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G protein-coupled receptors (GPCRs) are therapeutic targets for many diseases, but progress in develop-
ing active and selective therapeutics has been severely hampered by the difficulty in obtaining accurate
structures. We have been developing methods for predicting the structures for GPCR ligand complexes,
but validation has been hampered by a lack of experimental structures with which to compare our pre-
dictions. We report here the predicted structures of the human adenosine GPCR subtypes (A1, A2A, A2B,
and A3) and the binding sites for adenosine agonist and eight antagonists to this predicted structure,
making no use of structural data, and compare with recent experimental crystal structure for
ZM241385 bound human A2A receptor. The predicted structure correctly identifies 9 of the 12 crystal
binding site residues. Moreover, the predicted binding energies of eight antagonists to the predicted
structure of A2A correlate quite well with experiment. These excellent predictions resulted when we used
Monte Carlo techniques to optimize the loop structures, particularly the cysteine linkages. Ignoring these
linkages led to a much worse predicted binding site (identifying only 3 of the 12 important residues).

These results indicate that computational methods can predict the three-dimensional structure of
GPCR membrane proteins sufficiently accurately for use in designing subtype selective ligands for impor-
tant GPCR therapeutics targets.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

G protein-coupled receptors (GPCRs) modulate regulation of
many essential physiological processes involved in cardiovascular,
metabolic, neurodegenerative, psychiatric, cancer and infectious
diseases (Lundstrom, 2006; Tang and Insel, 2005). They represent
30–50% of the current drug targets (Hopkins and Groom, 2002;
Lundstrom, 2006), but a major impediment to developing active
and selective therapeutics is the lack of structural data. Thus, of
�800 human GPCRs, experimental crystal structures are available
only for two [b2 Adrenergic Receptor (hb2AR) (Cherezov et al.,
2007) and adenosine A2A receptor (hAA2AR) (Jaakola et al., 2008)].
Moreover, these experimental structures have a bound inverse
agonist or antagonist, providing little information about the mech-
anism of activation.

Development of active subtype selective ligands would be
greatly aided if in silico computational modeling could provide suf-
ficiently accurate structures and binding constants for use in the
development of new drugs. We have been developing in silico
ll rights reserved.

ard).
methods for predicting the 3D structures of GPCRs and the binding
sites for agonists and antagonists (Floriano et al., 2000; Vaidehi
et al., 2002; Freddolino et al., 2004; Kalani et al., 2004; Trabanino
et al., 2004; Peng et al., 2006), but with very little opportunity to ob-
tain direct confirmation from experiment of predictions made in ad-
vance of the experiment (Vaidehi et al., 2006; Heo et al., 2007).

Stimulated by the Critical Assessment of GPCR Structure Model-
ing and Docking (CAGSMD) challenge (Michino et al., 2009), we ap-
plied our methods to predict the structure of hAA2AR with bound
antagonist ZM241385 prior to publication of the crystal structure
results (Jaakola et al., 2008). We report here our methods and re-
sults, showing how we assessed the candidate structures for sub-
mission to CAGSMD. From comparison to experiment, we
concluded that it is essential to predict accurate extracellular loops
(EL) to obtain an accurate ligand binding site. hAA2AR has eight
cysteine residues distributed between the EL1, EL2, and EL3 extra-
cellular loops and all are oxidized in the crystal structures. We find
that optimizing these loops using our general Monte Carlo meth-
ods but not using any crystal structure information leads to a dra-
matic effect on the binding position of the ZM241385, reducing the
error in the predicted ligand position from 5.6 Å to 2.8 Å RMSD rel-
ative to the crystal structure. The predicted structure correctly
identifies 9 out of 12 crystal binding site residues (Table 1).

http://dx.doi.org/10.1016/j.jsb.2010.01.001
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Table 1
Contribution from each residue to the energy change upon binding (kcal/mol) of ZM241385 to human A2A adenosine receptor. The contributions are ordered by the contributions
from the Exper* X-ray structure with the side-chains for H250 and M270 optimized by SCREAM. (The results for the original structure are listed under Exper.) The theory and
Exper* agree on three of the four most strongly interacting residues (>3 kcal/mol) and on 9 of the 12 residues binding more strongly than 1 kcal/mol. Color coding for
contributions of each residue to binding of the ZM241385 ligand: dark blue: >3 kcal/mol, blue: 1–3 kcal/mol, light blue: 0.5–1.0 kcal/mol, yellow: very repulsive by >3 kcal/mol,
green: slightly repulsive by 0.01–3 kcal/mol, white: attractive by 0.01–0.5 kcal/mol. Note that the Exper and Exper* data includes explicit water, whereas the predicted structure
does not, resulting in a more stable predicted cavity energy. (For interpretation of the references to color in this table caption, the reader is referred to the web version of this
article.)
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We also report the predicted binding site and energies for eight
antagonists (structures shown in Table 2), finding relative affinities
that correlate well with experiment. In addition, we predicted
structures for the human A1, A2B, and A3 adenosine receptors
(ARs) and used these structures to predict subtype selectivity of
the ZM241385 antagonist to all four adenosine receptors.
2. Results

