches in Antibody-drug Conjugate Optimization Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 00    17 

[112] Profacgen, Perfect Protein. 
https://www.profacgen.com/antibody%E2%80%93antigen-
docking.htm (Accessed August 30, 2017). 

[113] Sircar, A.; Gray, J. J., SnugDock: Paratope Structural Optimization 
during Antibody-Antigen Docking Compensates for Errors in An-
tibody Homology Models. PLOS Computational Biology 2010, 6 
(1), e1000644. 

[114] Shimba, N.; Kamiya, N.; Nakamura, H., Model Building of Anti-
body–Antigen Complex Structures Using GBSA Scores. Journal of 
Chemical Information and Modeling 2016, 56 (10), 2005-2012. 

[115] Kozakov, D.; Brenke, R.; Comeau, S. R.; Vajda, S., PIPER: an 
FFT-based protein docking program with pairwise potentials. Pro-
teins 2006, 65 (2), 392-406. 

[116] Brenke, R.; Hall, D. R.; Chuang, G.-Y.; Comeau, S. R.; Bohnuud, 
T.; Beglov, D.; Schueler-Furman, O.; Vajda, S.; Kozakov, D., Ap-
plication of asymmetric statistical potentials to antibody–protein 
docking. Bioinformatics 2012, 28 (20), 2608-2614. 

[117] Chen, R.; Li, L.; Weng, Z., ZDOCK: an initial-stage protein-
docking algorithm. Proteins 2003, 52 (1), 80-7. 

[118] Krawczyk, K.; Baker, T.; Shi, J.; Deane, C. M., Antibody i-Patch 
prediction of the antibody binding site improves rigid local anti-
body-antigen docking. Protein Eng Des Sel 2013, 26 (10), 621-9. 

[119] Harris, L. J.; Larson, S. B.; Hasel, K. W.; McPherson, A., Refined 
Structure of an Intact IgG2a Monoclonal Antibody. Biochemistry 
1997, 36 (7), 1581-1597. 

[120] Padlan, E. A., Anatomy of the antibody molecule. Molecular Im-
munology 1994, 31 (3), 169-217. 

[121] Li, Z.; Woo, C. J.; Iglesias-Ussel, M. D.; Ronai, D.; Scharff, M. D., 
The generation of antibody diversity through somatic hypermuta-
tion and class switch recombination. Genes Dev 2004, 18 (1), 1-11. 

[122] Schatz, D. G.; Ji, Y., Recombination centres and the orchestration 
of V (D) J recombination. Nature reviews. Immunology 2011, 11 
(4), 251. 

[123] Padlan, E. A.; Davies, D. R., Variability of three-dimensional struc-
ture in immunoglobulins. Proceedings of the National Academy of 
Sciences 1975, 72 (3), 819-823. 

[124] Poljak, R. J.; Amzel, L.; Chen, B.; Chiu, Y.; Phizackerley, R.; Saul, 
F.; Ysern, X. In Three-dimensional structure and diversity of im-
munoglobulins, Cold Spring Harbor symposia on quantitative biol-
ogy, Cold Spring Harbor Laboratory Press: 1977; pp 639-645. 

[125] Schroeder, H. W.; Cavacini, L., Structure and function of immuno-
globulins. Journal of Allergy and Clinical Immunology 2010, 125 
(2), S41-S52. 

[126] Chothia, C.; Novotny, J.; Bruccoleri, R.; Karplus, M., Domain 
association in immunoglobulin molecules. The packing of variable 
domains. Journal of molecular biology 1985, 186 (3), 651-63. 

[127] Fiser, A.; Do, R. K.; Sali, A., Modeling of loops in protein struc-
tures. Protein Science : A Publication of the Protein Society 2000, 
9 (9), 1753-1773. 

[128] Soto, C. S.; Fasnacht, M.; Zhu, J.; Forrest, L.; Honig, B., Loop 
modeling: Sampling, filtering, and scoring. Proteins: Structure, 
Function, and Bioinformatics 2008, 70 (3), 834-843. 

