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increase severe drinking water vulnerabilities in the southwestern
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h i g h l i g h t s
� Groundwater was severely contaminated owing to salinity intrusion.
� High concentrations of EC, TDS, and Cl� and low pH increased the co-contamination risk, such as from trace metals.
� High concentrations of co-contaminants in groundwater are a great concern for future drinking water security among coastal communities.
� Groundwater was completely unsuitable for drinking, which poses a significant public health risk.
� Statistical analysis showed a significant correlation between salinity and trace elements contamination, which was found to be consistent with local
perceptions.
a r t i c l e i n f o

Article history:
Received 30 September 2019
Received in revised form
30 November 2019
Accepted 11 December 2019
Available online 17 December 2019

Handling Editor: Shane Snyder

Keywords:
Groundwater salinization
Co-contamination
Multivariate statistics
Spatial distribution
Social perception
Health risk
* Corresponding author. Graduate Program in Sust
Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.

E-mail addresses: rakibmamun_ju@yahoo.com, md

https://doi.org/10.1016/j.chemosphere.2019.125646
0045-6535/© 2019 Elsevier Ltd. All rights reserved.
a b s t r a c t

Household drinking water security is one of the major issues among coastal communities in Bangladesh.
To examine the groundwater quality and social consequences, groundwater samples and household
questionnaires were administered across the study area. Instrumental and statistical tools were used to
analyze the water quality and social survey data. The average concentrations of electrical conductivity
(EC) (7135.67 mS/cm), total dissolved solids (TDS) (3691mg/L), Naþ (1569.51mg/L), Ca2þ (289.5mg/L),
Mg2þ (340.51mg/L), Cl� (2940.78mg/L), F� (11.85mg/L), NO3

� (54.44mg/L), NO2
� (162.95mg/L), PO4

3�

(105.19mg/L), Fe (4.9 mg/L), Mn (1.22mg/L), As (16.55 mg/L), B (833.28 mg/L), and Pb (34.22 mg/L) were
observed in groundwater, and exceeded the drinking water standards from 30% to 100% depending on
the sampling location. Thus, the remarkably high contents of EC, TDS, Cl�, and Naþ represented possible
saltwater intrusion along the coastal aquifer. The positive correlations between EC and trace and toxic
elements indicated the potential influence of groundwater salinization on the dissolution of more
chemical contaminants in the aquifer. These results showed that 100% of samples were unsuitable for
drinking purposes. Severe drinking water scarcity is a serious issue, and local people have been affected
by water-related diseases owing to the long-term consumption of contaminated water. Salinity problems
in drinking water and related health diseases have increased significantly in the past several years. In
addition, climate change and its associated hazards, including sea-level rise, cyclonic storm surges,
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1 Polder is defined as “a polder is a low-lying tract o
hydrological entity, enclosed by embankments kn
wikipedia.org/wiki/Polder), “In the 1960s, 123 pold
enclosed by earthen embankments), including 49 s
structed to protect low-lying coastal areas from tidal fl
southern Bangladesh” (http://www.thenewhumanit
bangladesh-polders-under-threat).
flooding, and resulting inundation problems, have intensified the drinking water scarcity and health
problems at the community level. To ensure household water security, environmental exposure, hy-
drogeology, and anthropogenic interventions must be considered to determine future sustainable water
policies.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

More than 844 million people presently face drinking water
crises, and they have no access to good-quality potablewater (WHO
and UNICEF, 2017). Many of the water scarcity issues are related to
diversified problems in terms of natural and anthropogenic causes.
A number of causes, including increasing population, over-
extraction of water resources, urban expansion, land cover
change in watersheds, and climate change issues, are increasingly
threatening water resources (Kim et al., 2018). In particular, climate
change and its threats are now of great concern for conserving
water resources. Salinity intrusion affects 11 Asian mega-deltas and
other large estuaries, such as the Mississippi and Nile (Vineis et al.,
2011). The availability of fresh water in large river basins, including
those in East, Central, South, and Southeast Asia, is projected to
decrease by the 2050s (IPCC, 2007). To meet the United Nation's
Sustainable Development Goals (SDGs), safe drinking water is one
of the key requirements to ensure sound public health, livelihoods,
and food security (Sojobi, 2016).

In Bangladesh, approximately 99% of the total population uses
groundwater as amain source of drinking water (Zahid et al., 2008),
while 35 to 77 million people are considered at high risk for As
contamination through drinking water sources (Edmunds et al.,
2015) and 35 million people are facing serious drinking water cri-
ses because of freshwater salinization in the coastal aquifer
(Talukder et al., 2016). Although Bangladesh is a low-lying deltaic
country, its southwestern area is relatively flat and much lower
than other parts of the country. The exposed coastal region lies
approximately 1.5m above mean sea level (Rakib et al., 2019b;
Rahman and Rahman, 2015), and is highly vulnerable to climate
change impacts, sea-level rise, flooding, and seawater intrusion.
The frequency and magnitude of hydro-climatic extremes, such as
cyclones, storm surges, and resultant inundation, have increased
owing to the consequences of climate change (Penning-Rowsell
et al., 2013). Mismanagement of polders1 (Mahmuduzzaman
et al., 2014; Rahman et al., 2000), flow control at the upstream
barrage (Mahmuduzzaman et al., 2014; Rahman et al., 2000), land
subsidence (Fakhruddin and Rahman, 2014; Bhuiyan and Dutta,
2012), and excess groundwater extraction (Chowdhury, 2010)
may contribute to increasing salinization and deteriorating of
groundwater quality. There is limited literature on how long-term
salinity intrusion is altering the overall status of contamination in
the coastal aquifer of Bangladesh. Correspondingly, the alteration of
physicochemical parameters can change the chemical behavior of
the aquifer composition and dissolution rate intowater. In addition,
the enrichment of dissolved toxic metals in water makes it un-
suitable for use for drinking purposes and agricultural and indus-
trial activities (Nazeer et al., 2014; Zhang et al., 2009; Wang et al.,
f land that forms an artificial
own as dikes” (https://en.
ers (low-lying tracts of land
ea-facing polders, were con-
oods and salinity intrusion in
arian.org/feature/2013/06/27/
2017). To control water pollution and protect water resources, it
is imperative to determine the trace element concentrations, their
source, distribution, and degree of health risks (Islam et al., 2014;
Xiao et al., 2014; Wang et al., 2017).

