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Abstract

GPCR oligomerization has emerged as a hot topic in the GPCR field in the last years.
Receptors that are part of these oligomers can influence each other’s function, although
it is not yet entirely understood how these interactions work. The existence of such a
highly complex network of interactions between GPCRs generates the possibility of
alternative targets for new therapeutic approaches.

However, challenges still exist in the characterization of these complexes, especially
at the interface level. Different experimental approaches, such as FRET or BRET, are usu-
ally combined to study GPCR oligomer interactions. Computational methods have been
applied as a useful tool for retrieving information from GPCR sequences and the few
X-ray-resolved oligomeric structures that are accessible, as well as for predicting new
and trustworthy GPCR oligomeric interfaces.

Machine-learning (ML) approaches have recently helped with some hindrances
of other methods. By joining and evaluating multiple structure-, sequence- and
co-evolution-based features on the same algorithm, it is possible to dilute the issues

Progress in Molecular Biology and Translational Science # 2020 Elsevier Inc.
ISSN 1877-1173 All rights reserved.
https://doi.org/10.1016/bs.pmbts.2019.11.007

1

ARTICLE IN PRESS

https://doi.org/10.1016/bs.pmbts.2019.11.007


of particular structures and residues that arise from the experimental methodology into
all-encompassing algorithms capable of accurately predict GPCR-GPCR interfaces.

All these methods used as a single or a combined approach provide useful infor-
mation about GPCR oligomerization and its role in GPCR function and dynamics.
Altogether, we present experimental, computational and machine-learning methods
used to study oligomers interfaces, as well as strategies that have been used to target
these dynamic complexes.

1. Introduction

G protein-coupled receptors (GPCRs) superfamily has been a subject

of high interest in cell and molecular biology field for decades, mainly due to

its presence in various physiological events. However, their mechanism of

action is not yet fully understood. This family also represents 34% of the

drugs approved by the Food and Drug Administration (FDA), demonstrat-

ing its high viability as therapeutic targets.1 GPCRs are highly dynamical

proteins that mediate the signal transduction triggered by extracellular stim-

uli through the cell membrane. The family has up to 800 different receptors

divided by their structural and functional similarities into 5 major subfam-

ilies: class A, B, C, frizzled, and adhesion. GPCRs have a common structure

present through the different subfamilies: seven transmembrane domains

(TM), connected by three extracellular (ECL) and three intracellular loops

(ICL), with N-terminal in the extracellular side and the C-terminal on the

intracellular side. The TM region is highly conserved, and interhelical bonds

and hydrophobic interactions maintain its stability. Loops are the least con-

served regions and display structural variability between the subfamilies.2,3

For many years the GPCR family members have been studied as mono-

meric entities; however, in recent years, accumulating evidence has shown

that GPCRs can function in dimeric (homo and hetero) or higher-order

oligomeric states. Class C GPCRs are known to form dimers constitutively

through their extensive extracellular domain to work.4 Class A has increas-

ingly data pointing toward the existence of homo and heterodimers.5,6

The ratio between monomeric and dimeric states is a defining characteristic

of this subfamily. There is evidence that suggests that in receptors like Β2

adrenergic receptor (B2AR) and α1B-adrenergic receptor (α1BAR), dimer-

ization is necessary for efficient surface localization.7,8 Thus, some authors

suggested that dimers are assembled during biosynthesis, perhaps inside

the endoplasmic reticulum.9–11 Nevertheless, recent data proposes a dynam-

ical view of GPCR dimers that are in equilibrium with their monomeric
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forms and have variable timescales, depending on the membrane or

cellular environments (such as cytoskeleton and scaffolding or anchoring

proteins).9,12–15

The effects of dimerization/oligomerization on the structure and

dynamics of receptors are not yet entirely understood, neither their impli-

cation in human physiology and pathology. However, the steady increase

in studies related to the allosteric interactions between the receptors in

complex have brought light into this subject. A simple way to view the

importance of these interactions is to categorize them in three groups as

it was done by Guidolin et al.16: (a) neighbor receptors can modulate each

other’s orthosteric binding site; (b) receptors can modulate the intracellular

binding pocket, thus altering signaling pathways; (c) or new allosteric sites

can emerge for binding with different modulators.

There are currently several curated and specialized databases where

information concerning 3D structures of GPCRs can be found, including

dimers, and other membrane proteins (MPs). Some of these databases

include: (a) the MPs of known 3D structure (mpstruc)17 that identifies

and collect MPs of the PDB data bank (as of October 7, 2019 it contains 952

unique entries); (b) the Transporter Classification DataBase (TCDB)18 that

provides functional and phylogenetic information on membrane transport

proteins (as of October 7, 2019 it contains �1405 families of transport pro-

teins); (c) the Protein Data Bank of Transmembrane Proteins (PDBTM)19

that uses TMDET algorithm20 in all PDB entries for location of TM protein

in the lipid bilayer (as of October 7, 2019 it contains 4084 transmembrane

proteins); (d) the Orientations of Proteins in Membrane (OPM) database21

that uses PPM server to provide spatial arrangements of MPs with respect to

the hydrocarbon core of the lipid bilayer; (e) the MemProtMD, a meta-

database that presents the results of molecular dynamics simulations of

some MPs of mpstruc embedded in lipid bilayers (the database contains

�3500 intrinsic MPs structures)22; and (f ) more specific databases for

GPCRs such as the G-Protein Coupled Receptor Database (GPCRdb)

with 15,147 proteins (as of October 7, 2019),23 the G-Protein Coupled

Receptor Oligomerization Knowledge Base (GPCR-OKB),24 or the

GPCR-HGmod25 that contains 1026 putative 3D structural models of

GPCRs in the human genome generated by the GPCR-I-TASSER pipe-

line and deposited in the GPCR-EXP (database of experimentally solved

and predicted GPCR structures) (https://zhanglab.ccmb.med.umich.

edu/GPCR-EXP/). Known GPCR-GPCR interactions are stored and

can be acquired through GPCR-OKB24 and GPCR-HetNet.26
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Currently, there are 12 structures of GPCR dimers in PDB that present a

crystallographic asymmetric unit and with a software-determined quater-

nary structure27 (PDB id: 2VT4,28 4GPO,29 3ODU,30 3OE9,30 4EA3,31

6AK3,32 5O9H,33 5ZKQ,34 3CAP,35 2PED,36 2J4Y,37 4JKV,38 6N5239).

Furthermore, three additional structures are found as an asymmetric unit

but with no quaternary structure prediction: two from class A (PDB id:

5UEN,40 4DJH41) and one from class C (PDB id: 2E4U42).

The existence of this highly complex network of interactions between

GPCRs and how they can modulate each other’s behavior contributed

to the development of new therapeutic approaches. Nevertheless, the chal-

lenges in characterizing these complexes remain, and in particular at

the interface level, which plays a unique role in the development of new

targeting drugs. Herein, we present experimental, in silico computational

methods and ML methods that are currently in use for the characterization

and interpretation of these interfaces. We also review which strategies have

been used to target these dynamic complexes. Some essential key concepts

for further understanding of the chapter are presented in Box 1.

BOX 1 Key concepts
Artificial neural network (ANN): is a machine learning (ML) tool with a graph-based
architecture inspired in the brain and how neurons connect and interact with
each other. ANNs comprise a series of nodes (also called neurons) where math-
ematical operations are performed on the features fed to the system.118 Nodes
are connected by edges with associated weights and biases, updated according
to the overall performance of the ANN (the system can learn from those changes
in weights’ values).119 Nodes in ANNs are organized in layers (the input, output
and hidden layers). Data is fed to the system through the input layer, and the
response to the problem (value or class) is given through the output layer.
Hidden layers connect the input and output layers. Networks comprising more
than one hidden layer are considered Deep Neural Networks (DNNs).120

Random forest (RF): is an ensemble model of decision trees.121

Ensemble systems: is a ML algorithm that output a model that can gather the
contributions of several models. The individual models contribute according to
voting systems, that can vary in name, such as hard or soft voting, depending
on the grade of contribution for the overall result.122

Hot spots (HS): HS residues are defined as those that, upon alanine mutation,
generate a binding free energy difference (ΔΔGbinding) �2.0 kcal/mol.123 These
residues are more prone to be structural and functionally relevant, increasing
their influence in binding processes.
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2. Characterization and prediction of oligomer
interfaces

2.1 Experimental approaches
Experimental-based methods can be applied to study protein-protein inter-

actions (PPIs), including GPCR oligomers. These approaches can be split

BOX 1 Key concepts—cont’d
Paralogs genes: type of homologous genes that arise by gene-duplication

events from the last common ancestor. In these events, functional gene novelty
is free to change during evolution.124

Machine learning: is a subfield of Artificial Intelligence that gives to the com-
puter, by algorithms, the ability to learn a pattern from a large amount of hetero-
geneous data. The prediction of the best possible solution is reached by training
the algorithm using a training set and scoring its performance using a validation
set.125 The model is finally trained using an independent test set. ML models for
interface prediction usually use supervised learning (in which the output is
known) with regression or classification (e.g., classifying a surface residue as inter-
facial or non-interfacial) algorithms.