[129] Chothia, C.; Lesk, A. M., Canonical structures for the hypervari-
able regions of immunoglobulins. J Mol Biol 1987, 196 (4), 901-
17. 

[130] Al-Lazikani, B.; Lesk, A. M.; Chothia, C., Standard conformations 
for the canonical structures of immunoglobulins. J Mol Biol 1997, 
273 (4), 927-48. 

[131] Chothia, C.; Lesk, A. M.; Tramontano, A.; Levitt, M.; Smith-Gill, 
S. J.; Air, G.; Sheriff, S.; Padlan, E. A.; Davies, D.; Tulip, W. R., 
Conformations of immunoglobulin hypervariable regions. Nature 
1989, 342 (6252), 877-883. 

[132] Nowak, J.; Baker, T.; Georges, G.; Kelm, S.; Klostermann, S.; Shi, 
J.; Sridharan, S.; Deane, C. M. In Length-independent structural 
similarities enrich the antibody CDR canonical class model, MAbs, 
Taylor & Francis: 2016; pp 751-760. 

[133] Bujotzek, A.; Dunbar, J.; Lipsmeier, F.; Schäfer, W.; Antes, I.; 
Deane, C. M.; Georges, G., Prediction of VH–VL domain orienta-
tion for antibody variable domain modeling. Proteins: Structure, 
Function, and Bioinformatics 2015, 83 (4), 681-695. 

[134] Weitzner, B. D.; Jeliazkov, J.; Lyskov, S.; Marze, N. A.; Kuroda, 
D.; Frick, R.; Biswas, N.; Gray, J. J., Modeling and docking anti-
body structures with Rosetta. bioRxiv 2016, 069930. 

[135] Mandal, C.; Kingery, B. D.; Anchin, J. M.; Subramaniam, S.; Lin-
thicum, D. S., ABGEN: a knowledge-based automated approach 
for antibody structure modeling. Nat Biotechnol 1996, 14 (3), 323-
8. 

[136] Fasnacht, M.; Butenhof, K.; Goupil-Lamy, A.; Hernandez-
Guzman, F.; Huang, H.; Yan, L., Automated antibody structure 
prediction using Accelrys tools: Results and best practices. Pro-
teins: Structure, Function, and Bioinformatics 2014, 82 (8), 1583-
1598. 

[137] Zhu, K.; Day, T.; Warshaviak, D.; Murrett, C.; Friesner, R.; 
Pearlman, D., Antibody structure determination using a combina-
tion of homology modeling, energy‐based refinement, and loop 
prediction. Proteins: Structure, Function, and Bioinformatics 2014, 
82 (8), 1646-1655. 

[138] Deane, C. M.; Blundell, T. L., CODA: a combined algorithm for 
predicting the structurally variable regions of protein models. Pro-
tein Sci 2001, 10 (3), 599-612. 

[139] Choi, Y.; Deane, C. M., FREAD revisited: Accurate loop structure 
prediction using a database search algorithm. Proteins: Structure, 
Function, and Bioinformatics 2010, 78 (6), 1431-1440. 

[140] Messih, M. A.; Lepore, R.; Marcatili, P.; Tramontano, A., Improv-
ing the accuracy of the structure prediction of the third hypervari-
able loop of the heavy chains of antibodies. Bioinformatics 2014, 
30 (19), 2733-40. 

[141] Yamashita, K.; Ikeda, K.; Amada, K.; Liang, S.; Tsuchiya, Y.; 
Nakamura, H.; Shirai, H.; Standley, D. M., Kotai Antibody 
Builder: automated high-resolution structural modeling of antibod-
ies. Bioinformatics 2014, 30 (22), 3279-80. 

[142] Maier, J. K. X.; Labute, P., Assessment of fully automated anti-
body homology modeling protocols in molecular operating envi-
ronment. Proteins: Structure, Function, and Bioinformatics 2014, 
82 (8), 1599-1610. 