The methods used for obtaining structures (TM regions and
loops) submitted in the CAGSMD challenge are described in detail
in Section 4. The only change from our original procedure is that
we now assume that all eight Cys in the extracellular loops (EL)
are oxidized (as found in the crystal structure) (Jaakola et al.,
2008), rather than reduced as in our original predictions. No other
information was used from experiment. Here we discuss the de-
tails only for the best (lowest total energy) predicted protein struc-
ture (including oxidized Cys in the loops) and the best (lowest total
energy) predicted ligand docked structure [using HierDock (Flori-
ano et al., 2000; Vaidehi et al., 2002)].

For the predictions of subtype selectivity, we matched the
predicted best binding pose of the ligand in hAA2AR structure
to our predicted apo-protein structures for the other three sub-
types, then we used SCREAM (Kam and Goddard, 2008) to pre-
dict the optimum side-chain position of residues in the binding
pocket, and then we minimized the energy to obtain the final li-
gand/protein complexes.

2.1. Antagonist ZM241385 bound to hAA2AR

To analyze the predicted binding site for ZM241385/hAA2AR, we
calculated the interaction energy between the atoms of each resi-
due with all atoms of the ligand (called the cavity analysis) as
shown in Table 1 and compared with experiment.

The experimental crystal structure (Jaakola et al., 2008) (de-
noted Exper) has the Cc heavy atom of M270 only 3.1 Å from the
C6 atom of the phenoxy ring in ligand, leading to a very repulsive
van der Waals (vdW) interaction and a negative (repulsive) contri-
bution to the binding energy of 263 kcal/mol. Using our SCREAM
method (Kam and Goddard, 2008), we found a better side-chain
conformation for M270 with a closest distance of 3.8 Å and an
attractive binding of 1.25 kcal/mol. In addition, the Exper structure
has the Ce1 heavy atom of H250 3.4 Å from the C24 atom of the
furan ring in the ligand, leading to a repulsive vdW interaction,
with a negative (repulsive) binding contribution of 2.48 kcal/mol.
SCREAM led to a better side-chain conformation of H250 with a
closest distance of 3.5 Å and an attractive binding of 1.38 kcal/
mol. Using these two modified side-chains (after adding hydro-
gens) and minimizing the structure led to the Exper* structure,
which has a cavity binding energy of 54.4 kcal/mol (compared to
being very repulsive by 231 kcal/mol for Exper). The heavy atom



Table 2
Compounds for Structure–Activity Relationships (SAR) studies, including experimental binding constants (nM) and predicted binding energy (kcal/mol).

Compound Structure Binding affinity
(Ki:nM)

Binding energy(kcal
mol)

Reference

1 ZM241335 0.8 (0.7–1.0) �38.78 Ongini et al. (1999)

2 Piperazine derivative 1.300 �33.21 Vu et al. (2004)

3 Piperazine derivative >5.000 �20.96 Vu et al. (2004)

4 Piperazine derivative 3 �36.50 Vu et al. (2004)

5 Cis Bicydtc Piperazine derivative 0 3 �39.40 Peng et al. (2004)

6 Trans Bicycltc Piperazine
derivative

230 �29.02 Peng et al. (2004)

7 Triazolotriazine derivative 39 �31.89 Vu et al. (2005)

8 Triazolotriazine derivative 11 �32.56 Vu et al. (2005)

9 CGS15943 04 �32.56 Ongini et al. (1999)
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root-mean-squared deviation (RMSD) changes of the ligand posi-
tion in Exper* compared to Exper is only 0.302 Å.

The predicted lowest energy binding mode for ZM241385/
hAA2AR is shown in Fig. 1a and compared to the X-ray structure (Ex-
per*) in Fig. 1b. The aligned structures (Fig. 1c) lead to a 2.78 Å RMSD
in the ligand. The predicted pharmacophore of ZM241385 in hAA2AR
is consistent with experiment, identifying all important interactions
to critical residues: with a hydrogen bond (HB) to N2536.55

[N15(ZM)–O(N253) = 2.7 Å and O25(ZM)–N(N253) = 3.1 Å]; HB to
E1695.30 (EL2) [N15(ZM)–O(E169) = 2.7 Å]; hydrophobic interac-
tions with F168 (3.7 Å), H250 (3.7 Å), W246 (6.2 Å), M270 (3.8 Å),
and H264 (4.1 Å). These results indicate that including full optimiza-
tion of the EL with our standard computational methods identifies
an accurate binding site.