Protein interaction interface: non-uniform surface areas between two protein
monomers that allowmore energetically favorable interactions to occur. They are
characterized by two main regions, the “core” and the “rim,” that are different in
terms of physicochemical properties and evolutionary conservation.126 Interfaces
can be located in obligate (protomers are not stable structures in vivo unless they
are in a complex) and transient (binding partners may dissociate from each other
and exist as stable entities in the unbound state in vivo) complexes interactions.

Protein surface: the exterior hydrophilic environment where polar residues
reside mainly. Interfacial and non-interfacial residues are part of the protein
surface.

Solvent-accessible surface area (SASA): is the atomic surface area of a molecule
accessible to a solvent (usually expressed in square Ångstroms, Å2).127

Support vector machine (SVM): are ML models on which the various examples
in the dataset are represented in n dimensions hyperspace (where n is the num-
ber of features describing the sample).128 The model tries to find hyperplanes
dividing the various examples according to the classes to which they belong
to, generating regions that define each class.129

Transmembrane protein: is a type of integral polytopic protein that crosses the
entire cell membrane and stays permanently attached to it.
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into four categories, affinity-based methods, proteomics-based methods,

fluorescence-based assays and genetic assays. Schiedel et al.43 performed

an extensive review about the application of experimental methods to inves-

tigate GPCR oligomers. To study PPIs in GPCR oligomerization, different

experimental approaches are usually combined, being the most common the

fluorescent-based assays in combination with affinity-based methods and/or

genetic assays. Most of the PPIs described by Schiedel et al.,43 which were

taken from GPCR oligomer complexes, were identified by using two or

more experimental techniques. Noteworthy, several parameters should be

considered when choosing the most suitable method, such as the nature

of the interaction (permanent or transient; weak or strong), and the deter-

mination of complex stoichiometry.43

Fluorescence-based assays are the most applied approaches to study

GPCR oligomerization. It includes frequently used methods such as

FRET (fluorescence resonance energy transfer), BRET (bioluminescence

resonance energy transfer), BiFC (biomolecular fluorescence complementa-

tion assays), and most recently time-resolved FRET (Tr-FRET). However,

these methodologies are mainly used to confirm the GPCR oligomeriza-

tion, rather than to provide information concerning the size of oligomeric

structures or even their inherent dynamic nature.43 FRET, for instance, is

unable to detect PPIs that specifically occur at the membrane.44 More recent

microscopy-based approaches, such as total internal reflection fluorescence

microscopy (TIRFM) and single-molecule imaging have been applied to

give insights into dynamics of GPCR oligomers and to supply information

about oligomerization state of GPCRs.43,45

A new AlphaScreen-Based Assay was recently identified and applied to

study GPCR oligomerization, namely the Dopamine receptor D2 (D2R)/

adenosine A2A receptor (A2AR) heterodimerization, confirming for the

first time the existence of this heterodimer in human caudate nucleous.46

Moreover, a combined approach using proximity ligation assay and

co-immunoprecipitation experiments was used to disclose the first evidence

of Bradykinin B2 receptors (B2R).47 Additionally, a new FRET-based

strategy focused on ligand binding selectivity for oligomers was also identi-

fied.48 This approach, which is easy to implement and adaptable for

high-throughput screening, allows the identification of hetero-oligomer

specific ligands. It can also be used as a starting point to disclose insights

into oligomer crosstalks, ultimately leading to the expose of new and critical

features that can be of high interest for the treatment of several diseases

associated with GPCR oligomerization.
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2.2 Computational approaches
Although the number of crystal structures has been steadly increasing in the

last years, a limited number of oligomer GPCR structures are available.49,50

Moreover, the experimental determination of GPCR oligomer structures

at a detailed molecular level is still a difficult challenge.45 Therefore, com-

putational methods have been applied as a useful tool for retrieving infor-

mation about the few X-ray-resolved GPCR oligomeric structures that are

accessible, as well for predicting new and trustworthy GPCR oligomeric

interfaces.27,51 Computational approaches to study GPCR dimerization

or higher-order oligomers can typically be divided into two groups:

sequence-based and structured-based methodologies.52

2.2.1 Sequence-based methods
Sequence-based methods take into consideration the protein sequence to

predict residues engaged in the dimerization interface.53 Depending on

sequence conservation, this branch of computer-assisted approaches is sub-

divided into two classes: (i) assuming a evolutionary conservation of interface

dimers among all proteins of a subfamily and (ii) postulating that the dimer-

ization interface can change among members of the same subfamily, during

the evolutionary process. Evolutionary Trace (ET) method,54 Correlated

Mutation Analysis (CMA),55 and Subtractive Correlated Mutation (SCM)

are examples of the first class, whereas Differential Evolutionary Trace

(DET), Spatial Cluster Detection (SCD) and Hidden-Site Class Model of

Evolution are included in the second one.45,56

Evolutionary Trace Method takes into account that proteins of the same

family evolving from a common ancestor should have a similar backbone

structure, and as such should have a higher degree of conservation in sites

that contribute to its function, hence displaying a lower mutation frequency

at these positions.54,57 This methodwas applied for studying putative GPCR

dimerization interfaces by using Monte Carlo techniques. The multiple

alignments of>700 GPCR sequences revealed an important potential func-

tional site on the lipid-exposed faces of TM5 and TM6. This study allowed

the identification of a second putative functional site on TM2 and TM3,

which, besides the previous one, suggests that GPCRs can oligomerize.

The ability to dimerize is common among GPCR family or subfamily,

rather than a specific feature of GPCR members.58

Correlated Mutation Analysis is a method that searches for pairs of residues

in a multiple sequence alignment (MSA) that remain conserved or are
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mutated together during evolution, suggesting that the effect of a mutation

is compensated by another one to keep protein-protein interface func-

tional.55,59,60 This technique has been applied to predict MP interfaces,

namely on GPCR. A correlated mutation analysis applied to a group of class

A GPCRs showed that a significant number of correlated mutations are

allocated on the external region (lipid-exposed) of the helices, proposing

that these regions can constitute sites for PPIs. Therefore, the correlated res-

idues can be involved in important conformational changes in the receptor,

as well as in the formation of GPCR homodimers or heterodimers.61

Subtractive Correlated Mutation method corresponds to an improved

version of CMA by applying filtering algorithms capable of discarding the

intramolecular pairs of correlated residues in both monomers analyzed from

all described correlated residue pairs. Thus, the residues that constitute the

dimer interface could be identified. The application of this methodology

allowed the identification of TM4, TM5, and TM6 of the δ-opioid receptor
(DOR) and TM1 of the μ-opioid receptor (MOR) as critical in the forma-

tion of heterodimer interfaces, since the correlated residues were found on

the external (lipid-facing) surface of those TMs.60

Differential Evolutionary Trace was first applied by Madabushi et al.62 to

study the GPCR family. The sequence alignment of different subfamilies

of class A GPCRs was performed to identify residues ultimately responsible

for global and class-specific activities. This method filtered out the trace

residues among all sequences from the ones among the target subtype, thus

determining the remaining residues as displaying a specific role for the sub-

type analyzed.56,62 Among the ET residues identified by this approach, only

one appears to be involved in the homodimerization of CCR5, with some

controversial studies about its importance.56

Hidden-Site Class Model of Evolution method applies different matrices to

represent amino acid substitutions at diverse locations in a protein sequence,

overcoming the limitation introduced by the majority of models used to

study PPIs involving evolutionary relationships. Those models use a single

substitution matrix for all locations in all sequences, which could lead to

inaccurate predictions, as the likelihood of an amino acid substitution at a

specific location in the protein sequence will not necessarily promote the

same functional effect at all locations.63–67 Hidden-Site Class Model was

applied to GPCR to perform a family-specific analysis (the study included

199 class A GPCRs, one of the most studied classes). The results of this study

highlighted the presence of lipid-facing evolutionary conserved locations on

TM5 and TM6 for the majority of aminergic families, as well as on TM4 and
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TM5 for muscarinic and opsin families.68 Altogether, this approach led to

an improvement in the prediction of functionally important residues.45

Spatial Cluster Detection (SCD) approach was first developed to predict

GPCR oligomeric interfaces by analyzing the spatial distribution of con-

served residues on the molecular surface of a specific GPCR subtype.

Unlike Hidden-Site Class Model, this method takes into account both

the subtype interface specificity and the assessment of the spatial location

of the detected residues. Moreover, it was based on the assumption that

oligomeric GPCR interfaces are located on the molecular surface of each

monomer, and the interface residues are conserved within the same

GPCR subtype. This methodology was applied to different GPCRs sub-

types to test its performance. The different studies showed that the predicted

interfaces of β2 adrenergic receptor, D2R, and rhodopsin were in agreement

with the experimentally determined interfaces, even though the oligomeric

interface region was different among the three GPCR subtypes under inves-

tigation.69–73 GRIP server, a tool for GPCR oligomeric interface pre-

diction, is based on SCD.74

Unlike structure-based approaches, the information provided by

sequence-based techniques about oligomer interface-forming residues

cannot be translated into 3D dimer structures.75 This fact could explain

why the data retrieved from sequence-based approaches to study GPCR

oligomerization is more relevant when in conjugation with structure-based

methods, rather than when used as a single approach.50

2.2.2 Structure-based methods
Structure-based methodologies play an essential role in the prediction of

GPCR oligomeric interfaces, as well as in the study of its interaction dynam-

ics.43 Protein-protein docking and molecular dynamics, MD (Classic and

Coarsed-Grain) are among the main structure-based approaches applied

in the prediction of GPCR oligomeric interfaces.