Coastal communities are facing salinity crises in coastal aquifers
(Bahar and Reza, 2010), and drinkingwater scarcity is serious. Many
people regularly use contaminated water for different household
activities, which is unsuitable for their health. According to the
Food and Agricultural Organization (FAO) and World Health Orga-
nization (WHO), the recommended daily dietary intake of salt is
less than 5 g/d (Nishida et al., 2004). The daily intake of salt is up to
16 g/d in many coastal communities through only 2 L of natural
drinking water (Vineis et al., 2011). The total daily salt intake can
vary according to the route of exposure, degree of contamination,
pattern of household water usage, and regional environmental
crises. Different routes of salinity exposure have potential links to
health problems, including skin diseases, acute respiratory dis-
eases, hypertension, diarrheal diseases, and miscarriage among
pregnant women (Ministry of Environment and Forest, 2006; CDI,
2000;2005). The Safe Drinking Water Foundation (SDWF, 2018)
mentioned that 80% of all the illnesses were caused by unsafe
drinking water and sprawl water-borne diseases. However, today,
drinking water scarcity can become a more severe condition owing
to salinity intrusion and co-contamination. Few studies have
emphasized the drinking water crisis owing to coastal salinity
problems in terms of biophysical and social aspects (Rahman et al.,
2011, 2017; Khan et al., 2008; Saha et al., 2018; Ahmed, 2011; Das
et al., 2017; Sarkar and Vogt, 2015; Islam et al., 2017; Rahman
and Bhattacharya, 2014; Shumaker, 2017); these studies did not
explore how long-term salinity problems affect the groundwater
and/or drinking water quality along the coastal belt of Bangladesh.
There are a lack of studies on salinity contamination and co-
contamination in groundwater and how co-contaminants, such as
trace metals, and ions are spatially distributed and influenced by
long-term salinization in groundwater aquifers.

The aims of this study were to assess the groundwater quality
parameters and their distributions across the study area where
salinization in the coastal aquifer is a principal constraint for
drinking water in coastal communities; to determine how salinity
influences overall groundwater quality parameters; and to deter-
mine the social perceptions of water quality and its consequences
on lifestyle, such as the availability of drinking water and health
impacts. This research will explain long-term salinization in coastal
groundwater aquifers, and not only the creation of drinking water
contamination and health impacts along the coastal belt of
Bangladesh, but also the influence on aquifer steady-state condi-
tions through the dissolution of more chemical components. In this
study, inductively coupled plasma mass spectrometry (ICP-MS),
atomic absorption spectrophotometry (AAS), and ion chromatog-
raphy (IC) were used to analyze the water quality parameters.
Statistical techniques, including the groundwater quality index
(GWQI), multivariate statistics, and correlation analyses, were
performed to assess the quality of drinking water and to identify
the sources of contamination in groundwater aquifers. Some of the
standard drinking water guideline was followed to observe the
contamination status. In addition, a semi-structured household

https://en.wikipedia.org/wiki/Polder
https://en.wikipedia.org/wiki/Polder
http://www.thenewhumanitarian.org/feature/2013/06/27/bangladesh-polders-under-threat
http://www.thenewhumanitarian.org/feature/2013/06/27/bangladesh-polders-under-threat
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questionnaire was used to examine the social perception of
regional groundwater contamination and social impacts at the
community level.
2. Materials and methods

2.1. Study area

This study was conducted in the southwestern part (Shyamna-
gar Sub-District, Satkhira District) of Bangladesh, as shown in Fig. 1.
The study area was located around 22.3306�N and 89.1028�E,
which was a relatively densely populated area. Shyamnagar Sub-
District is very close to a mangrove forest and the Bay of Bengal.
This area was considered highly vulnerable to climate change and
sea-level rise because of its geographical location (the most
southwestern part and its conical shape) and topographical fea-
tures (mainly flat areas). The average elevation above sea level
(MASL) ranged from 1m to 2m, and 45% of the study area was
considered at high risk of a 1m anomaly of cyclonic storm surges
(Ministry of Environment and Forest, 2016). Most of the tidal
channels and rivers were criss-crossed by the study area. This area
was covered by the Ganges floodplain, which wasmostly formed by
sedimentation. The main components of the lithological units were
silt to fine, medium, and coarse sands, the formations of which
were less consolidated and blithely compacted (Adhikary et al.,
2011). Since the last decade, sea-level rise and saltwater intrusion
in the groundwater aquifer have been emerging issues in the
southwestern coastal part of Bangladesh (Rakib et al., 2019a).
2.2. Sample collection

Groundwater samples were collected at 30 stations in June 2017
Fig. 1. Map of the study area
(Fig. 1). A total of 26 samples were collected from shallow tube
wells (average depth of 30.68m), and 4 samples were collected
from deep tube wells (182.88m). A global positioning system (GPS)
was used to record the geographic locations. Before sampling, all
the sampling bottles were shocked with 20% nitric acid overnight
and then rinsed with deionized water to remove the internal and
external contaminants. First, the hand tube wells were pumped
from 3min to 5min to remove the aerated water from the upper
part of the tube well pipe, as shown in Fig. 2. Through each of the
tube wells, 1 L of water was collected in a polyethylene bottle.
Airtight caps were used to avoid air exchange or contamination
from the outside of the bottles. After sample collection, all the
samples were sent to a laboratory of the Bangladesh Atomic Energy
Commission within 21 h and kept it in a refrigerator at a temper-
ature of under 4 �C.
2.3. Instrumental analysis

The temperatures and water quality parameters of pH, EC, and
TDS were measured by following the American Public Health Or-
ganization (APHA, 1995) guideline during the sampling periods.
The pH and EC were measured by using HANNA meter (model HI
98130). The pH meter was calibrated with pH 4.0, 7.0, and 10.0
standard solutions for the pH measurement. In addition, HANNA
meter was calibrated with a standard solution of known conduc-
tivity tomeasure the EC (Rahmanian et al., 2015). Similar procedure
was applied to perform the TDS analysis. The groundwater samples
were processed for instrumental analysis following the standard
methods of the American Public Health Association (APHA, 1998).
Water quality parameters of Ag, Be, Bi, Cd, Cr, Hg, U, Th, V, Sc, Li, Pb,
and B were analyzed using ICP-MS (Bruker 800), while Ca2þ, Naþ,
Mg2þ, Zn, Fe, Kþ, As, and Mn were analyzed using AAS (240 FS,
with sampling stations.



Fig. 2. Hand tube well water used for drinking purposes. (Source: Authors).
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Varian). Further, F�, Cl�, NO2
�, NO3

�, Br�, SO4
2�, and PO4

3� were
analyzed using IC (Dionex DX-3000, USA). The National Institute of
Standards and Technology standard reference material 1643e was
analyzed to ensure the accuracy of the concentration measure-
ments. All the measured (22) water quality values were compared
with the drinking water standards established by the WHO (WHO,
2011), Department of Environment of Bangladesh DoE (DoE, 1997),
Indian Standard (IS) (IS, 2012), United States Environmental Pro-
tection Agency (USEPA) Standard (USEPA, 2009), and European
Standards (EU, 2011; Khalid et al., 2018). These comparisons were
performed to evaluate the groundwater quality status for drinking
purposes.
2.4. Geostatistical interpolation