2.2. Comparison of various ligands bound to hAA2AR

To be useful in drug design it is essential that the predicted struc-
tures properly order the binding by various ligands (Structure–
Activity Relationships, SAR). Starting from ZM241385/hAA2AR, we
predicted the binding site for the seven related antagonists in Table 2,
which exhibit experimental binding constants from 0.3 to 5000 nM.
The consistency between experimental binding affinities and pre-
dicted binding energies (with no adjustable constants) is shown in
Fig. 2a. Except for compound 2 (from Table 2) our binding energies
correlate quite well with experimental binding constants, leading
to R2 = 0.979. In each case the right part of the ligands is in the pocket
bounded by TM2, 6, and 7, putting the left part in the cavity between
EL2, TM2, and TM7. Our predicted binding for compound 2 is too
strong by �5 kcal/mol, probably due to the much greater flexibility
of 2, which would lead to a much larger decrease in entropy upon
binding than the other seven ligands. Including all eight compounds,
the fit is R2 = 0.765 (solid line in Fig. 2a).

In particular, compounds 5 and 6 are identical except for chiral-
ity at one carbon, leading to quite different binding affinities:
experimental Ki = 0.3 nM (#5, cis) vs. 230 nM (#6, trans) compared
with computational BE = �39.4 kcal/mol (#5, cis) and �29.0 kcal/
mol (#6, trans). The origin of this difference is clear in Fig. 2b,



Fig. 1. Predicted structure of ZM241385/human A2A adenosine receptor compared with X-ray structure. (a). Predicted binding mode for ZM241385/human A2A adenosine
receptor. (b). Binding mode of X-ray structure. (c). Superposition of crystal structure (green) with the predicted structure (light blue) (matching the backbond atoms of the
protein). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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showing that the left part of the cis form is in a good cavity be-
tween EL2, TM2, and TM7 while the trans form puts the left part
of the ligand among TM1, TM2, and TM7 with unfavorable interac-
tions to the Y271 (TM7) and Y9 (TM1) side-chains.

2.3. Subtype selectivity

The experimental binding constants of ZM241385 (compound 1
in Table 2) to the four adenosine receptor subtypes show dramatic
Fig. 2. Structure–Activity Relationships (SAR) based on the predicted structure of hAA2AR
of the eight antagonists listed in Table 2 compared with the experimental binding consta
ligand binding, so that more negative is more strongly binding. The dotted line show
Alignment of compound 5 (Cis Bicyclic Piperazine, strong binder, yellow) and compound
receptor. (For interpretation of the references to color in this figure legend, the reader i
subtype selectivity: Ki = 0.8 nM (A2A), 50 nM (A2B), 255 nM (A1)
and >10,000 nM (A3) (Ongini et al., 1999). We matched our pre-
dicted binding site for A2A to the apo-protein structures we pre-
dicted for the other three subtypes (using the same techniques),
leading to exactly the same trend, as shown in Fig. 3. Our cavity
analysis for binding of ZM241385 to all four subtypes indicates
that E169 and M270 in A2A are the most important for subtype
selectivity. Thus E169 of A2A (�4.1 kcal/mol interaction with li-
gand) corresponds to E172 in A1 (�3.3 kcal/mol), E174 in A2B
. (a) The predicted binding energies (kcal/mol) to the human A2A adenosine receptor
nts (pKi). The quantity labeled as binding energy is the change in energy due to the

s the fit without compound 2 (which is much more flexible than the others). (b)
6 (Trans Bicyclic Piperazine, weak binder, cyan) in the binding site of hA2A adenosine
s referred to the web version of this article.)



Fig. 3. Subtype selectivity study and agonist binding based on the predicted structure. The correlation of the experimental binding constants (pKi) (Ongini et al., 1999) with
the predicted binding energies (kcal/mol) of human A2A selective compound 1, ZM241385 (blue curve) and non-selective compound 9, CGS15943 (red curve) to A1, A2A, A2B,
and A3 human adenosine receptors. The computed energies show the same trends as the experiments. (For interpretation of the references in color in this figure legend, the
reader is referred to the web version of this article.)
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(�2.65 kcal/mol), but V169 in A3 (�0.9 kcal/mol). The cavity
analysis for M270 of A2A (�1.6 kcal/mol) corresponds to T270 in
A1 (�0.66 kcal/mol), M272 in A2B (�3.1 kcal/mol), and L264 in A3

(�2.3 kcal/mol).
In contrast, the CGS15943 antagonist (compound 9 in Table 2)

shows little subtype specificity with: Ki = 0.4 nM (A2A), 3.5 nM
(A1), 44 nM (A2B), and 95 nM (A3). Indeed matching our predicted
binding site for A2A to the other three subtypes, leads correctly to
only small differences in binding energies in good agreement with
experiment (Fig. 3).

These results suggest that the predicted protein structures can
be used to design subtype selective ligands that can lead to thera-
peutics with decreased side effects.