2.2.2.1 Protein-protein docking
Protein-protein docking is a widely used method that takes advantage of

being faster and less costly in terms of time and computational resources than

other structure-based techniques applied in oligomerization prediction,

namely MD simulations.75 Although the majority of protein-protein

docking studies were based on a rigid-body approach, the most current

approaches take into account, leastwise, receptor side-chain flexibility.43

However, most applied docking approaches used to investigate PPIs were
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generally developed for water-soluble proteins, which makes them inade-

quate for GPCR oligomeric prediction. In fact, many available protein-

protein docking softwares consider parameters that are optimized for soluble

proteins, such as desolvation energy, which is an inaccurate criterion to be

taken into account for modeling MPs.51 In an attempt to investigate which

protein-protein docking tool available is the most suitable for study trans-

membrane proteins, namely GPCR oligomer interfaces, Kaczor et al.76

compared eight protein-protein docking softwares: ClusPro, GRAMM-X,

HADDOCK, HEX, PatchDock, SymmDock, and ZDOCK. By analyzing

different multimeric transmembrane proteins retrieved from PDB, they

found that GRAMM-X software, which includes an evolutionary conser-

vation term in its scoring function, granted the best docking results.

Moreover, this study also showed that the protein-protein docking tools

under investigation were able to predict transmembrane protein complexes,

which display a larger interface and are rich in cavities. That fact could justify

the unsuccessful results obtained in the prediction of GPCR dimeric inter-

faces by applying the available protein-protein docking approaches.76

In recent years, some protein-protein docking softwares, such as DOCK/

PIERR77 andRosettaMP,78 developed a specific version for modelingMPs.

A specific protein-protein docking algorithm, Memdock,79 was also devel-

oped for α-helical transmembrane proteins, showing improved docking

accuracy in comparison with standard protein-protein docking algorithms.

Another specific protein-protein docking-based protocol able to accurately

predict GPCR dimer interfaces was developed by using protein-protein

docking with Rosetta software and external scoring. This approach was val-

idated against a series of GPCR dimers, and the obtained results were mostly

in line with experimental and modeling data.80 This multi-component

protocol was applied to generate a model of D2R homodimer in an inactive

conformation, which was further used to investigate the interaction of differ-

ent bivalent antagonists with that receptor. The results obtained revealed an

asymmetric dimer model with the TM4-TM5-TM7-TM1 interface as the

best-scored model.81

Recently, HADDOCK 2.1 was applied in combination with experi-

mental studies (BRET) and molecular dynamics simulations (MD) to

develop a new approach able to map GPCR dimer interfaces. The structural

model of A2AR-D2R heterodimer with TM4/5 interface was generated,

giving insights into the structural basis that underlies allosteric modulation,

thus constituting a further step in the development of drugs acting on central

nervous system disorders. This multi-approach can also be used as a starting
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point to study the interface of many GPCR hetero-complexes.82 In fact,

protein-protein docking applied to GPCR modeling is often used as a

multi-step approach that includes experimental data and MD simulations

to be validated. This multi-approach is necessary due to the lack of accuracy

of protein-protein docking, namely the limited ability to consider protein

flexibility, which can be overcome by applying MD simulations.83

2.2.2.2 Molecular dynamics
MD simulations have been used to study GPCR dimers for several years,

and the topic has been extensively reviewed by Altwaijry et al.,84

Simpson et al.,85 Selent and Kaczor,86 and Guo et al.45 This method pro-

vides a higher spatial resolution over a longer timescale than any other

computational approach. As a structure-based method, the MD protocol

starts with a required 3D-structure of the dimer, which can be obtained from

(i) a crystal structure available, (ii) a homology-based model, or (iii) a

docking-based model. In classical MD, simulations involving GPCR dimer

or higher-order oligomers are performed with fully atomistic conditions

using CHARMM87–89 and/or AMBER90 forcefields. However, due to

the high computational costs of all-atom simulations, the timescale applied

is between nano- and microseconds, which can only reveal small confor-

mational changes.

To solve some limitations of the classical MD, coarse-grained MD

(CGMD) has been extensively used in this field. In this type of simulations,

the fully atomistic structure of the dimer/oligomer is converted into a sim-

plified version where small beads represent residues. Therefore, multiple

replicas with extended timesteps can be retrieved by using CGMD.84

This is important because a single run of MD cannot describe the properties

of the system accurately due to their random Gaussian behavior. An ensem-

ble of independent replicas with different initial conditions is needed to

have an accurate representation of the system.27 The Martini91 forcefield

is commonly used in this type of simulation.

Classical MD and CGMD have been extensively used to study GPCR

oligomerization, in particular how the dynamics of the receptor are altered

by oligomerization and to predict interfaces. A review of the literature avail-

able applying MD/CGMD to study GPCR oligomers is presented in

Table 1. The analysis of results from MD/CGMD should always consider

any available experimental data, although it is challenging to correlate exper-

imental snapshots with the different potential states of a GPCR oligomer.27

11Prediction and targeting of GPCR oligomer interfaces
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Table 1 Summary of the MD studies on GPCR dimers available on the literature.
Type System Method Forcefield Reference

Homodimer Rho/Rho MD GROMOS87 92

MD OPLSAA 93

MD Amber/parm99 94

CGMD Martini 84,95,96

CGMD+MD Martini+CHARMM36 97

β2AR/β2AR CGMD Martini 98–100

CGMD with umbrella sampling Martini 101

β1AR/β1AR CGMD Martini 84,100

CGMD with umbrella sampling Martini 101

CGMD+MD Martini+CHARMM36 97

CXCR4/CXCR4 MD OPLSAA 102

CGMD Martini 84

CGMD Martini 103

CGMD+MD Martini+CHARMM36 97

δOR/δOR CGMD Martini 104

CGMD with umbrella sampling Martini 105,106

CGMD+MD Martini+CHARMM36 97

μOR[inactive]/μOR[inactive] CGMD Martini 104

μOR[inactive]/μOR[inactive] CGMD+MD Martini+CHARMM36 97,107

μOR[inactive]/μOR[inactive] Unbiased CGMD+biased CGMD Martini 108

μOR[inactive]/μOR[active] CGMD+MD Martini+CHARMM36 107
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μOR[active]/μOR[active] Unbiased CGMD+biased CGMD Martini

κOR/κOR CGMD Martini 104

CGMD+MD Martini+CHARMM36 97

A2AR/A2AR CGMD+MD Martini+CHARMM36 97

A3R/A3R MD Amber7 FF 109

D2R/D2R MD OPLSAA 81

LHR/LHR MD CHARMM 110

mGluR1/mGluR1 CGMD+MD Martini+CHARMM36 97

NTS1/NTS1 CGMD Martini 111

AT1R[inactive]/AT1R[inactive] MD CHARMM36 112

AT1R[inactive]/AT1R[active] MD CHARMM36 112

AT1R[active]/AT1R[active] MD CHARMM36 112

Hetereodimer δOR[inactive]/μOR[inactive] MD GROMOS87 113

CGMD Martini 104

CGMD+MD Martini+CHARMM36 114

δOR[inactive]/μOR[active] CGMD+MD Martini+CHARMM36 114

δOR/κOR CGMD Martini 104

A1R/A2AR [in complex with Gi and Gs] MD AMBER99SB 115

A2AR/D2R MD OPLSAA 82

mGluR2/5-HT2A MD CHARMM 22/27 116

Homotetramer (V2R)4 MD CHARMM 22/27 117
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2.3 Machine learning approaches
In the previous sections, we reviewed the characterization and prediction

of oligomerization interaction interfaces in GPCRs, using experimental

methods (in vitro or in vivo) and computational tools (in silico). Here, in this

section, we focus on ML predictive methods of interaction interfaces

occurring in homo- and hetero-oligomeric MPs, such as GPCRs (some

essential key concepts for further understanding of the chapter are pres-

ented in Box 1 and Fig. 1). Jones and Thornton131 wrote an extensive

review on this subject. According to the authors, the interface between

two protein chains can be characterized according to six major dimensions:

(i) size and shape; (ii) electrostatic complementarity; (iii) residue interface

propensities; (iv) hydrophobicity; (v) secondary structure; and (vi) complex

formation. However, the definition of protein residues as interfacial has

proven to be difficult using those measures since no agreement was found

when settling the cut-off values. Recently, other criteria have been pro-

posed for the definition of an interface,132 simplifying and clarifying the

concept, enhancing reproducibility and allowing this kind of data to be

Fig. 1 Structure of the CXCR4 chemokine receptor dimer (transmembrane helices of
chain A are displayed in blue and of chain B in green—PDB id: 3ODU)30 inserted into
a membrane bilayer (PDB id: 2MLR130). Additionally, three insight windows are pre-
sented: (A) hot-spot region present within the interchain interface; (B and C) SASA of
all residues from a longitudinal (internal) and interfacial point of view, respectively.
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handled by using automated tools, such as ML. Hence, bear in mind that

using the same definition is a critical aspect when comparing and evaluating

different prediction methods currently available in the literature. Thus, an

interface can be defined based on:

(i) △ASA (variation in accessible surface area): a particular residue is

classified as interfacial if a variation in its ASA upon complexation

(ΔASA¼complexASA�monomerASA) is larger than 1 Å2.