To analyze the spatial distribution of water quality parameters,
GIS (Geographic Information System) mapping and interpolation
were performed using ArcGIS 10.4 software. To interpolate the
water quality data across the study area, the ordinary kriging
method was applied (Masoud, 2014; Tapoglou et al., 2014). The
semivariogram is considered a principal model to determine the
spatial differences between neighboring observations. The spatial
distribution (Delhomme, 1978) among the random variables ac-
cording to the estimation of values of unsampled locations was
calculated according to the following equation:

bzðx0Þ¼
Xn
i¼1

lizðxiÞ (1)

where bz is the calculated value at an arbitrary point (x0), z is the
measured value at the sampling points (xi), li is a given weight at
the sampling points, and n indicates the total number of sampling
points (Webster and Oliver, 2001). The semivariance for each of the
groundwater quality parameters was calculated as follows:

gðhÞ¼ 1
2m

Xm
i¼1

½zðxiÞ � zðxi þ hÞ�2 (2)

where m denotes the pairs of sampling points that are within a
standard distance of lag h (Burrough and McDonnell, 1998).
2.5. Groundwater quality indexing

The water quality index can play an important role in setting up
the demarcation of groundwater quality and suitability for drinking
purposes (Tiwari and Mishra, 1985; Singh, 1992; Subba Rao, 1997;
Mishra and Patel, 2001; Naik and Purohit, 2001; Avvannavar and
Shrihari, 2008; Vasanthavigar et al., 2010). The GWQI is
considered a robust approach to judge overall water quality while
considering the composite influence of water quality parameters; it
is calculated using the drinking water quality standards proposed
by the WHO (2011) and EU (2011). A weight for each of the water
quality parameters was determined depending on its relative
importance in terms of drinking purposes (see Supplementary
Table S1) (Tirkey et al., 2017; Bodrud-Doza et al., 2016;
Vasanthavigar et al., 2010). The relative weight was calculated as
follows:

Wi ¼
wiPn
i¼1wi

(3)

where Wi is the relative weight of each parameter, wi is the
assigned weight of an individual parameter, and n is the total
number of parameters. The rating of water quality (qi) as a per-
centage was calculated as follows:

qi ¼
Ci
Si

� 100 (4)

Where ci is the measured individual concentration of each of the
water quality parameters and si is its standard value. The GWQI was
calculated as follows:

GWQI ¼
Xn
i¼1

Wiqi (5)

The GWQI was classified into five categories to justify the suit-
ability of water for drinking purposes (see Supplementary
Table S2).

2.6. Statistical analysis of measured water quality

Statistical analysis of measured water quality parameters was
performed to evaluate the internal relationship using SPSS (IBM 21,
Windows version). The Pearson correlation coefficient was deter-
mined using the measured parameters to identify the relationship.
Multivariate statistical techniques, including principal component
analysis (PCA) and cluster analysis (CA), were applied to determine
the influential parameters and source apportionment by the data
reduction process.

Multivariate statistics is commonly used to determine the
source of environmental pollutants through correlation analysis,
CA, and PCA (Mendiguchía et al., 2004; Han et al., 2006). PCA
transforms the original data into a new form, namely uncorrelated
variables (axes) that are linearly combined with original variables
(Shrestha and Kazama, 2007). PCA is a powerful technique to
reduce the dimensionality of original data sets; it aims to extract
the most influential parameters through producing different
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components with minimum loss of original information (Helena
et al., 2000). Consecutively, each component score describing the
more prominent variables with their influence on all variables are
given as follows:

yi ¼ a1ix1 þ a2ix2 þ a3ix3 þ…þ amixm (6)

where y is the component score, a is the component loading, x is
the measured value of the variable, i is the component number, and
m is the total number of variables. The component loadings are
divided into three classes, namely strong (>0.75), moderate
(0.75e0.50), and weak (0.50e0.30), depending on their absolute
values (Liu et al., 2003; Gao et al., 2016; Wang et al., 2017).

CA is a reliable statistical method used to explore the internal
relationships among the measured variables that exhibit similar
characteristics through making an individual group. CA is preferred
to assemble objects based on the similarity of internal (homoge-
neity within individual clusters) and external (heterogeneity
among the clusters) characteristics (Shrestha and Kazama, 2007).
Essentially, hierarchical agglomerative clustering is an important
technique to determine the intuitive relationships among the
measured objects within a cluster or entire data set, which is
illustrated by a tree dendrogram (McKenna, 2003). The dendro-
gram itself is a visual summary of the data set that exhibits a sig-
nificant reduction in the dimensionality of the original data set in
relation to similarities or dissimilarities; it presents a picture and
their closeness while the Euclidean distance explains the similar-
ities between two samples and the distance represents the varia-
tion in analytical values of samples (Otto, 1998). For the source
identification of water quality parameters, CA is a well-accepted
technique that explores the connection between variables accord-
ing to the source, abundance, and significant influence of the ob-
tained analytical parameters.
2.7. Survey questionnaire

To understand the social impacts owing to the long-term
Table 1
Descriptive statistics of physicochemical parameters, trace elements, cations, and anions

Parameters Minimum Maximum Mean Std. Deviatio

EC (mS/cm) 980 14160 7135.67 3433.58
pH 4.71 7.53 6.03 0.61
Temp (�C) 18 32.2 28.32 2.87
TDS (mg/L) 550 7080 3691 1648.52
Naþ (mg/L) 4.4 6494.3 1569.51 1728.42
Kþ (mg/L) 2.42 158.3 28.54 34.78
Ca2þ (mg/L) 25.11 889.8 289.5 221.22
Mg2þ (mg/L) 39.69 1342.32 340.51 312.48
Cl� (mg/L) 193.75 6033.81 2940.78 1563.53
F� (mg/L) BDL 62.93 11.85 16.83
Br�(mg/L) BDL 121.52 6.83 24.1
NO3

� (mg/L) BDL 376.73 54.44 80.11
NO2

� (mg/L) BDL 561.22 162.95 136.27
SO4

2� (mg/L) BDL 2127.52 181.61 392.8
PO4

3� (mg/L) BDL 296.32 105.19 69.72
Fe (mg/L) 0.080 16.87 4.9 4.76
Zn (mg/L) 0.19 1.13 0.42 0.26
Mn (mg/L) BDL 8.95 1.22 1.96
As (mg/L) BDL 120.5 16.55 30.04
Li (mg/L) BDL 1.82 0.18 0.48
B (mg/L) 110.89 2429.63 833.28 556.29
Pb (mg/L) BDL 159.75 34.22 40.89

BDL¼ Below Detection Limit.
a (Bodrud-Doza et al., 2016).
b (EU, 2011; Khalid et al., 2018).
consumption of contaminated water, information on local views
was collected using a social survey. We performed a survey on
household characteristics using a semi-structured questionnaire.
The randomization technique was applied to perform the house-
hold survey in the coastal community. A total of 179 household
questionnaires in these regions were analyzed to explore the local
perceptions of groundwater quality, drinking water crisis, and its
long-term consequences on health among the coastal commu-
nities. The questionnaire consisted of demographic information,
groundwater quality, water access, and public health diseases.
3. Results

3.1. Concentration of chemical parameters in groundwater

The physicochemical parameters of groundwater indicate the
suitability of water for drinking purposes. As displayed in Table 1,
the pH of groundwater samples ranged from 4.71 to 7.53 with a
mean value of 6.03. The standard pH of drinking water is between
6.5 and 8.5 (WHO, 2011). The average electrical conductivity (EC) of
the groundwater samples was 7135.67 mS/cm with a range from
980 mS/cm to 14160 mS/cm. The maximum permissible limit of EC is
400 mS/cm for drinking water (EU, 2011; Khalid et al., 2018). The
average total dissolved solids (TDS) concentration in the samples
was 3691mg/L with a range from 550mg/L to 7080mg/L, which
exceeded the drinking water standard of 500mg/L (WHO, 2011).
The average temperature of the groundwater samples was
approximately 28.32 �C during the sampling period.