2.4. Binding site for adenosine agonist

We used the same docking techniques to predict the binding
site of adenosine agonist to the predicted (lowest energy) structure
of hAA2AR. The result (Fig. 4) indicates that the most important res-
idues (cavity analysis) are (including the interaction energy with li-
gand in kcal/mol in parentheses): V84 (�2.44), T88 (�0.58), E169
(�1.09), N253 (�0.61), F182 (�1.73), H250 (�2.86), S277 (�0.99),
W246 (�0.70), H278 (�0.35). All these residues have been impli-
cated in prior mutagenesis experiments of adenosine-based ago-
Fig. 4. Predicted binding mode (lowest energy) of the adenosine agonis
nists. The polar residues S277, H278, and H250 show a weaker
interaction with the ZM241385 antagonist. These might play
important roles in the activation of hAA2AR. Our previous experi-
ence is that substantial changes occur in the agonist/GPCR binding
mode during dynamics as the receptor changes to its active form
(Li et al., 2007). We matched the agonist to the other three ARs,
finding a similar binding site and cavity analysis.

We outline here the difference between agonist-bound and
antagonist-bound structure for hAA2AR. The major difference in-
volves two hydroxyl groups from the agonist that act as a bi-den-
tate hook on the ligand interacting with H250 of TM6 and S277 of
TM7. Eventually, after MD simulations in the full solvent, the ago-
nist-bound protein structure may display additional structural dif-
ferences from the antagonist-bound structure. In our previous
work on the human DP receptor (Li et al., 2007), we obtained de-
tailed structural differences between the agonist-bound structure
and the antagonist-bound structure, and the conformational
changes that accompany receptor activation.

2.5. Loop predictions for hAA2AR

Our first predictions of the 3D structures of GPCRs, focused on
the packing of the 7-helix bundle. Then we predicted the three
extracellular loops (EL1, EL2, EL3), the three intracellular loops
t to the human A2A adenosine receptor. Key residues are indicated.
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(IL1, IL2, IL3), the amino terminus (NT) and the carboxyl terminus
(CT) using the Continuous Configuration Boltzmann Biased (CCBB)
Monte Carlo method (Li and Goddard, 2006; Sadanobu and God-
dard, 1997), including loop termination optimization (Debe et al.,
1999). Many GPCRs have a conserved cysteine at the top of TM3
(C77 for hAA2AR) and a conserved cysteine in EL2 (C166 for
hAA2AR) that are oxidized (coupled). Thus, our standard procedure
is to separately build EL2 in two sections, accounting for this cou-
pling. To allow maximum flexibility in positioning the loops, we
alanize the loops (except for Gly and Pro) and grow �20 loops
(including the C77-C166 linkage constraint). These structures are
minimized and then the side-chains added using SCREAM. The
loops were built in the sequence EL1, EL3, EL2, IL1, IL2, IL3, but
rather than using CCBB we determined the N-terminus and the
C-terminus by optimizing an extended conformation. In each case,
the lowest total energy was used to select the loop configuration.
Then the six loops and two termini were minimized for 500 steps
using the DREIDING 2 FF (Mayo et al., 1990), with all but the last
residue on each TM constrained. In these structures, all Cys in
the loops except C166 were assumed to be reduced. No information
on loops from crystal structures was used.

The above general procedure was used in our CAGSMD chal-
lenge submission, but upon examining the crystal structure, we
found that all six non-conserved cysteines in hAA2AR (in addition
to C77 and C166 discussed above) distributed among the three
EL loops (C71 and C74 in EL1, C146, and C159 in EL2, C259, and
C262 in EL3), are oxidized to form three cysteine pairs. Based on
this information, we extended our general method to include opti-
mization of the loops with all cysteines oxidized, but without using
any structural or topological information from the crystal structure.
Thus, we examined all 15 ways to couple the six non-conserved
cysteines.

As shown in Fig. 5a, our original loops (with reduced Cys) have
the Cys on EL1 far from the Cys on EL3 (Ca–Ca > 24.6 Å), making it
implausible to form disulfide bonds between EL1 and EL3. In addi-
tion, Fig. 5b shows that C71 (EL1) is 22.2 Å (Ca–Ca) from C146
(EL2) on the edge of TM4, 24.6 Å from C259 (EL3); and 22.5 Å
C262 (EL3). Thus, disulfide bonds between C71 and these three cys-
teines are not plausible. This analysis indicates that we need con-
sider only two of the 15 possibilities to form three disulfide
bonds among six non-conserved cysteines.
Fig. 5. (a). The best predicted structure of hAA2AR adenosine receptor assuming that the
show two cysteines C71 and C74 in EL1 (The two yellow spheres near the top) and two cy
distance (C74–C262) between the cysteines on EL1 and the cysteines on EL3 is 24.6 Å,
predicted structure of A2A adenosine receptor without consideration of non-conserve
extracellular loop (EC2) 2 is on the edge of TM 4 and is far away from C71 on EC1 (Sc dista
disulfide bonds between C71 and those three cysteines. (For interpretation of the refere
article.)
� ELLA: C71 (EL1)–C159 (EL2), C74 (EL1)–C146 (EL2), C259 (EL3)–
C262 (EL3)

� ELLB: C71 (EL1)–C74 (EL1), C146 (EL2)–C159 (EL2), C259 (EL3)–
C262 (EL3)