(ii) Heavy atom distance: a residue is considered interfacial if any heavy

atom (non-hydrogen atom) between two interacting protein chains

is within a determined threshold diameter, usually ranging from

4 to 6 Å.133

(iii) Cα�Cα distance: two residues in different chains interact if their Cα

atoms are within a determined distance from each other (Xue et al.

suggested a distance of 8 Å).132

(iv) van der Waals surface distance: two residues located in different chains

display interactions if their van der Waals surfaces are within a distance

of approximately 0.5 Å from each other.134

In contrast withMPs, to date, severalMLalgorithms have beenused to predict

interaction sites and interfaces of soluble proteins, such as Naı̈ve Bayes,135

artificial neural networks (ANNs),136 support vector machines (SVMs)137

or random forests (RFs)138 (others examples are in Table 2). Although these

approaches could also be used for GPCRs and otherMPs, themodulation of

PPIs interfaces by the hydrophobic environment of the membrane hinders

this application.99 Besides that, challenges in extraction and crystallization of

proteins have limited the number of solved TM proteins three-dimensional

(3D) structures deposited in public databases that can be further used to

extract information of PPI interface residues for ML models. This lack of

structures is particularly noticeable for those proteins involved in transient

binding interactions where the number of experimental determined 3D

structures is even lower.132

A common approach ofMLmodels used to predict PPIs and interfaces in

new proteins is based on binary classification problems that used databases

containing experimental determined interacting residues (see Table 3 for

some examples of protein-protein interactions and interface databases) to

train the algorithms.

Nowadays, data-driven models try to exploit a combination of unique

characteristics of interfacial residues from both computational and experi-

mental methods to understand the nature of the intermolecular interactions

and to improve model performance (for more details see Tuncbag et al.182).

15Prediction and targeting of GPCR oligomer interfaces
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Table 2 Alphabetically ordered list of ML-based methods and web-servers for prediction and identification of PPIs.

Methods name
Type of ML
algorithm Main features Server or meta server URL Type of model Reference

BIPSPI XGBoost BIPSPI was trained with sequence- (amino

acid type, sequence profiles, conservation

scores) and structural-based features

(geometrical descriptors, hydrophobicity,

secondary structure, half-sphere exposure and

contact number) from both protein partners of

each complex. The method was developed to

a partner-specific prediction of residue-

residue contacts and binding sites

http://bipspi.cnb.csic.es Sequence- and

structural-based

139

ComplexContact DL DL method that makes use of co-evolution

information, sequential features and contact

occurrence patterns

http://raptorx2.uchicago.

edu/ComplexContact

Sequence and

co-evolution

based

140

cons-PPISP NN Prediction based on the solvent accessibility

and PSSM of spatially neighboring surface

residues

https://pipe.rcc.fsu.edu/

ppisp.html

Structure-based 141

CPORT Scoring function Combine multiple individual predictors

(WHISCY, PIER, ProMate, cons-PPISP,

SPPIDER, and PINUP) to generate a

consensus prediction. Specifically aimed at the

use of interface predictions in data-driven

docking with HADDOCK

https://milou.science.uu.

nl/services/CPORT

Structure-based

meta-server

142

DPPI Siamese-like

convolutional NN

Model prediction based on high-quality

experimental PPIs data and evolutionary

information of protein pairs

https://github.com/

hashemifar/DPPI

Sequence-based 143

ECLAIR

(Interactome

INSIDER)

Ensemble of RFs A model trained on a different set of features

including biophysical, structure-based,

docking-based and co-evolution features

http://interactomeinsider.

yulab.org

Structure and

co-evolution

based

144

A
R
T
IC
L
E

IN
P
R
E
S
S

http://bipspi.cnb.csic.es
http://bipspi.cnb.csic.es
http://raptorx2.uchicago.edu/ComplexContact
http://raptorx2.uchicago.edu/ComplexContact
http://raptorx2.uchicago.edu/ComplexContact
https://pipe.rcc.fsu.edu/ppisp.html
https://pipe.rcc.fsu.edu/ppisp.html
https://pipe.rcc.fsu.edu/ppisp.html
https://milou.science.uu.nl/services/CPORT
https://milou.science.uu.nl/services/CPORT
https://milou.science.uu.nl/services/CPORT
https://github.com/hashemifar/DPPI
https://github.com/hashemifar/DPPI
https://github.com/hashemifar/DPPI
http://interactomeinsider.yulab.org
http://interactomeinsider.yulab.org
http://interactomeinsider.yulab.org


Evcomplex Maximum

entropy

Prediction of inter-residue contacts from

multiple sequence alignments

https://evcouplings.org/

complex

Co-evolution

based

145

InterProSurf Scoring functions The method is based on SASA of residues in

the isolated subunits, propensity of interface

residues and residues in surface regions with

high interface propensities

http://curie.utmb.edu/

prosurf.html

Structure-based 146

ISPRED4 SVM with

grammar-based

correction

The model has been trained using features

extracted from the protein sequence and

structure

https://ispred4.biocomp.

unibo.it/ispred

Structure- and

sequence-based

137

meta-PPISP Linear regression Build based on three independent servers’

cons-PPISP, PINUP, and Promate

http://pipe.scs.fsu.edu/

meta-ppisp.html

Structure-based

meta-server

147

PAIRpred Multiple pairwise

kernel SVM

Uses structure (SASA, residue depth, half-

sphere amino acid composition and a

protrusion index), and sequence (profile

features from the PSSMs and predicted

RASA) to predict protein-protein interactions

http://combi.cs.colostate.

edu/supplements/pairpred

Sequence- and

structure-based

148

PIER PLS regression The model uses solvent accessibility and

evolutionary conservation to predict interfaces

from a single protein structure

http://abagyan.ucsd.edu/

PIER

Structure-based 149

PINUP Empirical scoring

function

Effective residue-energy score, accessible-

surface-area dependent interface-propensity,

and residue conservation score are used to

train a model for binding site prediction of

monomeric proteins

N/A Structure-based 150

PPiPP An ensemble of

24 NNs

It uses a binary encoding of 20 amino acids and

PSSM to predict pairwise binding sites

N/A Sequence-based 151

Continued
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Table 2 Alphabetically ordered list of ML-based methods and web-servers for prediction and identification of PPIs.—cont’d

Methods name
Type of ML
algorithm Main features Server or meta server URL Type of model Reference

PPI_SVM Two-class SVM Physical interactions of constituent domains of

protein pairs extracted from the Database of

Interacting Proteins

N/A Structure-based 152

PredPPIS SVM and Bayesian

classifiers

Combine 36 sequence features divided into 5

categories (orthogonal amino acid indices,

PSSM profiles, predicted secondary structures,

tendency of being located on disordered

regions and sequence conservation) for each

amino acid residue

http://bsaltools.ym.edu.

tw/predppis

Sequence-based 153

PresCont SVM SASA, hydrophobicity, conservation and the

local environment of each amino acid on the

protein surface deduced from the 3D structure

of an individual protein and an MSA

composed of homologous

https://bioinf.ur.de/

prescont.php

Structure-based 154

PredUS SVM The model uses a structural alignment method

to identify structural neighbors of a given

protein. The interface of the structural

neighbor is then mapped against the query

protein to predict if a surface residue is at an

interface

https://bhapp.c2b2.

columbia.edu/PredUs

Structural

homology-

based

155

PRISM Scoring function PRISM predicts binding residues by using

geometric complementarity and evolutionary

conservation of hot spots

http://cosbi.ku.edu.tr/

prism

Structure-based 156

PROFisis

(earlier ISIS)

NN Evolutionary profiles along with predictions

of solvent accessibility and secondary structure

were used to predict whether a residue is likely

to be part of a protein-protein interface

https://www.

predictprotein.org

Sequence-based 157
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ProMate Composite

probability

Defined patch encompassed by circles with a

radius of 10 Å drawn from a center of a given

protein surface residue is obtained. Using

features that differentiate binding from

non-binding surfaces, the model evaluates

the probability of each circle to appear at

the interface

http://bioinfo41.