[143] Marcatili, P.; Olimpieri, P. P.; Chailyan, A.; Tramontano, A., Anti-
body modeling using the Prediction of ImmunoGlobulin Structure 
(PIGS) web server. Nature protocols 2014, 9 (12), 2771-2783. 

[144] Weitzner, B. D.; Kuroda, D.; Marze, N.; Xu, J.; Gray, J. J., Blind 
prediction performance of RosettaAntibody 3.0: grafting, relaxa-
tion, kinematic loop modeling, and full CDR optimization. Proteins 
2014, 82 (8), 1611-23. 

[145] Berrondo, M.; Kaufmann, S.; Berrondo, M., Automated Aufbau of 
antibody structures from given sequences using Macromoltek's 
SmrtMolAntibody. Proteins 2014, 82 (8), 1636-45. 

[146] Marks, C.; Nowak, J.; Klostermann, S.; Georges, G.; Dunbar, J.; 
Shi, J.; Kelm, S.; Deane, C. M., Sphinx: merging knowledge-based 
and ab initio approaches to improve protein loop prediction. Bioin-
formatics 2017. 

[147] Whitelegg, N. R.; Rees, A. R., WAM: an improved algorithm for 
modelling antibodies on the WEB. Protein engineering 2000, 13 
(12), 819-824. 

[148] Huang, J.; Ofek, G.; Laub, L.; Louder, M. K.; Doria-Rose, N. A.; 
Longo, N. S.; Imamichi, H.; Bailer, R. T.; Chakrabarti, B.; Sharma, 
S. K.; Alam, S. M.; Wang, T.; Yang, Y.; Zhang, B.; Migueles, S. 
A.; Wyatt, R.; Haynes, B. F.; Kwong, P. D.; Mascola, J. R.; Con-
nors, M., Broad and potent neutralization of HIV-1 by a gp41-
specific human antibody. Nature 2012, advance online publication. 

[149] Yang, X.; Yu, X., An introduction to epitope prediction methods 
and software. Reviews in Medical Virology 2009, 19 (2), 77-96. 

[150] El-Manzalawy, Y.; Honavar, V., Recent advances in B-cell epitope 
prediction methods. Immunome Research 2010, 6 (Suppl 2), S2-S2. 

[151] Huber, R., Structural basis for antigen-antibody recognition. Sci-
ence 1986, 233 (4765), 702-3. 

[152] Regenmortel, M. H. V. V., Mimotopes, continuous paratopes and 
hydropathic complementarity: novel approximations in the descrip-
tion of immunochemical specificity. Journal of Dispersion Science 
and Technology 1998, 19 (6-7), 1199-1219. 

[153] Saha, S.; Raghava, G. P., Prediction of continuous B-cell epitopes 
in an antigen using recurrent neural network. Proteins 2006, 65 (1), 
40-8. 

[154] Saha, S.; Raghava, G. In BcePred: prediction of continuous B-cell 
epitopes in antigenic sequences using physico-chemical properties, 
International Conference on Artificial Immune Systems, Springer: 
2004; pp 197-204. 



18    Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 00 Melo et al. 

[155] El-Manzalawy, Y.; Dobbs, D.; Honavar, V., Predicting linear B-
cell epitopes using string kernels. J Mol Recognit 2008, 21 (4), 
243-55. 

[156] Larsen, J. E.; Lund, O.; Nielsen, M., Improved method for predict-
ing linear B-cell epitopes. Immunome Res 2006, 2, 2. 

[157] Odorico, M.; Pellequer, J. L., BEPITOPE: predicting the location 
of continuous epitopes and patterns in proteins. J Mol Recognit 
2003, 16 (1), 20-2. 

[158] Gao, J.; Faraggi, E.; Zhou, Y.; Ruan, J.; Kurgan, L., BEST: Im-
proved Prediction of B-Cell Epitopes from Antigen Sequences. 
PLOS ONE 2012, 7 (6), e40104. 