The average concentration of Naþ was 1569.51mg/L and ranged
from 4.4mg/L to 6494.3mg/L, as shown in Table 1. The drinking
water standards of the DoE (DoE, 1997) and WHO (WHO, 2011)
recommended values for Naþ concentration are both less than
200mg/L. The measured Ca2þ, Mg2þ, and Kþ concentrations ranged
from 25.11mg/L to 889.8mg/L, 39.69mg/L to 1342.32mg/L, and
2.42mg/L to 158.3mg/L, respectively. Among the major anions, the
average concentration of Cl� in drinking water samples was found
to be 2940.78mg/L with a range from 193.75mg/L to 6033.81mg/L.
of drinking water.

n Water quality standard

DoE (1997) WHO (2011) IS (2012) USEPA (2009)

1000a 400b e e

6.5e8.5 6.5e8.5 6.5e8.5 6.5e8.5
20e30 e e e

1000 500 500 500
200 200 e e

12 e e e

75 100 75 e

30e35 150 30 50
150e600 250 250 250
1 1.5 1 2
e e e e

10 50 45 10
<1 0.50 e 1
400 500 200 500
6 e e e

0.3e1.0 0.3 0.3 0.3
5 3 5 5
0.1 0.05 0.1 0.05
50 10 10 10
e e e e

1000 500 500 e

50 10 10 e



M.A. Rakib et al. / Chemosphere 246 (2020) 1256466
The average concentrations of F� and Br� were 11.85mg/L and
6.83mg/L, respectively. The measured concentrations of NO3

�, NO2
�,

SO4
2�, and PO4

3� were 54.44mg/L, 162.95mg/L, 181.61mg/L, and
105.19mg/L, respectively. All the mean concentrations of anions,
except for SO4

2�, exceeded the standard values. Moreover, the Naþ

and Cl� concentrations were ubiquitously distributed in the
groundwater samples, which may have been caused by saltwater
intrusion in the coastal groundwater aquifer.

The mean concentrations of Fe and Zn were 4.9mg/L and
0.42mg/L, respectively, while the highest Fe concentration was
16.87mg/L (Table 1). The ranges in As and Mn concentrations
(within measured values) were from 2 mg/L to 120.5 mg/L and from
0.01mg/L to 8.95mg/L, respectively. In some samples, the Pb con-
centrations were significantly high, and ranged from 8 mg/L to
159.75 mg/L with an average concentration of 34.22 mg/L. The mean
concentration of Li was 0.18 mg/L. The average concentrations of EC,
TDS, Naþ, and Cl� in shallow and deep tube-wells were found to be
7256.54 and 6350 mS/cm, 3605.77 and 4245mg/L, 1546.05 and
1722.05mg/L, and 2944.98 and 2913.46mg/L, respectively. Thus,
61.90% (EC, TDS, Naþ, Kþ, Ca2þ, Mg2þ, Cl�, F�, NO3

�, NO2
�, PO4

3�, Fe,
and Mn) of shallow and 57.14% (EC, TDS, Naþ, Kþ, Ca2þ, Mg2þ, Cl�,
F�, NO2

�, PO4
3�, Fe, and B) of deep tube-well water quality param-

eters exceeded the DoE, WHO, IS, and USEPA drinking water stan-
dards. The concentrations of the chemical components in shallow
aquifer were slightly higher than the deep water.

3.2. Spatial distribution of chemical parameters in groundwater

The spatial distributions of the measured concentrations of
chemical parameters are shown in Fig. 3, where deeper colors
denote high concentrations. The distributions of TDS and EC had
significant positive correlations across the study area. The average
pH distribution across the study area was relatively low compared
with the lower bounds of the drinking water standards. Similar
Fig. 3. Spatial distribution of salin
distribution patterns were observed among Naþ, Cl�, NO2
�, and

NO3
�, while the individual concentrations varied. Likewise, homo-

geneous spatial distribution patterns were observed for EC, TDS, Kþ,
Ca2þ, Cl�, SO4

2�, NO2
�, Fe, As, B, and Pb, whereas Ca2þ and F�

demonstrated similar distribution patterns.

3.3. Status of groundwater contamination

Groundwater contamination exhibits high concentrations of
trace elements, major ions, and other organic matters in terms of
drinking water standards. The average concentration of each
element was compared with different drinking water guidelines
established by the WHO (2011), DoE (1997), IS (2012), and USEPA
(2009), as shown in Table 2. The concentrations of various chemi-
cal components of pH, TDS, Naþ, Kþ, Ca2þ, Mg2þ, Cl�, F�, NO3

�, NO2
�,

PO4
3�, Fe, Zn, Mn, As, B, and Pb exceeded their standard values by

different percentages. The concentrations of EC, TDS, Ca2þ, Mg2þ,
Cl�, F�, Br�, NO2

�, Fe, andMnwere significantly higher than those of
the other parameters. Approximately 70% of parameters exceeded
the WHO standards, and nearly 50% of the measured element
concentrations (TDS, Naþ, Kþ, Ca2þ, Mg2þ, Cl�, F�, NO3

�, NO2
�, PO4

3�,
Fe, Zn, and Mn) exceeded the DoE, WHO, IS, and USEPA standards.
Almost all the samples exceeded the drinking water standards of
the WHO, DoE, IS, and USEPA for the EC, TDS, and Cl� concentra-
tions. Approximately 87% of samples had the lowest level of pH, and
were mostly acidic. Thirty percent of As-containing samples and
60% of Pb-containing samples also exceeded the WHO and IS
standards for As and Pb concentrations, respectively, while the Zn
concentrations in all the samples were lower than the standard
values.

3.4. Suitability assessment of groundwater for drinking purposes

The GWQI represents the suitability of groundwater for drinking
ity, trace elements, and ions.



Table 2
Comparison of measured groundwater quality parameters with global drinking water quality standards.