weizmann.ac.il/promate/

promate.html

Structure-based 158

PSIVER Naı̈ve Bayes

classifier

The model predicts PPI sites using a PSSM

and predicted accessibility

https://mizuguchilab.org/

PSIVER

Sequence-based 135

SeRenDIP RF Sequence features such as conservation,

secondary structure, ASA/RSA, protein size,

backbone flexibility and sequence specificity

were used for protein interface prediction

http://www.ibi.vu.nl/

programs/serendipwww

Sequence-based 138

SHARP2 Scoring function Solvation potential, hydrophobicity, ASA,

residue interface propensity, planarity and

protrusion features were included in the

model

N/A Structure-based 159

SPPIDER Combined output

of 10 NNs

Integrates relative solvent accessibility (RSA)

with high-detailed structural data as features to

predict PPI sites

http://sppider.cchmc.org Structural- and

sequence-based

136

UNISPPI Decision tree Use of 20 combinations of amino acids

frequencies from interacting and

non-interacting proteins

N/A Sequence-based 160

WHISCY Scoring function A model that combines surface conservation

and structural information to predict

protein-protein interfaces

https://milou.science.uu.

nl/services/WHISCY

Structure-based 161

Abbreviations: DL, deep learning; ML, machine learning; MSA, multiple sequence alignment; N/A, not available; NN, neural network; PLS, partial least square; PPI, protein-protein
interaction; PSSM, position-specific scoring matrix; RASA, relative accessible surface area; RF, random forest; SASA, solvent-accessible surface area; SVM, support vector machine;
XGBoost, extreme gradient boosting.
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Table 3 Alphabetically ordered list of available public databases and meta databases of protein-protein interactions.

Method name Main features Website URL
Total interactions
(as of 22nd October)a Reference

APID A comprehensive and curated collection of protein

interactomes for >400 organisms; also includes 90,379

distinct proteins. Integrates data from databases of

interactions (BIND, BioGRID, DIP, HPRD, IntAct,

MINT) and also from 3D structures

http://apid.dep.usal.es 678,441 162

BioGRID Database that includes curated information from physic

and genetic interactions

https://orcs.thebiogrid.org 1,598,688 163

CPDB Integrates interaction networks in Homo sapiens;

including binary and complex protein-protein, genetic,

metabolic, signaling, gene regulatory and drug-target

interactions. Data is originated from 32 public resources

for interactions and curated from the literature

http://cpdb.molgen.mpg.de 660,318 164

DIP Database catalogs of experimentally determined

interactions between proteins, both manually and

computational curated

https://dip.doe-mbi.ucla.edu/dip/ 81,923 165

GPCRdb Database centralizing many of the known structural

information on GPCRs, also makes available a large set

of tools for GPCR handling and analysis

https://www.gpcrdb.org/ N/A 23,166

gpDB Database of GPCRs, G-proteins, effectors and their

interactions

http://bioinformatics.biol.uoa.

gr/gpDB/

N/A 167

HPRD Human Protein Reference Database that includes

manually curated information from post-translational

modifications, interaction networks and disease

association for each protein

http://www.hprd.org/ 41,327 168
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IID Database that integrates tissue-specific PPIs for model

organisms and human

http://iid.ophid.utoronto.ca 4,927,742 169

InnateDB Contain information about interactions involved in

mammalian innate immunity. Integration of curated

interactions from several databases (IntAct, DIP, MINT,

BIND and BioGRID) and the literature

https://www.innatedb.com/ 829,948 170

IntAct Database and analysis tools for molecular interaction

data. Contain manually curated information from the

literature or by direct submission

https://www.ebi.ac.uk/intact/ 960,621 171

Interactome3D Structural annotation of PPIs networks. Visualization

and download of structural information from protein

interactions. Contains information from other PPIs

databases (3did, BIND, BioGRID, DIP, HPRD,

InnateDB, IntAct)

https://interactome3d.

irbbarcelona.org

239,859 172

iRefWeb Database of protein-protein interactions (PPI)

consolidated from major public databases (BIND,

BioGRID, CORUM, DIP, IntAct, HPRD, MINT,

MPact, MPPI, OPHID)

http://wodaklab.org/iRefWeb/ N/A 173

Mentha Database of manually curated molecular interactions

from diverse databases (BioGRID, DIP, IntAct,

MatrixDB, MINT)

https://mentha.uniroma2.it 741,337 174

MINT Database of experimentally verified protein-protein

interactions mined from the literature

https://mint.bio.uniroma2.it 68,501 175

MIPS Mammalian PPIs curated database from the scientific

literature

http://mips.helmholtz-muenchen.

de/proj/ppi/

N/A 176

Continued
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Table 3 Alphabetically ordered list of available public databases and meta databases of protein-protein interactions.—cont’d

Method name Main features Website URL
Total interactions
(as of 22nd October)a Reference

Negatome Database of experimentally supported non-interacting

protein pairs, derived from manual curation of literature

and by the analyses of protein complexes from the PDB

http://mips.helmholtz-muenchen.

de/proj/ppi/negatome/

N/A 177

PICKLE Protein InteraCtion KnowLedgebasE is a metadatabase

that integrates publicly available PPIs via genetic

information ontology. PICKLE combines information

from BioGRID, IntAct, HPRD, MINT and DIP

http://www.pickle.gr 191,510 178

PINA Protein Interaction Network Analysis allows the

construction of PPI networks through the inclusion

of data from six public PPI databases (IntAct, MINT,

BioGRID, DIP, HPRD and MIPS MPact)

http://omics.bjcancer.org/pina/ N/A 179

PrePPI Database of predicted (Bayesian framework that

combines structural, functional, evolutionary and

expression information) and experimentally

determined PPIs for the human proteome

https://bhapp.c2b2.columbia.edu/

PrePPI/

�1,350,000 180

STRING Database of known and predicted protein-protein

interactions. The interactions include direct (physical)

and indirect (functional) associations

https://string-db.org/ �3,123,056,667 181

aN/A, not applicable.
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Nevertheless, when developing such models, it is essential to consider that

most of the time, in MP interface prediction tasks, we have an imbalanced

class distribution, i.e., the majority class is represented by non-interface res-

idueswhile interface residues are the less representative class, thus influencing

model predictive power. In addition to interfacial residues features, several

reviews132 and methods such as PPiPP,151 PS-HomPPI,183 PAIRpred,148

or BIPSPI139 have proven the importance of including partner-specific

information for interface prediction (Table 2). To date, the most commonly

used interfacial residues features are divided into three broad categories

depending on the type of the included information: structure-, sequence-,

and co-evolutionary-based.

(i) Structure-based features: themost accurate and used information about res-

idues at PPI interfaces arose from the 3D structure of protein complexes

(experimentally obtained or by using homology modeling methods).

These features also include, but are not limited to, solvent-accessible sur-

face area (SASA),127 crystallographic B-factors,184 or secondary struc-

ture.185 An essential characteristic of interfaces is the presence of hot

spots; cooperative and highly conserved residueswith a significant degree

of chemical and spatial complementarity that have a major contribution

to the binding affinity.186 To date, not only some ML structure but also

sequence-basedmodels have been developed to predict hot spots such as

the ensemble SpotON123 or the SVM-basedKFC2,187 PREDHS2,188

PSIPRED,189 SBHD190 and POCKETQUERY.191 Some represen-

tative structure-based ML methods are presented in Table 2. One of

the disadvantages of structure-based features is that they are dependent

on the available solved 3D structures, which is a current problem (as

previouslymentioned), particularly in the case ofMPs. Secondly,most

of the structural information of interface residues are retrieved from

proteins in the unbound state (apo form), which can be different from

the one obtained after protein-protein complexes formation.132

Hence, the use of other features, such as the one based on protein

sequences, is a viable option to counteract this problem.

(ii) Sequence-based features: characteristics that are derived from the amino

acid sequence of the protein. Examples of these type of features can

include the ones extracted directly from the sequence, such as amino

acid composition and the corresponding neighboring residues, pro-

pensity values,192 physicochemical properties (e.g., hydrophobicity,

polarity, charge)193 or the predicted ones, like the relative accessible

surface area (RASA).194 Additionally, some methods that take as input

23Prediction and targeting of GPCR oligomer interfaces
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sequence profiles were also explicitly developed for the characteriza-

tion ofMP, such as the LIPid-facing Surface (LIPS)195 for prediction of

helix-lipid interfaces of TM helices or MEMPACK196 and TMhit,197

both using SVMs, TMHcon198 using ANNs, and TMhhcp199 using

RFs for prediction of MPs helix-helix contacts among other features.

MemBrain,194 an ML-based method, was also recently developed for

transmembrane helices, residue-residue contacts, and RASA predic-

tion with an accuracy of 97.9%. Representative sequence-based ML

methods are presented in Table 2. The usage of sliding windows,

which consists of analyzing a set of residues sequentially related to

the target amino acid, has been used as a way to emulate the structural

dependency of primary structure proximal residues. However, this fails

to acknowledge distant sequence amino acids than can, nevertheless,

have three-dimensional close distances. Hence, this method can

improve performance, although most of the sequence-based models

have lower performance than structure-based models. Despite that,

these features provide valuable information for oligomers interface

prediction and in most cases, are used together with other features such

as structure- or evolutionary-based.

(iii) Co-evolutionary based features: although it is a feature derived from the

protein sequence, due to the complexity of methods involved in the

study of evolutionary scores,wewill consider them as a separated group.