[159] Sweredoski, M. J.; Baldi, P., COBEpro: a novel system for predict-
ing continuous B-cell epitopes. Protein Eng Des Sel 2009, 22 (3), 
113-20. 

[160] Singh, H.; Ansari, H. R.; Raghava, G. P. S., Improved Method for 
Linear B-Cell Epitope Prediction Using Antigen’s Primary Se-
quence. PLOS ONE 2013, 8 (5), e62216. 

[161] Hu, S.; Zhu, Z.; Li, L.; Chang, L.; Li, W.; Cheng, L.; Teng, M.; 
Liu, J., Epitope mapping and structural analysis of an anti-ErbB2 
antibody A21: Molecular basis for tumor inhibitory mechanism. 
Proteins: Structure, Function, and Bioinformatics 2008, 70 (3), 
938-949. 

[162] Wang, H. W.; Lin, Y. C.; Pai, T. W.; Chang, H. T., Prediction of B-
cell linear epitopes with a combination of support vector machine 
classification and amino acid propensity identification. J Biomed 
Biotechnol 2011, 2011, 432830. 

[163] Alix, A. J., Predictive estimation of protein linear epitopes by using 
the program PEOPLE. Vaccine 1999, 18 (3), 311-314. 

[164] Van Regenmortel, M. H. V., Mapping Epitope Structure and Activ-
ity: From One-Dimensional Prediction to Four-Dimensional De-
scription of Antigenic Specificity. Methods 1996, 9 (3), 465-72. 

[165] Haste Andersen, P.; Nielsen, M.; Lund, O., Prediction of residues 
in discontinuous B-cell epitopes using protein 3D structures. Pro-
tein Sci 2006, 15 (11), 2558-67. 

[166] Lin, S. Y.; Cheng, C. W.; Su, E. C., Prediction of B-cell epitopes 
using evolutionary information and propensity scales. BMC Bioin-
formatics 2013, 14 Suppl 2, S10. 

[167] Jespersen, M. C.; Peters, B.; Nielsen, M.; Marcatili, P., BepiPred-
2.0: improving sequence-based B-cell epitope prediction using con-
formational epitopes. Nucleic Acids Res 2017. 

[168] Giacò, L.; Amicosante, M.; Fraziano, M.; Gherardini, P. F.; Au-
siello, G.; Helmer-Citterich, M.; Colizzi, V.; Cabibbo, A., B-Pred, 
a structure based B-cell epitopes prediction server. Advances and 
applications in bioinformatics and chemistry: AABC 2012, 5, 11. 

[169] Zhang, W.; Xiong, Y.; Zhao, M.; Zou, H.; Ye, X.; Liu, J., Predic-
tion of conformational B-cell epitopes from 3D structures by ran-
dom forests with a distance-based feature. BMC bioinformatics 
2011, 12 (1), 341. 

[170] Ansari, H. R.; Raghava, G. P., Identification of conformational B-
cell Epitopes in an antigen from its primary sequence. Immunome 
Res 2010, 6, 6. 

[171] Lo, Y.-T.; Pai, T.-W.; Wu, W.-K.; Chang, H.-T., Prediction of 
conformational epitopes with the use of a knowledge-based energy 
function and geometrically related neighboring residue characteris-
tics. BMC bioinformatics 2013, 14 (4), S3. 

[172] Kulkarni-Kale, U.; Bhosle, S.; Kolaskar, A. S., CEP: a conforma-
tional epitope prediction server. Nucleic Acids Res 2005, 33 (Web 
Server issue), W168-71. 

[173] Kringelum, J. V.; Lundegaard, C.; Lund, O.; Nielsen, M., Reliable 
B cell epitope predictions: impacts of method development and im-
proved benchmarking. PLoS computational biology 2012, 8 (12), 
e1002829. 