For both ELLA and ELLB we first grew the alanized loops (using
the CCBB process described above) with Cys–Cys constraints. This
led to 20 minimized structures for both ELLA and ELLB. We then se-
lected the six with the lowest total energy [five from ELLA and one
from ELLB (5th in energy)]. The lowest energy loop conformation
had the ELLA configuration of disulfide bonds as shown in Fig. 6,
which was selected for subsequent docking. Indeed it has the same
disulfide bond configuration as in the crystal structure, validating
this procedure. The CRMSDs (of Ca atoms) of EL1, EL2, and EL3 rel-
ative to the crystal structure are 3.0 Å, 5.5 Å, and 3.9 Å, respec-
tively, which are much higher CRMSDs than for the helix region
(with a CRMSD of 2.0 Å). Meanwhile, the predicted EL2 has the
lowest quality (CRMSD is 5.5 Å) due to its long length. We consider
these CRMSDs to be reasonable for the conformationally flexible
loops.

3. Discussion

We find that our new methods for predicting the protein struc-
ture of hAA2AR and of the A2B, A1, and A3 subtypes including opti-
mizing the loops with all Cys oxidized lead to:

� A predicted binding site for ZM241385 to hAA2AR in good agree-
ment with the X-ray experiments, with RMSD error of 2.8 Å and
a correct prediction of 9 of the 12 important residues in the
binding site.

� Predicted binding energies for a series of eight related antago-
nists to hAA2AR in excellent agreement with experimental rela-
tive binding constants (R2 = 0.765 for all eight and R2 = 0.979
excluding the one very flexible ligand).

� Excellent agreement of the subtype specificities for binding of
the subtype selective antagonist ZM241385 across the four
adenosine receptors.

� Excellent agreement in the lack of subtype specificity for the
adenosine agonist and for the non-subtype selective antagonist
CGS15943, as observed experimentally.
non-conserved disulfide bonds in the extracellular loop (EL) are reduced. Here we
steines C259 and C262 in EC3 (The two yellow spheres at the bottom). The closest Ca
making it implausible to have disulfide bonds between EL1 and EL3. (b). The best
d disulfide bonds. Here we show all eight cysteines in yellow spheres. C146 on
nce: 22.5 Å); C259 on EC3 (24.6 Å); C262 on EC3 (22.5 Å). It is not plausible to make
nces to color in this figure legend, the reader is referred to the web version of this



Fig. 6. The lowest energy loops predicted by the continuous Configuration
Boltzmann Biased (CCBB) method.
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� Excellent agreement of the binding site predicted for the ade-
nine agonist bound to hAA2AR with available mutation data.

This suggests that these computational methods can provide
predictions sufficiently accurate to design subtype selective li-
gands for the many important GPCR therapeutics targets for which
no experimental structural information is available.

These studies also show how important it was to have a crystal
structure for a related system. This allowed us to discover the need
to optimize fully the Cys coupling in the EL loops critical in predict-
ing accurate binding sites. This in turn enabled the theory to pre-
dict the structures of the other subtypes and the structures of
agonists and antagonists bound to all subtypes, information not
yet available from experiment.

Our analysis of the experimental crystal structure shows that
16% of the ligand binding energy results from its interaction with
the strongly bound waters, indicating that increased accuracy
would require the theory to predict the location of such strongly
bound waters. Docking of the ligand to the experimental crystal
structure with and without waters, shows that the presence of
waters improve the accuracy of the predicted binding pose for
the ligand from 1.06 Å to 0.80 Å, as shown in Supplementary data
section.
4. Methods

Our structure prediction methods are focused on GPCRs, which
we consider the best candidate for direct prediction methods.
This is because GPCRs have a well-defined three-dimensional
topology in which a single protein must thread through the mem-
brane seven times, forming a-helices that pack tightly with each
other while exposing hydrophobic regions to the surrounding li-
pid. Moreover, the important ligands for many GPCRs bind selec-
tively to the extracellular facing ends of the seven helical TM
domains.

In order to provide the 3D structures for these various confor-
mations needed to understand the function of GPCRs and to help
design new ligands, we developed the GEnSeMBLE (GPCR Ensem-
ble of Structures in Membrane BiLayer Environment) method (Ab-
rol et al., in preparation), an improved version of MembStruk
method (Vaidehi et al., 2002) to predict the 3D structure (without
using homology to known 3D structures). GEnSeMBLE predicts the
ensemble of low-energy conformational states for a GPCR. We con-
sider that it is important to have an ensemble of 10 or more of the
lowest packings because different ligands might make different
choices among them. Indeed cases are known in which different
conformations of a GPCR are stabilized by different ligands (Ko-
bilka, 2004). In particular several of the structures in the low en-
ergy ensemble might play a role in activation. Moreover, for
mutation binding experiments to validate the predictions, it could
be that even single mutations might change the optimum packing,
so that we should evaluate the effect of a mutation on all low lying
packings. This ensemble approach has been validated for Bovine
Rhodopsin, Human b2 and Turkey b1 Adrenergic Receptors. The
methodology consists of the following key steps:

4.1. Prediction of the 7-helix bundle

(1) PredicTM: Our method to predict the transmembrane (TM)
regions for a membrane protein that does not use any fitted
parameters.