It was demonstrated that oligomer interfacial residues are typically more

conserved among homologous proteins and more likely to co-evolve

when compared with non-interfacial surface residues, mainly to pre-

serve the interaction interface and consequently protein function.101

The degree of conservation can be assessed by developing position-

specific scoring matrices (PSSMs) from MSAs comparing each amino

acid of the query sequence to the corresponding sequence of its homol-

ogous (Fig. 2). High-quality MSAs can provide useful information

concerning correlated mutations that can be used for training ML algo-

rithms (Table 2)126,203,204 (for more information about the importance

of sequence evolutionary data, please see Nicoludis and Gaudet

review).205 Another interesting approach is the assessment of residue

pairs and their joint conservation analysis, which culminates in full

3D structure prediction from the protein sequence, and displays relevant

results, considering that only co-evolutionary features were used.206

Despite the success of co-evolutionary analysis, the presence of multiple

paralogs protein families (out of 2985 Pfam31 families,207 2244 have a

24 Carlos A. V. Barreto et al.
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Iterativelly 
run until 

convergence

Query Sequence

BLAST®

Position Specific Scoring Matrix

Amino acid Conservation

1.00 9.005.00

Protein
Sequence
Database

Conservation score

Multiple Sequence Analysis

Fig. 2 Pipeline for the assessment of protein amino acid conservation scores. A multiple sequence alignment of a query protein and a homologous non-
redundant protein database is used to produce a Position Specific Scoring Matrix (PSSM) using PSI-BLAST.200 The conservation score obtained as output
from PSSM corresponds to each amino acid (or gap) at each position of the alignment. In the right-hand square below is the bacterial dicarboxylate/sodium
symporter (PDB id: 4F35)201 colored by amino acid conservation using ConSurf.202
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mean ofmore than three paralogs per species, and 1093 amean above 5)

in MSA alignments could be a challenge for understanding PPIs,

particularly in the case of eukaryotes.208–210 More recently, Wu and

colleagues have suggested the use of metagenome sequence data as

a complement to MSA for residue contact prediction in the case of

proteins families with an insufficient number of homologs.211

Contrarily to non-MPs, in the last years, very few ML methods were

explicitly developed for MPs oligomers interface prediction. To date, only

RFs,212,213 SVMs214 and NNs215 approaches have been applied for this

purpose. Bordner was one of the pioneer studies that used a RF classifier

to predict the interface residues of transmembrane proteins, although the

final dataset included more α-helical than β-barrel structures; a problem

which can be traced back to the fact that this impairment is also noticeable

at experimentally determined structures level.212 The method was trained

using sequence-based features of individual intramembrane surface residues

(including only the ones with a relative SASA �0.2), such as their overall

distribution and evolutionary conservation (MSA), reaching a prediction

performance of area under the curve (AUC) of 0.75. This study also high-

lights the importance of developing separated predictors for membrane

and non-membrane proteins to achieve better model performance.212

More recently, by using separate RF models, Zeng and colleagues213 have

developed the MBPred (Membrane-protein Binding-residues Prediction),

a method that predicts interface residues in transmembrane (MBPredTM),

cytoplasmic (MBPredCyto) and extracellular segments (MBPredExtra)

as well as in the entire amino acid sequence (MBPredAll). Contrarily to

Bordner,212 this work only used a dataset of non-redundant α-helical mem-

brane proteins, although they included more features either from the pri-

mary sequence (relative position, physical properties and segment) or from

MSAs (residue conservation, evolutionary profile, PSSM), cumulative

and maximum co-evolution strength, and lipid accessibility). MBPred

achieved a slightly better AUC than the previous model and other ones

trained on globular proteins (0.79 and 0.73 on the cross-validation and

independent test dataset, respectively).213 Using a different approach, Li

and colleagues215 developed a neural network-based method able to predict

interface residues of a non-redundant set of oligomers of α-helical integral
MPs, with an AUC of 0.75. In contrast with previous studies, one of the

advantages of this method is that it calculates the weighted contact

numbers—WCNs (number of its neighboring residues weighted by spatial

proximity)216 of surface residues and use these values for the prediction of

interfaces.215
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The construction of ML-based predictors has to face a set of challenges,

some of which have been previously stated. Many of these issues are deep-

ened when considering MPs in particular, and some stem from the already

difficult task of experimental determination. Some of the current challenges

that must be considered when developing future ML-based models for MPs

interface prediction are:

(i) Data availability:

a. restriction in the number of available experimentally determined

structures;

b. deposited structures lack of variety: α-helix vs β-barrel impairment;

c. structures’ reliability: low resolution and poormembrane insertion;

d. incomplete structures: α-carbon only structures, protein sequences
with gaps and uncertain regions;

e. non-biologically accurate structures: common lack of hydrogens.

(ii) Class definition:

a. determined on the same structures affected by the issues listed in

point (i);

b. in some cases, non-consensual, leading to non-comparable results.

(iii) Features:

a. there is no sure way to know beforehand what is the individual

feature contribution to model performance, hence, the features

must be extracted under the same conditions and the models must

be tested, which is computationally expensive;

b. some features may display erratic behavior by having no connec-

tion to the class, but being apparently representative of it;

c. the concatenation of features must include the biological knowl-

edge on the subject, otherwise, this can lead to deceptively good

results, by, for example, including features that are directly related

to the class.

Several more problems than the stated above, arise when dealing with

ML-based MP interface prediction. On the bright side, some of the previ-

ously mentioned difficulties also stand, as the answer as to why computa-

tional methods are a viable approach to deal with challenges that, on a

single sample point of view, are seemingly unsolvable. With the rise of

ML (Deep Learning (DL) in particular), the handling of big data has evolved

from being a hindrance to a remarkable advantage. By evaluating multiple

structures on the same algorithm, it is possible to dilute the issues of partic-

ular structures and residues that arise from experimental methodology into

all-encompassing algorithms that, when appropriately programmed, can

automatically distinguish between useful and non-reliable information.
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The usage of ANN, in particular, opens the possibility of embedded feature

extraction, since the non-contributing features can be iteratively filtered out.

Seemingly, this process is also able to set uniform standards for all features,

minimizing the issues that arise from features extracted or engineered from

different sources and by different authors. Thus, nowadays, using the com-

putational power that less than a decade ago would be insufficient, it is pos-

sible to build very robust algorithms to which one of the main factors is the

amount of available data.

3. Targetting PPIs: Orthosteric and allosteric
modulation

Targeting PPIs has become a promising strategy in drug discovery

since they display a key role in both several biological processes and patho-

logical conditions. Nevertheless, the large and flat interfaces of PPIs make

this achievement a challenging task, mostly due to the lack of drug-binding

pockets.217,218

Two main approaches can be applied for targeting PPIs: orthosteric and

allosteric modulation, both by using small-molecules or peptidomimetic

agents.218,219 While orthosteric PPI modulators hinder or stabilize the inter-

action between both protein partners by binding to the PPI interface, allo-

steric agents bind to a different location from the native binding site,

triggering conformational changes that are ultimately responsible for also

preventing or stabilizing PPIs.219

3.1 Orthosteric modulation
To date, orthosteric modulation by small-molecules is the primary strategy

pursued to target PPIs.220 Orthosteric modulators generally display different

physicochemical properties (e.g., a higher molecular size) in comparison

with inhibitors of enzymes or receptors, mostly because of the nature and

shape of protein-protein interfaces.221 These type of ligands are particularly

suitable for targeting small PPIs and/or those in which hot-spot residues

define proper binding sites, as the absence of concavity in protein-protein

interfaces narrows the ligand contacts with PPI surface, limiting its tight

binding.220

Since the interaction of a small-molecule with hot-spot residues can

compete with the binding protein partner, disrupting PPI by targeting

hot spots has been a widely applied strategy able to identify potent and selec-

tive PPI inhibitors.222–225 Therefore, the identification of hot-spot residues
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works as a way to identify suitable inhibitor binding sites at protein-

protein interfaces.226 MDs simulations and docking studies, as well as

ML methods (reviewed in the previous section), are commonly applied

in hot-spot identification.43 Once identified, hot-spot knowledge can

be combined with other computational techniques to identify druggable

binding sites at protein-protein interfaces, or even PPI modulators. An

example of a successful multistep approach that combines hot-spot predic-

tion, pharmacophore screening, and molecular docking was the identifi-

cation of IFNA-IFN receptor interaction inhibitors. By using iPred,

which is a knowledge-based scoring function tool for hot-spot prediction,

and a structure-based pharmacophore approach, a new promising inhib-

itor targeting the IFNA-IFN interface was identified.43

A new approach, based on the development of covalent inhibition, has

emerged as a more efficient promising strategy for targeting PPIs.217 This

approach involves the covalent modification of a nucleophilic residue, such

as cysteine or methionine, located at nearest-neighbor PPI interfaces. The

main objective is to achieve an efficient and prolonged target modulation,

ultimately able to overcome the drawback of large and featureless PPI inter-

faces. Examples of such successful modulators are the inhibition of KRAS

G12C, MCL-1, and BRD4 proteins through covalent modification of

cysteine, lysine, and methionine, respectively.217

Among the small-molecule PPI inhibitors identified, some have entered

clinical trials (including some covalent inhibitors), and few of them were

approved.226 Gabapentin, which is a GABA mimetic drug, firstly used in

the treatment of epilepsy, was reported as a competitive inhibitor of the

interaction between the GPCR bradykinin and prokineticin 2, reducing

protein kinase C epsilon (PKCε) translocation and ultimately leading to a

relief of neuropathic pain.227

It is important to note that some antibodies and peptides were also iden-

tified as PPI inhibitors since they display larger interacting interfaces.226

A peptide inhibitor of LMP-1 oligomerization was recently identified, rep-

resenting a starting point for EBV targeting by inhibition of LMP-1’s

TMD5 trimerization. As far as we know, this molecule represents the first

peptide inhibitor involved in the disruption of homotrimeric transmem-

brane helices.228 Nevertheless, antibodies and peptides usually display

lower bioavailability in comparison with small-molecules, which often

make them unattractive candidates for PPIs modulation.