[174] Ponomarenko, J.; Bui, H. H.; Li, W.; Fusseder, N.; Bourne, P. E.; 
Sette, A.; Peters, B., ElliPro: a new structure-based tool for the pre-
diction of antibody epitopes. BMC Bioinformatics 2008, 9, 514. 

[175] Liang, S.; Zheng, D.; Zhang, C.; Zacharias, M., Prediction of anti-
genic epitopes on protein surfaces by consensus scoring. BMC Bio-
informatics 2009, 10, 302. 

[176] Rubinstein, N. D.; Mayrose, I.; Martz, E.; Pupko, T., Epitopia: a 
web-server for predicting B-cell epitopes. BMC Bioinformatics 
2009, 10, 287. 

[177] Liang, S.; Zheng, D.; Standley, D. M.; Yao, B.; Zacharias, M.; 
Zhang, C., EPSVR and EPMeta: prediction of antigenic epitopes 

using support vector regression and multiple server results. BMC 
Bioinformatics 2010, 11 (1), 381. 

[178] Sweredoski, M. J.; Baldi, P., PEPITO: improved discontinuous B-
cell epitope prediction using multiple distance thresholds and half 
sphere exposure. Bioinformatics 2008, 24 (12), 1459-60. 

[179] Moreau, V.; Fleury, C.; Piquer, D.; Nguyen, C.; Novali, N.; Vil-
lard, S.; Laune, D.; Granier, C.; Molina, F., PEPOP: computational 
design of immunogenic peptides. BMC Bioinformatics 2008, 9, 71. 

[180] Sun, J.; Wu, D.; Xu, T.; Wang, X.; Xu, X.; Tao, L.; Li, Y. X.; Cao, 
Z. W., SEPPA: a computational server for spatial epitope predic-
tion of protein antigens. Nucleic Acids Res 2009, 37 (Web Server 
issue), W612-6. 

[181] Qi, T.; Qiu, T.; Zhang, Q.; Tang, K.; Fan, Y.; Qiu, J.; Wu, D.; 
Zhang, W.; Chen, Y.; Gao, J.; Zhu, R.; Cao, Z., SEPPA 2.0--more 
refined server to predict spatial epitope considering species of im-
mune host and subcellular localization of protein antigen. Nucleic 
Acids Res 2014, 42 (Web Server issue), W59-63. 

[182] Torrie, G. M.; Valleau, J. P., Monte Carlo free energy estimates 
using non-Boltzmann sampling: Application to the sub-critical 
Lennard-Jones fluid. Chemical Physics Letters 1974, 28 (4), 578-
581. 

[183] Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in 
Monte Carlo free-energy estimation: Umbrella sampling. Journal 
of Computational Physics 1977, 23 (2), 187-199. 

[184] Rosta, E.; Woodcock, H. L.; Brooks, B. R.; Hummer, G., Artificial 
reaction coordinate "tunneling" in free-energy calculations: the 
catalytic reaction of RNase H. J Comput Chem 2009, 30 (11), 
1634-41. 

[185] Beutler, T. C.; Gunsteren, W. F. v., The computation of a potential 
of mean force: Choice of the biasing potential in the umbrella sam-
pling technique. The Journal of Chemical Physics 1994, 100 (2), 
1492-1497. 

[186] Mills, M.; Andricioaei, I., An experimentally guided umbrella 
sampling protocol for biomolecules. J Chem Phys 2008, 129 (11), 
114101. 

[187] Kästner, J.; Thiel, W., Analysis of the statistical error in umbrella 
sampling simulations by umbrella integration. The Journal of 
Chemical Physics 2006, 124 (23), 234106. 

[188] Isralewitz, B.; Baudry, J.; Gullingsrud, J.; Kosztin, D.; Schulten, 
K., Steered molecular dynamics investigations of protein function. 
J Mol Graph Model 2001, 19 (1), 13-25. 

[189] Rief, M.; Grubmuller, H., Force spectroscopy of single bio-
molecules. Chemphyschem 2002, 3 (3), 255-61. 