(2) OptHelix: Our new approach for using molecular dynamics
to generate relaxed helices with their natural kinks.

(3) BiHelix: This highly efficient sampling algorithm samples
rapidly 127 � 35,000,000 packings of the seven helices of
the GPCR. BiHelix partitions the 7-helix interaction problem
into 12 sets of 2-helix interactions, using SCREAM to opti-
mize the side-chains for each case (Kam and Goddard, 2008).

(4) CombiHelix: This algorithm takes the best 1000 results from
BiHelix step, generates the multiple rotational combinations,
and optimizes the side-chains using SCREAM in conjunction
with an implicit membrane solvation contribution to evalu-
ate the total energy of the optimized multi-helix bundle.
This provides an ensemble of �10 low-energy structures
each of which is used in docking studies of agonists, antag-
onists, and inverse agonists to provide the structures likely
to be involved in GPCR activation.

4.2. PredicTM

Accurate ab initio prediction of helical membrane proteins be-
gins with the identification of the location of the transmembrane
(TM) regions of the protein within the amino acid sequence. Many
such methods have been developed based on analysis of the hydro-
phobicity profile. Our current approach (PredicTM) consists of six
steps:

1. Retrieval of similar protein sequences from a database: here we
select �1000 sequences with structural identities down to �5%.

2. Multiple sequence alignment of similar sequences: here we
now use the MAFFT (Katoh et al., 2005) multiple sequence
alignment program, using the ‘‘E-INS-i” method, which we find
best suited for sequences with multiple aligning segments sep-
arated by non-aligning segments, which perfectly describes the
situation for GPCRs.

3. Hydrophobic profile generation and noise removal: we now use
the Wimley–White whole-residue octanol scale, a thermody-
namic scale derived from transfer of residues from water into
n-octanol (Wimley et al., 1996). Unresolved amino acids in
the alignment (B, Z, J, X) are replaced with gaps. Here we elim-
inate noise (as shown in Fig. 7 for Dopamine D1 receptor) by
averaging windows of seven amino acids through 21 amino
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acids, where seven corresponds roughly to one helical turn
above and below a residue and 21 corresponds roughly to the
length of one TM region.

4. Initial transmembrane region predictions: the initial TM
domain predictions are taken as the regions with hydrophobic-
ity values greater than zero, leading to ‘‘raw helices”.

5. Application of capping rules: the raw helices are extended (or
capped) on both N- and C-termini until a ‘‘helix breaker” resi-
due is found.

6. Identification of hydrophobic centers: to place all helices on the
same reference plane we select the ‘‘hydrophobic center” for
each helix as the position in the raw helix where the area of
the hydrophobicity profile is equal on both sides, providing
the ‘‘buoyant” center of the helix in the lipid environment.

4.3. OptHelix

We have been refining our method of optimization of trans-
membrane helices, to account for the kinks often induced by pro-
lines. We now eliminate noise due to longer side-chains and due
to the helix termini by replacing these groups with alanines (ex-
cept for Ser and Thr near the Pro) and optimizing with 2 ns of
MD, followed by restoring the correct residues using SCREAM
and minimizing the structure.

4.4. BiHelix

4.4.1. Rotational sampling of helices
Most critical to our current methods is to sample all ways of

packing the seven TM domains together. We have found that with
the newer methods of identifying the TM domains, of optimizing
the helices, and applying SCREAM, it is sufficient to sample the ori-
entations of helix with a stride of 30�. However, even with a 30�
increment for each of the seven helices, a complete sampling of
all helical rotational combinations would require the sampling of
127 � 35 million conformations, for each of which the side-chains
would need to be optimized. This is computationally intractable.
Instead, we use BiHelix sampling as described below.

4.4.2. BiHelix sampling
As indicated by two-way arrows in Fig. 8 (left panel), there are

12 nearest neighbor pair-wise interactions between helices: H1–
H2, H1–H7, H2–H3, H2–H4, H2–H7, H3–H4, H3–H5, H3–H6, H3–
H7, H4–H5, H5–H6, H6–H7. For each such pair of helices, we sam-
ple all combinations of a full 360� rotation for each helix with 30�
increments leading to 12 � 12 = 144 combinations. During this
sampling, the other five helices are not present, as indicated in
Fig. 7. (a). Raw hydrophobicity profile for human Dopamine D1 receptor. (b). Average h
obtained from the raw hydrophobicity profile (see text for details).
Fig. 8 (right panel) for helix 1–2 pair. For each rotational combina-
tion, we optimize the side-chains using our rotamer placement
method SCREAM.