Nanobodies (Nbs) have emerged as a new class of promising antibody-

based therapeutics able to overcome the limitations of antibodies. Nbs usually
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displaying high selectivity and extended half-lives when compared with

small-molecules.229 These molecules were reported as targeting GPCRs,

namely chemokine receptors. Nbs 238D2 and 238D4 are both able to bind

to CXCR4 protein, competing for the binding with CXCL12. This

approach prevented CXCL12-dependent binding and signaling, inhibiting

HIV-1 replication in vitro.230

3.2 Allosteric modulation
Allosteric modulation is mainly applied when the PPI interface is large

and flat, being these types of modulators more drug-like than orthosteric

PPIs ones.218 Moreover, allosteric ligands can overcome one of the most

significant issues of orthosteric binding, the competition with the bulky

PPI partners, which usually display a higher affinity for the protein-protein

interface.219 Several allosteric PPIs modulators have been identified so far.

Among them, synthetic peptides developed taking into account the struc-

ture of TM helices from bovine rhodopsin (Rho), have been used to study

the Rho dimer interface, including the effect of its disruption.231 Another

example of allosteric modulation involves NTS1R-D2R complexes. It was

suggested that the binding of bivalent ligand CS148 to both NTS1R and

D2R protomers (as agonist and antagonist, respectively) promotes a confor-

mational change in NTS1R-D2R interface, which results in a calcium

response comparable to NTS1R monomer activation.232

Altogether, and despite the identification of PPIs modulators by different

experimental and computational tools for a large number of diverse com-

plexes, further studies are needed to identify new and more selective PPIs

inhibitors involved in oligomerization. Information about PPI modulators

can be found in several databases, such as TIMBAL,233 2P2I,234 and iPPI-

DB,235,236 which compiles information about the nature and structure of

those molecules.

4. Concluding remarks

GPCRs are a broad family of membrane receptors that have an essen-

tial role in multiple diseases, and because of that are targets of about 34% of

total approved drugs. Diverse experimental and computational approaches

have demonstrated the existence of GPCRdimers and high-order oligomers

and their impact on GPCR function and dynamics. The discovery of GPCR

dimers with a physiological importance suggests that new and more targeted

drugs can be developed by targeting these structures.
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In this work, we review experimental, computational, and ML methods

that are used to characterize and predict oligomerization interaction interfaces

in GPCRs. Among the experimental methods, fluorescence-based assays are

the most used to study PPIs, being often applied in combinationwith affinity-

basedmethods and/or genetic assays.More recent techniques, such asTIRFM

and single-molecule imaging, gave further insights into the oligomerization

state of GPCRs, while a new FRET-based strategy focused on ligand binding

selectivity for hetero-oligomers was also identified. Concerning computa-

tional methods, structure-based methods are preferred over sequence-based

ones when 3D information about the dimer/oligomer is available.

Additionally, CGMD is usually the first choice to study the GPCR dynamics

engaging PPIs, due to the large size of the oligomeric systems and the long

length scales needed to observe reliable conformational changes.

More recently, diverse structure- and/or sequence-basedmodels that use

ML algorithms appear to support the prediction of PPIs interface. Although

these models can also be used for GPCR interface dimers prediction, the

complex interaction and modulation between these receptors and the

hydrophobic lipid membrane is hindering this application. Some methods

that combine structure-, sequence- and co-evolution-based features with

ML algorithms were explicitly developed for membrane proteins; however,

the development of a suitable method for GPCR dimers interface prediction

is still needed.

Regarding targeting of PPIs interface, both orthosteric and allosteric

modulators have been identified. Although new promising PPIs modulators

have emerged (e.g., covalent inhibitors, Nbs), further studies are needed to

identify more selective and safer PPI modulators.

Although different strategies are applied in the prediction and targeting

of PPIs, all methods identified, so far, present limitations. Therefore, the

combination of experimental and computational and/or ML methods have

been applied to overcome the drawbacks of each technique, leading to a

better prediction and characterization of GPCR PPIs.

Nevertheless, much more work needs to be done to have a holistic

understanding of GPCR oligomerization and better targeting the interfaces

in GPCR oligomers.
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80. Kaczor AA, Guixà-González R, Carriõ P, et al. Multi-component protein-protein
docking based protocol with external scoring for modeling dimers of G protein-
coupled receptors. Mol Inf. 2015;34(4):246–255. https://doi.org/10.1002/minf.
201400088.

81. Kaczor AA, J€org M, Capuano B. The dopamine D2 receptor dimer and its interaction
with homobivalent antagonists: homology modeling, docking andmolecular dynamics.
J Mol Model. 2016;22(9):203. https://doi.org/10.1007/s00894-016-3065-2.

36 Carlos A. V. Barreto et al.

ARTICLE IN PRESS

https://doi.org/10.1093/oxfordjournals.molbev.a026100
https://doi.org/10.1111/j.1742-4658.2005.04730.x
https://doi.org/10.1007/978-0-387-76678-2_3
https://doi.org/10.1007/978-0-387-76678-2_3
https://doi.org/10.1021/bi035097r
https://doi.org/10.1002/prot.20332
https://doi.org/10.1074/jbc.271.27.16384
https://doi.org/10.1074/jbc.271.27.16384
https://doi.org/10.1074/jbc.C200679200
https://doi.org/10.1074/jbc.C200679200
https://doi.org/10.1021/bi0345539
https://doi.org/10.1074/jbc.M302536200
https://doi.org/10.3109/10799890903295143
https://doi.org/10.3109/10799890903295143
https://doi.org/10.3390/molecules22020340
https://doi.org/10.1002/minf.201200150
https://doi.org/10.1002/prot.24934
https://doi.org/10.1371/journal.pcbi.1004398
https://doi.org/10.1093/bioinformatics/btw184
https://doi.org/10.1093/bioinformatics/btw184
https://doi.org/10.1002/minf.201400088
https://doi.org/10.1002/minf.201400088
https://doi.org/10.1007/s00894-016-3065-2


82. Borroto-Escuela DO, Rodriguez D, Romero-Fernandez W, et al. Mapping the inter-
face of a GPCR dimer: a structural model of the A2A adenosine and D2 dopamine
receptor heteromer. Front Pharmacol. 2018;9:829. https://doi.org/10.3389/fphar.2018.
00829.

83. Wang J, Miao Y. Recent advances in computational studies of GPCR-G protein inter-
actions. In: Donev R, ed. Advances in Protein Chemistry and Structural Biology. Academic
Press; 2019:1st ed. vol. 116. https://doi.org/10.1016/bs.apcsb.2018.11.011.

84. Altwaijry NA, Baron M, Wright DW, Coveney PV, Townsend-Nicholson A. An
ensemble-based protocol for the computational prediction of helix-helix interactions
in G protein-coupled receptors using coarse-grained molecular dynamics. J Chem
Theory Comput. 2017;13(5):2254–2270. https://doi.org/10.1021/acs.jctc.6b01246.

85. Simpson LM, Taddese B, Wall ID, Reynolds CA. Bioinformatics and molecular
modelling approaches to GPCR oligomerization. Curr Opin Pharmacol. 2010;
10(1):30–37. https://doi.org/10.1016/j.coph.2009.11.001.

86. Selent J, Kaczor AA. Oligomerization of G protein-coupled receptors: computa-
tional methods. Curr Med Chem. 2012;18(30):4588–4605. https://doi.org/10.2174/
092986711797379320.

87. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M.
CHARMM: a program for macromolecular energy, minimization, and dynamics
calculations. J Comput Chem. 1983;4(2):187–217. https://doi.org/10.1002/jcc.
540040211.

88. Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a
force field for drug-like molecules compatible with the CHARMM all-atom additive
biological force fields. J Comput Chem. 2010;31(4):671–690. https://doi.org/10.1002/
jcc.21367.

89. Huang J, Mackerell AD. CHARMM36 all-atom additive protein force field: validation
based on comparison to NMR data. J Comput Chem. 2013;34(25):2135–2145. https://
doi.org/10.1002/jcc.23354.