Parameters Percentage of sample those
exceeds DoE (1997) standard

Percentage of sample those
exceeds WHO (2011) standard

Percentage of sample those
exceeds IS (2012) Standard

Percentage of sample those
exceeds USEPA (2009) standard

pH 86.67a 86.67a 86.67a 86.67a

TDS 93.33 100 100 100
EC 96.67b 100c e e

Naþ 66.67 66.67 e e

Kþ 53.33 e e e

Ca2þ 86.67 86.67 86.67 e

Mg2þ 100 80 100 96.67
Cl� 90 96.67 96.67 96.67
F� 60 60 60 60
NO3

� 63.33 36.67 40 63.33
NO2

� 76.67 76.67 e 76.67
SO4

2� 10 6.67 23.33 6.67
PO4

3� 96.67 e e e

Fe 63.33 86.67 86.67 86.67
Zn 100a 100a 100a 100a

Mn 73.33 76.66 73.33 76.66
As 13.33 30 30 30
B 26.67 66.67 66.67 e

Pb 20 60 60 e

a Below standards.
b (Bodrud-Doza et al., 2016).
c (EU, 2011; Khalid et al., 2018).
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purposes, as displayed in Table 3. The GWQI score indicates the
level of standard and how suitable it is for drinking. In this study,
we calculated the GWQI scores at each of the sampling stations
using the measured value of each water quality parameter. The
estimated GWQI values mostly exceeded the standard limit score of
300 (unsuitable for drinking purposes). All the groundwater sample
scores were 1e24.79 times higher than the standard GWQI values.
These waters were found to be completely unfit for drinking pur-
poses, and may enhance several waterborne diseases.
3.5. Correlation analysis

According to the results of the correlation analysis, there were
correlations among the water quality parameters, which could
reveal the possible sources of parameters or potential contributors
of chemical components. Each pair of elements showed significant
positive and negative correlations. A strong significant positive
correlation was observed between EC and TDS and Cl�

(0.804e0.889; p< 0.01), whereas TDS also demonstrated a strong
significant positive correlation with Cl� (0.775). Each pair of ele-
ments, such as Naþ vs. Mg2þ, Mg2þ vs. NO3

�, pH vs. B, NO2
� vs. SO4

2�,
Table 3
Groundwater quality index (GWQI) values and suitability status for drinking purposes.

Sampling Station GWQI Score Suitability Performance

S-01 621.02 UFD
S-02 1562.18 UFD
S-03 881.41 UFD
S-04 835.57 UFD
S-05 3507.71 UFD
S-06 3575.78 UFD
S-07 4120.98 UFD
S-08 2732.14 UFD
S-09 1822.98 UFD
S-10 4437.06 UFD
S-11 3082.46 UFD
S-12 1208.13 UFD
S-13 362.53 UFD
S-14 2380.53 UFD
S-15 2705.09 UFD

UFD ¼ Unsuitable for Drinking Purpose.
and Fe vs. As, demonstrated strong significant positive correlations
(p< 0.01), while their correlation coefficients varied from 0.592 to
0.701. Moreover, EC was positively correlated with Kþ, Ca2þ, NO2

�,
Fe, As, Li, B, SO4

2�, and Pb (0.209e0.424; p< 0.05). In addition, TDS
was also positively associated with Kþ, Ca2þ, NO2

�, SO4
2�, Br�, Fe, As,

Li, B, and Pb. Chloride demonstrated a significant positive correla-
tion with Li (r¼ 0.472; p< 0.05). The internal relationships among
groundwater quality parameters could be explored to determine
the hydrogeochemical characteristics of the aquifer. The negative
and positive correlations may have indicated the compositional
variability of the contributing minerals or similarities of rock-
forming minerals in the aquifer. The high abundance of saline
water increased the dissolution rate of co-contaminants in the
coastal aquifer, while TDS, EC, and Cl� concentrations showed
positive correlations among the co-contaminants, such as trace and
toxic metals.
3.6. Multivariate analysis

The loading scores of different principal components (PCs) are
shown in Table 4. In this study, eight PCs that exceeded an
Sampling Station GWQI Score Suitability Performance

S-16 2767.18 UFD
S-17 3441.70 UFD
S-18 3091.83 UFD
S-19 4215.98 UFD
S-20 2490.74 UFD
S-21 5361.03 UFD
S-22 361.85 UFD
S-23 503.63 UFD
S-24 585.23 UFD
S-25 3637.74 UFD
S-26 7435.80 UFD
S-27 5540.77 UFD
S-28 3505.63 UFD
S-29 735.89 UFD
S-30 2874.46 UFD



Table 4
Score loadings of varimax rotated principal component analysis for groundwater parameters.

Parameters Components

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

EC 0.94 �0.12 0.12 0.04 0.13 0.00 �0.11 �0.01
pH 0.02 �0.41 �0.25 �0.74 �0.00 �0.06 0.01 �0.17
Temp �0.11 0.25 0.04 0.04 0.46 0.47 0.16 0.36
TDS 0.90 �0.11 0.10 0.01 0.22 �0.03 �0.06 �0.06
Naþ 0.03 0.88 �0.04 0.02 �0.02 0.02 �0.01 �0.25
Kþ 0.27 �0.01 0.17 �0.27 �0.02 �0.21 �0.70 0.06
Ca2þ 0.32 �0.03 0.26 0.66 0.10 0.36 �0.05 0.03
Mg2þ �0.06 0.87 �0.01 0.24 �0.15 �0.12 �0.12 0.03
Cl� 0.89 0.073 �0.02 �0.11 0.21 0.19 0.12 �0.07
F� �0.03 �0.00 0.33 0.12 0.06 0.80 �0.05 �0.01
Br� 0.11 �0.32 �0.16 0.38 0.37 �0.25 �0.00 �0.15
NO3

� �0.27 0.58 0.28 0.11 0.23 �0.02 �0.12 0.40
NO2

� 0.27 �0.06 0.02 0.12 0.80 0.07 �0.03 �0.13
SO4

2� 0.29 �0.05 0.09 �0.00 0.79 �0.18 �0.17 0.07
PO4

3� 0.14 �0.26 0.23 �0.04 �0.20 �0.16 0.79 0.10
Fe 0.28 0.06 0.77 0.17 �0.18 0.19 �0.39 0.10
Zn �0.06 �0.08 0.05 0.15 �0.07 �0.05 0.03 0.92
Mn 0.06 �0.30 �0.47 0.46 �0.01 �0.08 0.18 0.50
As 0.10 0.02 0.87 0.04 0.18 0.16 0.29 0.04
Li 0.43 0.12 �0.48 �0.18 �0.14 0.16 0.52 0.30
B 0.28 �0.18 0.09 �0.80 �0.10 �0.06 �0.14 �0.14
Pb 0.27 �0.17 �0.08 0.07 �0.27 0.72 0.09 �0.13
Eigenvalues 3.37 2.49 2.27 2.25 2.012 1.84 1.78 1.68
Total % of Variance 15.32 11.1 10.34 10.25 9.14 8.38 8.1 7.62
Cumulative % 15.32 26.62 36.96 47.20 56.34 64.73 72.82 80.44
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eigenvalue of 1 with Kaiser normalization accounted for 80.44% of
the total variance. Components whose eigenvalue was less than 1
were removed because of their low significance (Kim and Mueller,
1978). From Table 4, the first PC (PC1) explained 15.32% of the total
variance, which was strongly and positively correlated with EC
(0.94), TDS (0.90), and Cl� (0.89); moderate and weak positive
loadings were found for Li and Ca2þ, Kþ, NO2