SCREAM uses a library of residue conformations ranging from a
CRMS diversity of 0.4–1.6 Å in conjunction with a Monte Carlo
sampling using full valence, hydrogen bond and electrostatic inter-
actions, but special vdW potentials that reduce somewhat the pen-
alty for contacts that are slightly too short while retaining the
normal attractive interactions at full strength. With SCREAM, we
find that we can now base the selections on the total energy Escream,
without separate considerations of valence, electrostatic, hydrogen
bond and van der Walls terms. We combine the Escream energies for
144 combinations for each helix pair (using a total of 144 � 12
helix pairs = 1728 energies) to obtain an estimated energy for all
possible 127 � 35 million conformational combinations. We have
found that the best structures are always within the top 1000
structures ranked by increasing energy.

As a test, we applied this procedure to Bovine Rhodopsin exper-
imental structure (PDB ID: 1u19), where we removed all the loops
along with the ligand retinal and only kept the experimentally
determined TM helix regions. Using the BiHelix method we esti-
mated the energies for all (12)7 � 35 million combinations. This in-
cludes the experimental structure, which corresponds to the
combination 0_0_0_0_0_0_0 (first zero corresponds to helix 1, sec-
ond zero corresponds to helix 2, and so on). Fig. 9a shows the top
structures out of (12)7 � 35 million, obtained using the mean field
energies from the BiHelix procedure. The experimental structure is
7th best. We then used CombiHelix (described in Section 4.5) to
construct the full 7-helix bundle for the best 1000 structures from
the BiHelix analysis and reoptimized the side-chains using
SCREAM, followed by 10 steps of minimization. The best structures
ordered by energy are listed in Fig. 9b, where we see that the
experimental structure is predicted to have the lowest total en-
ergy, which gives us confidence in our energy functions and in
the BiHelix ordering. Among these best packings, Helices 1 through
4 all show the crystal conformation. Helix 6 shows an alternate
preference for a 30� anticlockwise rotation (330� clockwise rota-
tion), which is consistent with the change previously suggested
for the active state of Rhodopsin [where TM6 undergoes anticlock-
wise rigid-body rotation while looking at the protein from the
extracellular side (Farrens et al., 1996)]. This is also consistent with
the recently published ligand-free Bovine Opsin structure (Park
et al., 2008) that shows helix 6 rotated 30� anticlockwise relative
to the cis-retinal bound Bovine Rhodopsin. Helix 5 shows a surpris-
ing flexibility, probably because the covalently attached retinal is
absent during our BiHelix procedure. Indeed this is also consistent
with the putative 180� rotation of Helix 5 in activated Bovine Rho-
dopsin (Meng and Bourne, 2001).
ydrophobicity profile of multiple window averages ranging from 7 to 21 residues



Fig. 8. a. Double arrows connecting nearest neighbor helix pairs that are sampled independently in the BiHelix procedure. b. The BiHelix procedure is highlighted using
helices 1 and 2 to show that when the conformations for this helix pair are sampled, other helices are not present.

Fig. 9. (a). Top structures (out of �35 million) from BiHelix analysis for Bovine Rhodopsin. (b). Top structures after building top 1000 bundles from BiHelix.
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Template Selection: To pack the seven helices from OptHelix into
a bundle, requires the definition of 6 quantities for each helix
(6 � 7 = 42 total): the x, y, z of the hydrophobic center from Pre-
dicTM, the tilt (h) of each axis from the z-axis, the azimuthal orien-
tation (/) of this tilt; and the rotation (g) of the helix about the
helical axis. Our procedures focus on z and g as described above.
The initial values for the remaining four coordinates for each helix
(x, y, h, /) are taken from a template structure. We use a library of
template structures that we consider as validated:

(1) X-ray structure for Bovine Rhodopsin (Palczewski et al.,
2000).

(2) X-ray structure for Human b2 Adrenergic Receptor (Cher-
ezov et al., 2007).

(3) X-ray structure for Turkey b1 Adrenergic Receptor (Warne
et al., 2008).

(4) X-ray structure for Human Adenosine A2A Receptor (Jaakola
et al., 2008).

(5) X-ray structure for ligand-free Bovine Opsin (Park et al.,
2008).

(6) Computational structure for the CCR1 receptor with an
antagonist BX 471 bound that was subjected to 10 ns of
MD using an infinite membrane and full solvent (Vaidehi
et al., 2006).

(7) Computational structure for the DP receptor with the CDP2
agonist bound that was subjected to 2 ns of MD using an
infinite membrane and full solvent (Li et al., 2007).

(8) Computational structure for the MrgC11 receptor with an
agonist FdMRFa bound that was subjected to 7 ns of MD
using an infinite membrane and full solvent (Heo et al.,
2007).

GEnSeMBLE allows for each of these templates to be used in
separate predictions, providing an ensemble of bundles among
which we can select on the basis of bundle energy or ligand bind-
ing energy. As new structures are solved and predicted (validated
and subjected to full MD in lipid bilayer environment), they will
be added to the ensemble of templates.

To specify the reference rotation angle (g) of each helix, we use
a conserved residue to match the rotation angle of its Ca projection
on the x–y plane, to that of the corresponding one in the template
structure. The helical axis for rotation is defined as the one corre-
sponding to the least moment of inertia axis obtained using all
backbone atoms.