90. Case DA, Cerutti DS, Cheatham TE, et al. Amber17. 2017. https://doi.org/10.13140/
RG.2.2.36172.41606.

91. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI
force field: coarse grained model for biomolecular simulations. J Phys Chem B.
2007;111(27):7812–7824. https://doi.org/10.1021/jp071097f.

92. Filizola M, Wang SX, Weinstein H. Dynamic models of G-protein coupled receptor
dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics
simulations in a POPC bilayer. J Comput Aided Mol Des. 2006;20(7–8):405–416.
https://doi.org/10.1007/s10822-006-9053-3.

93. Cordomı́ A, Perez JJ. Structural rearrangements of rhodopsin subunits in a dimer com-
plex: a molecular dynamics simulation study. J Biomol Struct Dyn. 2009;27(2):127–147.
https://doi.org/10.1080/07391102.2009.10507303.

94. Neri M, Vanni S, Tavernelli I, Rothlisberger U. Role of aggregation in rhodopsin
signal transduction. Biochemistry. 2010;49(23):4827–4832. https://doi.org/10.1021/
bi100478j.

95. Periole X, Huber T, Marrink S-J, Sakmar TP. G protein-coupled receptors self-
assemble in dynamics simulations of model bilayers. J Am Chem Soc. 2007;129(33):
10126–10132. https://doi.org/10.1021/ja0706246.

96. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T. Structural determinants of
the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem
Soc. 2012;134(26):10959–10965. https://doi.org/10.1021/ja303286e.

97. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ. Molecular dynamics simula-
tions and structure-based network analysis reveal structural and functional aspects of
G-protein coupled receptor dimer interactions. J Comput Aided Mol Des. 2016;
30(6):489–512. https://doi.org/10.1007/s10822-016-9919-y.

37Prediction and targeting of GPCR oligomer interfaces

ARTICLE IN PRESS

https://doi.org/10.3389/fphar.2018.00829
https://doi.org/10.3389/fphar.2018.00829
https://doi.org/10.1016/bs.apcsb.2018.11.011
https://doi.org/10.1021/acs.jctc.6b01246
https://doi.org/10.1016/j.coph.2009.11.001
https://doi.org/10.2174/092986711797379320
https://doi.org/10.2174/092986711797379320
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1002/jcc.23354
https://doi.org/10.13140/RG.2.2.36172.41606
https://doi.org/10.13140/RG.2.2.36172.41606
https://doi.org/10.1021/jp071097f
https://doi.org/10.1007/s10822-006-9053-3
https://doi.org/10.1080/07391102.2009.10507303
https://doi.org/10.1021/bi100478j
https://doi.org/10.1021/bi100478j
https://doi.org/10.1021/ja0706246
https://doi.org/10.1021/ja303286e
https://doi.org/10.1007/s10822-016-9919-y


98. Ghosh A, Sonavane U, Joshi R. Multiscale modelling to understand the self-assembly
mechanism of human β2-adrenergic receptor in lipid bilayer. Comput Biol Chem.
2014;48:29–39. https://doi.org/10.1016/j.compbiolchem.2013.11.002.

99. Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface
of the β2-adrenergic receptor via cholesterol occupancy sites. Biophys J.
2014;106(6):1290–1300. https://doi.org/10.1016/j.bpj.2014.02.002.

100. Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H. Membrane
driven spatial organization of GPCRs. Sci Rep. 2013;3:2909. https://doi.org/10.1038/
srep02909.

101. Johnston JM, Wang H, Provasi D, Filizola M. Assessing the relative stability of dimer
interfaces in G protein-coupled receptors. PLoS Comput Biol. 2012;8(8), e1002649.
https://doi.org/10.1371/journal.pcbi.1002649.

102. Rodrı́guez D, Guti�errez-de-Terán H. Characterization of the homodimerization inter-
face and functional hotspots of the CXCR4 chemokine receptor. Proteins.
2012;80(8):1919–1928. https://doi.org/10.1002/prot.24099.

103. Pluhackova K, Gahbauer S, Kranz F, Wassenaar TA, B€ockmann RA. Dynamic
cholesterol-conditioned dimerization of the G protein coupled chemokine receptor
type 4. PLoS Comput Biol. 2016;12(11): e1005169. https://doi.org/10.1371/journal.
pcbi.1005169.

104. Provasi D, Boz MB, Johnston JM, Filizola M. Preferred supramolecular organization
and dimer interfaces of opioid receptors from simulated self-association. PLoS
Comput Biol. 2015;11(3), e1004148. https://doi.org/10.1371/journal.pcbi.1004148.

105. Provasi D, Johnston JM, Filizola M. Lessons from free energy simulations of δ-opioid
receptor homodimers involving the fourth transmembrane helix. Biochemistry.
2010;49(31):6771–6776. https://doi.org/10.1021/bi100686t.

106. Johnston JM, Aburi M, Provasi D, et al. Making structural sense of dimerization inter-
faces of delta opioid receptor homodimers. Biochemistry. 2011;50(10):1682–1690.
https://doi.org/10.1021/bi101474v.

107. Zhang X, Yuan Y,Wang L, et al. Use multiscale simulation to explore the effects of the
homodimerizations between different conformation states on the activation and allo-
steric pathway for the μ-opioid receptor. Phys Chem Chem Phys. 2018;20(19):
13485–13496. https://doi.org/10.1039/c8cp02016g.

108. Meral D, Provasi D, Prada-Gracia D, et al. Molecular details of dimerization kinetics
reveal negligible populations of transient μ-opioid receptor homodimers at physiolog-
ical concentrations. Sci Rep. 2018;8(1):7705. https://doi.org/10.1038/s41598-018-
26070-8.

109. Kim SK, Jacobson KA. Computational prediction of homodimerization of the A3
adenosine receptor. J Mol Graph Model. 2006;25(4):549–561. https://doi.org/
10.1016/j.jmgm.2006.03.003.

110. Fanelli F. Dimerization of the lutropin receptor: insights from computational modeling.
Mol Cell Endocrinol. 2007;260–262:59–64. https://doi.org/10.1016/j.mce.2005.
12.054.

111. Dijkman PM, Castell OK, Goddard AD, et al. Dynamic tuneable G protein-coupled
receptor monomer-dimer populations. Nat Commun. 2018;9(1):1710. https://doi.org/
10.1038/s41467-018-03727-6.

112. Erol I, Cosut B, Durdagi S. Toward understanding the impact of dimerization inter-
faces in angiotensin II type 1 receptor. J Chem Inf Model. 2019;59(10):4314–4327.
https://doi.org/10.1021/acs.jcim.9b00294.

113. Liu X, Kai M, Jin L,Wang R. Computational study of the heterodimerization between
μ and δ receptors. J Comput Aided Mol Des. 2009;23(6):321–332. https://doi.org/
10.1007/s10822-009-9262-7.

38 Carlos A. V. Barreto et al.

ARTICLE IN PRESS

https://doi.org/10.1016/j.compbiolchem.2013.11.002
https://doi.org/10.1016/j.bpj.2014.02.002
https://doi.org/10.1038/srep02909
https://doi.org/10.1038/srep02909
https://doi.org/10.1371/journal.pcbi.1002649
https://doi.org/10.1002/prot.24099
https://doi.org/10.1371/journal.pcbi.1005169
https://doi.org/10.1371/journal.pcbi.1005169
https://doi.org/10.1371/journal.pcbi.1004148
https://doi.org/10.1021/bi100686t
https://doi.org/10.1021/bi101474v
https://doi.org/10.1039/c8cp02016g
https://doi.org/10.1038/s41598-018-26070-8
https://doi.org/10.1038/s41598-018-26070-8
https://doi.org/10.1016/j.jmgm.2006.03.003
https://doi.org/10.1016/j.jmgm.2006.03.003
https://doi.org/10.1016/j.mce.2005.12.054
https://doi.org/10.1016/j.mce.2005.12.054
https://doi.org/10.1038/s41467-018-03727-6
https://doi.org/10.1038/s41467-018-03727-6
https://doi.org/10.1021/acs.jcim.9b00294
https://doi.org/10.1007/s10822-009-9262-7
https://doi.org/10.1007/s10822-009-9262-7


114. Wang L, Yuan Y, Chen X, et al. Probing the cooperative mechanism of the μ-δ opioid
receptor heterodimer by multiscale simulation. Phys Chem Chem Phys. 2018;20(47):
29969–29982. https://doi.org/10.1039/c8cp06652c.

115. Navarro G, Cordomı́ A, Zelman-FemiakM, et al. Quaternary structure of a G-protein-
coupled receptor heterotetramer in complex with Gi and Gs. BMCBiol. 2016;14(1):26.
https://doi.org/10.1186/s12915-016-0247-4.

116. Bruno A, Guadix AE, Costantino G. Molecular dynamics simulation of the
heterodimeric mGluR2/5HT2A complex. An atomistic resolution study of a potential
new target in psychiatric conditions. J Chem Inf Model. 2009;49(6):1602–1616. https://
doi.org/10.1021/ci900067g.
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