�, SO4
2�, Br�, Fe, B, As,

and Pb, respectively. The strong significant loadings score of
salinity-related components may have contributed to accelerate
the dissolution of more co-contaminants in the coastal aquifer. The
second PC (PC2) explained 11.1% of the total variance, and strong
positive loadings were found for Naþ and Mg2þ; moderate positive
loadings were found for NO3

�; and weak positive loadings were
found for temperature. Along with the impacts of salinization in the
aquifer, inorganic fertilizer use in the aquaculture and agriculture
fields led to the high ion exchange process, which may have
increased the dissolution rate of ionic components, while the
groundwater temperature showed a positive association with
them. Similarly, 10.34% of the total variance was accounted for by
PC3; strong positive loadings were observed for As and Fe andweak
positive loadingswere observed for F�. According to PC3, As, Fe, and
F� may have originated from natural sources that were potential
compositional unit components in some particular aquifer rocks.
These contaminants could be positively influenced by salinity
intrusion, which would increase the concentration of each
component in the aquifer. PC4 explained 10.25% of the total vari-
ance, which showed moderate positive loadings of Ca2þ, while Br�

and Mn were weakly loaded. PC4 expressed the contaminants that
were generally derived from natural sources. For example, the
mineralogical composition and/or coastal depositions in the coastal
aquifer zone were enriched with these types of chemical compo-
nents. PC5 and PC6 explained 9.14% and 8.38% of the total variance,
respectively, and had positive loadings of NO2

� and SO4
2� and of Br�

and Pb, respectively. Both PC5 and PC6 explored anionic contami-
nation; ion exchange processes may increase with the salinization
of the aquifer, inorganic fertilizers, pH, and geochemical reactions.

The CA exhibited the internal correlations of chemical
properties of water quality parameters in relation to the source,
hydrogeochemical, and mineralogical compositions. From Fig. 4a,
according to the CA, three major clusters, namely Cluster-1, Cluster-
2, and Cluster-3, were identified for measured water quality pa-
rameters. Cluster-1 was divided into two sub-clusters (Cluster-1a
and Cluster-1b). Cluster-1a was grouped with EC, TDS, Cl�, NO2

�,
SO4

2�, Br�, F�, Pb, Fe, As, Ca2þ, and temperature; Cluster-1b was
characterized by Zn, Mn, PO4

3�, and Li. Cluster-1a was associated
with all the components that were positively correlated with high
salinity hazards in the coastal aquifer. It revealed that the charac-
teristics of the contaminants were mostly similar in relation to
abundance, source, and degree of contamination. In contrast,
Cluster-1b, which consisted of chemical components, was also
influenced by salinization, whereas external inputs to the aquifer,
including inorganic fertilizers, may have further increased the
overall dissolution mechanism.

According to the CA of sampling stations, two major clusters,
namely Cluster-1 and Cluster-2, were found, as shown in Fig. 4b.
Cluster-1 was divided into seven sub-clusters from Cluster-1a to
Cluster-1g, which were consistently interlinked with each other.
Cluster-1a was composed of almost 50% of the total sampling sta-
tions. Cluster-1 was associated with particular sampling stations
with relatively high concentrations of salinity and co-
contaminants. Cluster-1b to Cluster-1g were composed of the
remaining sampling stations, which revealed that the natural and
anthropogenic sources of contaminants originated from inorganic
fertilizer and the associated impacts of salinity intrusion in the
aquifers.

3.7. Drinking water vulnerabilities and local perception

According to the survey questionnaire, 95% of the respondents
were male with ages ranging from 17 y to 65 y (Rakib et al., 2019b).
Approximately 100% of respondents were locals who had lived in
the southwest coastal area for a long time. According to the survey
results, 94.67%, 92.33%, 97.33%, and 100% of people reported that
salinity, Fe, As, and odor were consecutive threats in sub-surface



Fig. 4. Dendrogram representing the hierarchical clustering outputs. a. groundwater quality parameters and b. sampling stations.

M.A. Rakib et al. / Chemosphere 246 (2020) 125646 9
drinking water, as shown in Table 5. According to the Likert scale
results in regard to salinity hazards, most people reported that
salinity in the groundwater had “highly increased” in the last few
decades because of cyclonic storm surges, long dry seasons, and
shrimp cultivation. Moreover, the local people stated that they had
available groundwater, but was not suitable for drinking because of
its high salt concentration. Salinity contamination in the ground-
water aquifer has significantly increased in the last 10 y. Approxi-
mately 98% of the people reported that they had no consistent
water supply system or alternative source of fresh water for
drinking (Rakib et al., 2019b).

Salinity causes severe drinking water scarcity among coastal
communities (Fig. 5a). Approximately 78% and 96% of the people
depend on local pond and rainwater, respectively, as shown in
Fig. 5b and c. According to local perceptions, people did not worry
much about As and Fe contamination compared with the salinity
problem in the groundwater. Local people judged drinking water
contamination by symptoms, as they stated that “we feel bored
when we drink saline water and sometimes it causes digest prob-
lems, while we do not feel anything for arsenic. We do not know
whether it will cause health problems or not.” In addition, they
could not use surface water and groundwater for agriculture pur-
poses owing to high salinity problems. One of the respondents
reported that “in the last few years, high salinity has destroyed
almost all fruits, trees, and vegetables. In particularly, during
summer season it is impossible to grow vegetables or trees because
of high salinity in the soil.” In addition, local people frequently use
inorganic fertilizers and other chemicals in shrimp aquaculture
Table 5
Local perceptions of groundwater threats according to the consecutive severity scale and

Groundwater Threats First major threat (%) Second major threat (%) Third

Salinity 94.67 5.33 0.0
Iron 5.00 92.33 2.67
Arsenic 0.33 2.33 97.33
Odor 0.00 0.00 0.00

“þþþ” highly increased, “þ/�” not confirmed.
ponds to enhance productivity. One of the respondents reported
that “we use chemicals to control pathogens and to increase pro-
ductivity, but during the summer season when water level de-
creases in the shrimp ponds, the pond water spreads malodors to
the surrounding areas.”