4.5. CombiHelix

4.5.1. Starting bundles
The top 1000 structures coming out of BiHelix analysis are built

explicitly using the rotations specified for each helix in the combi-
nation. The helical axis for rotation is the same as used in BiHelix
analysis.

4.5.2. CombiHelix bundle optimization
For each of the bundles built in the previous step, the side-

chains are optimized using SCREAM as in the BiHelix method.
The SCREAM energy is reported for each bundle. Each bundle is
also immersed in an implicit membrane to compute membrane
solvation effects that should disfavor helix rotations that expose
charged residues to lipids. This membrane solvation is described
in the next step.

4.5.3. Membrane solvation
This step evaluates protein–lipid interactions in an implicit

fashion. For efficient and accurate estimation of the lipid–helix
interactions, we implemented in the Delphi Poisson–Boltzmann
(PB) Solver a multi-dielectric model (Rocchia et al., 2001) of lipid
bilayers to account properly for the penalty of exposing polar
and charged residues to lipid molecules. As shown in Fig. 10, we re-
place the middle 20 Å of the lipid with a slab of e = 2, while the 5 Å
slabs above and below the middle slab have e = 7, and e = 80 out-
side the membrane.



Fig. 10. (a). An example system showing a GPCR embedded in an explicit lipid bilayer environment. (b). Multi-dielectric description of the lipid bilayer environment used for
the treatment of implicit solvation for membrane embedded proteins.
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The energy of the bundle interacting with the lipid is denoted as
Esolv. In addition to the PB term, we include a cavity term based on
the White hydrophobic scale. Our earlier MembStruk methods
used either implicit solvent methods or a cluster of �40 lipid mol-
ecules to mimic the membrane. For each combinatorial conforma-
tion from BiHelix method, we use the side-chain-optimized
structure to evaluate the membrane solvation energy, Esolv, add it
to the SCREAM energy Escream from previous step. This process gen-
erally leads to 2–5 final structures stable enough to play a role in
differential binding of agonists, antagonists and inverse agonists
to suggest possible activation pathways. Appling this to the top
1000 combinations for bovine rhodopsin, b1, and b2 adrenergic
receptors correctly predicts the crystal structure to be the lowest
energy structure. For bovine rhodopsin, the top structures are
shown in Fig. 9b and were discussed in Section 4.4.

For hAA2AR, in addition to the above procedure, we constructed
a TM bundle based on homology to the TM region of hb2AR (PDB
ID: 2rh1) and tb1AR (PDB ID: 2vt4) using the sequence alignment
based on structurally conserved regions (SCR). Then, we used BiHe-
lix sampling to optimize the rotations of TM5 and TM6 in the helix
bundle (using a 10� grid over ±90� from the template).

We docked the ligand ZM241385 to the best five bundles from
these sets. The protein structure with the lowest binding energy for
the ligand was the BiHelix-optimized homology model based on
the hb2AR template with TM5 rotated clockwise 10�. This pre-
dicted structure is the one discussed in this paper.

4.6. Procedure for docking ligands to predicted protein structures

The procedures for predicting protein structure indicated above
were applied to hAA2AR for six templates, as summarized above.
We found that the best by energy was the BiHelix-optimized
homology model to hb2AR [with optimum rotations of (0, 0, 0, 0,
10�, 0, 0) relative to the template] combined with the optimized
ELLA loop. In order to assess the accuracy of predicting binding
to subtypes, we used the same procedure to predict structures
for the AA1R, AA2BR, and AA3R subtypes.

Each of these protein structures was used to dock ZM241385.
The structure and charges of ZM241385 were calculated using
quantum mechanics (B3LYP with the 6-311G** basis set). Only
the lowest energy conformer was used for docking. We used the
HierDock general procedure for docking.

The HierDock method uses a hierarchical strategy for selecting
ligand-binding conformations and calculating their binding ener-
gies. The whole protein was partitioned into 35 regions (each with
sides of 10 Å) and scanned to find the putative binding regions
(with the six hydrophobic residues, I, L, V, F, Y, and W alanized).
This ScanBindSite procedure used DOCK4.0 (Kuntz et al., 1982) to
generate 1000 conformations in each of these putative regions,
selecting the optimum regions based on a combination of burial
score and binding energy. These optimum regions were combined
and 10,000 poses were generated using DOCK4.0, which were
scored using the DREIDING 2 FF (Mayo et al., 1990). The top
1000 (by energy) were de-alanized, SCREAMed, and then mini-
mized using the DREIDING 3 FF. Then we selected the top 1%
(10) for further minimization of the binding site complex (using
the unified binding site including all residues within 4 Å of any
of the 10 binding poses). The protein and ligand were then neutral-
ized by transferring protons appropriately in salt bridges and pro-
tonating or deprotonating exposed side-chains (this leading to
more reliable energy comparisons [Bray and Goddard, 2008]). Then
the final docked structure with the best binding energy was
selected.
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