[190] Bayas, M. V.; Schulten, K.; Leckband, D., Forced Detachment of 
the CD2-CD58 Complex. Biophysical Journal 2003, 84 (4), 2223-
2233. 

[191] Cuendet, M. A.; Michielin, O., Protein-protein interaction investi-
gated by steered molecular dynamics: the TCR-pMHC complex. 
Biophys J 2008, 95 (8), 3575-90. 

[192] Jarzynski, C., Nonequilibrium Equality for Free Energy Differ-
ences. Physical Review Letters 1997, 78 (14), 2690-2693. 

[193] Zuckerman, D. M.; Woolf, T. B., Systematic Finite-Sampling Inac-
curacy in Free Energy Differences and Other Nonlinear Quantities. 
Journal of Statistical Physics 2004, 114 (5), 1303-1323. 

[194] Oberhofer, H.; Dellago, C.; Geissler, P. L., Biased sampling of 
nonequilibrium trajectories: Can fast switching simulations outper-
form conventional free energy calculation methods? The Journal of 
Physical Chemistry B 2005, 109 (14), 6902-6915. 

[195] Shirts, M. R.; Pande, V. S., Comparison of efficiency and bias of 
free energies computed by exponential averaging, the Bennett ac-
ceptance ratio, and thermodynamic integration. The Journal of 
chemical physics 2005, 122 (14), 144107. 

[196] Ytreberg, F. M.; Swendsen, R. H.; Zuckerman, D. M., Comparison 
of free energy methods for molecular systems. The Journal of 
chemical physics 2006, 125 (18), 184114. 

[197] Gore, J.; Ritort, F.; Bustamante, C., Bias and error in estimates of 
equilibrium free-energy differences from nonequilibrium meas-
urements. Proceedings of the National Academy of Sciences 2003, 
100 (22), 12564-12569. 

[198] Sensoy, O.; Atilgan, A. R.; Atilgan, C., FbpA iron storage and 
release are governed by periplasmic microenvironments. Physical 
Chemistry Chemical Physics 2017, 19 (8), 6064-6075. 

[199] Mondal, S.; Khelashvili, G.; Shan, J.; Andersen, O. S.; Weinstein, 
H., Quantitative modeling of membrane deformations by multiheli-



Computational Approaches in Antibody-drug Conjugate Optimization Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 00    19 

cal membrane proteins: application to G-protein coupled receptors. 
Biophysical journal 2011, 101 (9), 2092-2101. 

[200] Shan, J.; Khelashvili, G.; Mondal, S.; Mehler, E. L.; Weinstein, H., 
Ligand-dependent conformations and dynamics of the serotonin 5-
HT2A receptor determine its activation and membrane-driven oli-
gomerization properties. PLoS computational biology 2012, 8 (4), 
e1002473. 

[201] Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; De 
Vries, A. H., The MARTINI force field: coarse grained model for 
biomolecular simulations. The journal of physical chemistry B 
2007, 111 (27), 7812-7824. 

[202] Sensoy, O.; Weinstein, H., A mechanistic role of Helix 8 in 
GPCRs: Computational modeling of the dopamine D2 receptor in-
teraction with the GIPC1–PDZ-domain. Biochimica et Biophysica 
Acta (BBA)-Biomembranes 2015, 1848 (4), 976-983. 

[203] Arango-Lievano, M.; Sensoy, O.; Borie, A.; Corbani, M.; Guillon, 
G.; Sokoloff, P.; Weinstein, H.; Jeanneteau, F., A GIPC1-palmitate 
switch modulates dopamine Drd3 receptor trafficking and signal-
ing. Molecular and cellular biology 2016, 36 (6), 1019-1031. 

 
 

 

DISCLAIMER: The above article has been published in Epub (ahead of print) on the basis of the materials provided by the author. The 
Editorial Department reserves the right to make minor modifications for further improvement of the manuscript. 