Most of the respondents reported that some of thewater-related
health threats have become serious public health problems along
the coastal belt. Approximately 65% and 90% of the respondents
reported that chronic and acute diseases significantly increased in
the last few decades. They stated that water-related problems and a
high salinity environment were the principal causes of the spread
of the coastal health crisis. According to the survey results,
increasingly poor water governance and insufficient measures
trigger worse conditions under climate change impacts.
4. Discussion

4.1. Groundwater salinization

The mean value of measured EC was found to be approximately
7100 mS/cm in the coastal aquifer, which exceeded thewater quality
standards for both drinking and agriculture purposes. The
extremely high values of EC in the southwestern coastal area of the
country indicated the occurrence of significant seawater intrusion
in the aquifer. Similarly, this study found significant positive cor-
relations between EC and TDS, Cl� and TDS, and Cl� and EC,
respectively. To our knowledge, climate change impacts, such as
sea-level rise, cyclonic storm surges, and water logging, also
changing status.

major threat (%) Fourth major threat (%) Changing status (last 10 years)

0.0 þþþ
0.0 þ/�
0.0 þ/�
100 þ/�



Fig. 5. Representation of local drinking water vulnerabilities and adaptation strategies. a. collecting drinking water from a distance, b. harvesting rainwater from roofs, c. collecting
drinking water from ponds, and d. collecting drinking water from desalinization plant. (Source: Authors).
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increase seawater intrusion (NaeCl type water) along the coastal
belt. Thus, the salinity-contaminated water is projected to move
further inland, and as a result, the intensity of contamination is
expected to increase (Dasgupta et al., 2014; Nishat and Mukherjee,
2013; FAO, 2009). On the other hand, salinity values in groundwater
are much higher than those in the other regions of the country, e.g.,
317mg/L, 319mg/L, and 309mg/L for TDS inMokamtola (Shibgonj),
Sabgram (Bogra Sadar), and Kusumdi (Sherpur), respectively (Islam
and Shamsad, 2009), and from 290 to 498 mS/cm for EC in Rajshahi
District in the northern part as well as from 128 to 2080 mS/cm for
EC in Brahmanbaria District in the east-central part of Bangladesh
(Hasan et al., 2007). Thus, a lack of availability of surface freshwater
resources including downstream river flow, long dry periods,
shrimp farming, and uncertainty of rainfall lead to changes in the
coastal hydrogeologic environment, which creates instability in the
steady-state condition of groundwater recharge, storage, and flow.

Sea-level rise and salinity intrusion in coastal aquifers are
increasingly destroying the water quality in other countries,
including Iran (mean EC of 3416 mS/cm) (Vesali Naseh et al., 2018),
Djerba Island of southeastern Tunisia (mean EC of approximately
4560 mS/cm) (Souid et al., 2018), China (mean EC of approximately
1673 mS/cm) (Wen et al., 2019), Favignana Island of Italy (mean EC
of 3979 mS/cm) (Tiwari et al., 2019), and Graciosa Island (EC ranging
from 308 mS/cm to 3462 mS/cm) and Pico Island (EC ranging 186 mS/
Table 6
Comparison of groundwater quality parameters (pH, EC, and Cl�) with some of recent st

Country pH EC (mS/cm)

Bangladesh 6.03 7135.67
Sri Lanka 7.69 2270
Mozambique 6.92 1445
Tunisia 7.52 4560.54
Tamil Nadu, India 8.4 2616
South Africa 7.1 2687
Gaza, Palestine 7.6 4189

*Comparison with mean values.
cm to 5625 mS/cm) of Portugal (Cruz and Andrade, 2017), thereby
leading to a serious constraint on freshwater security. In compari-
son with these countries, Bangladesh is more severely affected by
groundwater salinity pollution (Table 6).
4.2. Acidification of groundwater

Groundwater in the southwestern coastal area of Bangladesh
was found to be mostly acidic. The mean value of measured pH in
the groundwater samples from the study site was 6.03, which was
lower than the standard range for pH of 6.5e8.5 (WHO, 2011),
thereby indicating acidic pollution. These pH values are lower than
those in the northern part of the country, e.g., 7.6 in Kuthibari
(Dhunot), 7.6 in Sabgram (Bogra Sadar), and 7.3 in Kusumdi
(Sherpur) (Islam and Shamsad, 2009). The pH of groundwater
showed a strong positive correlation with the B concentration
(0.64; p< 0.01), which indicated that the acidic nature of the
groundwater may have increased B pollution. Lower pH values
boost B desorption from mineral sites (Goldberg et al., 1996). By
contrast, Wen et al. (2019) and Ha et al. (2019) reported the acidi-
fication of groundwater in the southwestern coastal areas of China
(pH ranging from 6.80 to 6.96) and southern Vietnam (Ho Chi Minh
City and the Mekong Delta) (average pH of 6.6). Thus, acidic
pollutionwas found to be more serious in the southwestern coastal
udies on coastal aquifers in the world.

Cl� (mg/L) Reference

2978.40 Present study
396 Bandara et al. (2018)
e Nogueira et al. (2019)
1699.28 Souid et al. (2018)
705 Umarani et al. (2019)
753 Ntanganedzeni et al. (2018)
e Naeem et al. (2019)



M.A. Rakib et al. / Chemosphere 246 (2020) 125646 11
aquifer of Bangladesh (Table 6).
The oxidation of pyrite minerals is a possible cause of ground-

water acidification (Ha et al., 2019; Appleyard and Cook, 2009;
Benison and Bowen, 2015; Clohessy et al., 2013; Dickson and Giblin,
2009; Leyden et al., 2016; Mosley et al., 2014; Santos et al., 2011;
Serrano et al., 2016). Similarly, acid rain (Fest et al., 2007; Franken
et al., 2009; Hansen and Postma, 1995) and nitrification (Chae
et al., 2004) cause groundwater acidification. Approximately 63%
of the tube wells were found to be polluted with NO3

� (Table 2),
which may have decreased the groundwater pH. In addition, the
occurrence of pyrite minerals in coastal aquifers is common
worldwide (Dent and Pons, 1995; Schoonen, 2004). Polizzotto et al.
(2006) reported that As-bearing pyrite minerals are commonly
found in the groundwater aquifer of the Bengal Basin. Thus, the
oxidation of pyrite minerals was another potential cause of
groundwater acidification in the southwestern coastal area of
Bangladesh.

4.3. Co-contamination risk

The long-term salinization in the coastal aquifer has signifi-
cantly increased the co-contamination risk, which is a new threat
to drinking water resources in coastal areas. According to the re-
sults of the correlation analysis, PCA, and CA, salinity was positively
correlated with trace and toxic elements. Particularly, PC1
expressed that all the trace and toxic elements were positively
loaded, while Cluster-1 for water quality parameters demonstrated
significant similarities among this group. In addition, the CA for
sampling stations and spatial distributions of these water quality
parameters revealed that approximately 70% of the sampling points
had pH values lower than the standard range as well as high
salinity. This association is a significant concern and emerging
threat for the coastal aquifer and freshwater security, as it may
rapidly deteriorate the average water quality through the dissoci-
ation of other contaminants. Similarly, the impacts of groundwater
salinization on trace elements have been reported in Djerba Island
of southeastern Tunisia (Souid et al., 2018). Tully et al. (2019) pro-
posed that seawater intrusion may significantly change the chem-
istry of tidal freshwater wetlands. Therefore, long-term or
continuous salinization impacts may increase the dissolution rate
of trace and toxic metals through changing the steady-state con-
dition of the groundwater chemistry, especially physicochemical
parameters. In addition, agricultural activities may contribute to
groundwater contamination through leaching chemical compo-
nents from the residuals of fertilizer. It is clear that both ground-
water salinization and acidic pollution have led to an increase in
contamination risk in the coastal belt of Bangladesh.

4.4. Groundwater suitability and scarcity

According to the GWQI results (Table 3), all the groundwater
samples were completely unsuitable for drinking owing to the
presence of high concentrations of measured chemical compo-
nents, thereby posing a high health risk with long-term exposure.
According to the survey questionnaire results, local people were
only concerned with the salinity problem in their tube wells, while
the majority of people did not know how it posed a long-term
health risk. Rakib et al. (2019b) found that water-related prob-
lems increase the number of patients who suffer from diseases,
such as high blood pressure, diarrheal, cardiovascular, acute res-
piratory, kidney, and skin diseases. High salinity in drinking water
causes cardiovascular diseases, diarrhea, and abdominal pain
(Chakraborty et al., 2019). We found that local knowledge of water
contamination and disease was inadequate to cope with health
problems.
Water scarcity is also becoming serious, and as a result, most of
the local people stated that they have to use rainwater and polluted
local pond water during water shortage crises. During these crises,
only 5% of the households used treated water (desalinization plant
water) to meet their emergency needs. From our observations, the
socioeconomic status of the local people has been very fragile
owing to frequent coastal disasters, such as cyclonic storm surges
and floods; thus, most of them cannot afford to buy potable water
to meet their daily needs. Rakib et al. (2019b) suggested increasing
communal rainwater harvesting facilities, introducing low cost
sustainable water treatment technologies, enhancing a common
desalinization plant for households, and identifying a master
aquifer to ensure the drinking water supply. Scheelbeek et al.
(2017) recommended “managed aquifer recharge” strategy, which
can provide low-sodium fresh drinking water. Thus, it is important
to note that communal responses to this drinking water scarcity
depends on coastal disasters, coastal geography, water access, local
challenges, and economic constraints that must be taken into
consideration to get the feasible drinking water sources.

Water scarcity in coastal areas has also been found in other
countries. Inhabitants of Rach Gia City of the Mekong Delta in
Vietnam are facing freshwater scarcity owing to groundwater
salinity, and their government supports them by providing water
with water supply tankers (Phuong, 2018). Tanzania is also facing
freshwater scarcity owing to seawater intrusion and sanitation
problems, and they are trying to adapt to the water crisis using
rainwater harvesting systems (UN Environment, 2019). Panja
(2019) reported that a coastal village (Mangamaripeta) of eastern
India faces water scarcity problems owing to salinity intrusion in
groundwater aquifers. Some villagers try to use pipedwater once or
twice per week, while the rest use packaged water. In comparison
with these countries, Bangladesh was found to be highly vulnerable
to drinking water insecurity owing to seawater intrusion as well as
co-contamination. To cope with these water crises, many of local
people are practicing a number of drinking water adaptation
techniques, which reflects a serious and vulnerable situation in
terms of freshwater availability and salinity intrusion.

4.5. Water security challenges and policy implications

We found that local people did not want to use salinity-
contaminated tube well water for domestic and drinking pur-
poses. The availability of other freshwater resources was limited.
We also observed that salinity intrusion led to the breakdown of
coastal development trends owing to decreases in crop produc-
tivity and livelihood opportunities and increases in health risks and
household costs. According to local opinions, the salinity in the
surface and sub-surfacewaters was several folds higher than that in
the past few decades, which may degrade the environmental
equilibrium and living components of the freshwater ecosystems.
In addition, land use changes in coastal areas, including a decrease
in vegetation coverage in the inland areas, were risk factors
responsible for increasing the evaporation rate during the long dry
season, thereby resulting in extremely high levels of water salinity
and deteriorating wetlands, communal lifestyle, and living
conditions.

This study tried to explore how salinization, acidification, and
chemical co-contamination affect groundwater quality and the
local people, as well as their possible causes. Moreover, salinity
intrusion and its recent increasing trend may be a potential
constraint on future freshwater availability and development in the
coastal belt of Bangladesh. To ensure sustainable, safe drinking
water, it is important to formulate integrated policies considering
all these concerns at the regional level. The government should also
identify the potential sources of water in order to facilitate drinking
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water provisions. Local water resource management and conser-
vation strategies should be redesigned in order to secure drinking
water and reduce health risks. In addition, local awareness and skill
management programs should be launched to enhance local
adaptation techniques and knowledge to secure household and
individual drinking water, thereby making the communities self-
reliant and resilient, and to achieve the SDGs among the coastal
communities in Bangladesh.

4.6. Limitations

Although the present study revealed the status of salinity
pollution and co-contaminant along with their correlation, under-
standing of the detailed processes is still limited. The number of
collected samples from deep wells was much fewer than that from
shallow wells because ofthe difficulty in sampling; time series
monitoring was not performed. In particular, a time series dataset
may be required to separately evaluate the influences of climate
change and anthropogenic activities, including management of
agriculture and aquaculture. In terms of local perception, most of
the respondents in the questionnaire were male and female
perception is almost unknown. Understanding of female percep-
tion would be crucial to consider enhancing local capacity for
dealing with the water scarcity problem and adapting to the
increasing impact of climate change.

5. Conclusions

This study identified the groundwater quality status in the
southwestern coastal part of Bangladesh by employing the inter-
disciplinary approach to clarify the current contamination and local
drinking water scarcity problems. The GWQI results revealed that
the groundwater among all the sampling points was completely
unsuitable for drinking because of its high concentration of
chemical components, including EC, TDS, Naþ, Ca2þ, Mg2þ, Cl�, F�,
NO3

�, NO2
�, PO4

3�, Fe, Mn, As, B, and Pb. In particular, the concen-
trations of EC, TDS, and Cl� were relatively high where almost all
the samples exceeded the WHO, DoE, IS, and USEPA drinking water
standard values. Long-term salinization of the aquifer and inter-
ference with other chemical parameters are significantly increasing
the trace and toxic elements, cations, and anions. In addition,
salinity intrusion in groundwater aquifers is greatly influencing
physicochemical parameters, which dissolve trace elements; in
particular, low pH also plays a substantial role in dissolving other
contaminants.

Local people frequently used this contaminated water for
several household activities. It is important to note that the local
people only worried about salinity problems in drinking water and
ignored or did not realize the consequences of other contaminants.
Consequently, local communities are facing significant household
drinking water crises and diseases. In addition, the combined im-
pacts of salinity contamination in groundwater and its associated
co-contaminationmay cause severe diseases in the near future. The
presence of individual chemical components and their degree of
contamination in groundwater, dissolution rate, exposure, and
consumption rate may significantly influence disease frequency
among coastal communities. Thus, groundwater contamination
and health risk are associated with environmental exposure,
geological conditions, lack of fresh water access and anthropogenic
interventions. Further, coastal hazards and anthropogenic inter-
vention in the coastal environment may lead to serious conse-
quences for household drinking water and health security. The
findings of this study would be helpful for decision making on the
future sustainable drinking water security issues among coastal
communities. The launch of integrated research along the coastal
belt of Bangladesh is urgent in order to identify the cause of
contamination, salinization, and severe health implications, and to
determine alternative measures and/or to formulate hard and soft
measures to secure fresh drinking water at the community level.
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