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Executive Summary 
 

The medical staff performing interventional cardiology and radiology (IC/IR) procedures stand 

close to the patient and thus close to the primary radiation beam. Although they wear a lead apron 

and thyroid collar, their hands, legs and eyes are not protected. Therefore, these parts could receive 

significantly high doses. Moreover, the dose ranges for the same kind of procedures vary a lot,  as 

many factors affect extremity and eye lens doses. Additionally, there is evidence that eye lens doses 

can be high in IR/IC, and cases of cataract have been reported in recent years. A lack of an 

appropriate eye lens dosemeter as well as an appropriate calibration procedure has been 

identified. 

Medical staff in IR/IC could benefit from the use of active personal dosemeters (APDs) as 

optimisation tool. However, a lack of appropriate APDs is identified for typical fields in IR and IC. 

Very few devices can detect low energy fields, and none of them are really designed for working in 

pulsed radiation fields. 

In the field of nuclear medicine (NM) the extremity doses to the technologists are also known to be 

very high. One can highlight the difficulties in estimating the dose distribution across the hands, 

and the need for greater knowledge of doses received during the main tasks of a nuclear medicine 

department, especially using unsealed sources. 

The ORAMED project, (www.oramed-fp7.eu) was set up to optimize the working procedures in 

these medical fields with respect to radiation protection. ORAMED was structured in 5 work 

packages:  

 Extremity and eye lens dosimetry in IR and IC 

 Development of practical eye lens dosimetry 

 Optimization of the use of APDs in IR and IC 

 Extremity dosimetry in NM 

 Training and dissemination 

A coordinated measurement program in European hospitals was organised both in IR/IC and NM 

departments. Moreover, simulations of the most representative workplaces/procedures were 

performed to determine the main parameters that influence the extremity and eye lens doses. 

Some dedicated studies on improving the eye lens dosimetry and active personal dosimetry were 

conducted.  

Based on the measurement and simulation results, a series of practical guidelines and training 

packages were developed. The influence of the different radiation protection measures (like 

shields) in IR/IC have been quantified, and clear monitoring requirements have been formulated for 

a series of medical procedures. A formalism for the use of the operational quantity for eye lens dose 

measurements have been worked out (calibration phantom, conversion coefficients, type test 

procedures,…). A dedicated eye lens dosemeter has been developed that can be used in routine 

monitoring. The different existing APDs have been tested in fields that are representative for 

hospital fields (like pulsed fields), and a series of guidelines for the use of these APDs in hospitals 

have been made. Also, an improved APD device specifically for IR/IC fields has been developed.The 

extensive measurement and simulation campaign for extremity doses in NM lead to a systematic 

http://www.oramed-fp7.eu/
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evaluation of the different radiation protection measures. These are condensed in a series of 

practical guidelines to be used. The dose distribution across the hands of the technologists was 

characterised, and recommendations for routine monitoring have been formulated.  

The outcome of the ORAMED project will improve the radiation protection standards for medical 

staff. The systematic measurements and simulations are the new standards that will be used for 

many years to come. The practical guidelines that have been developed can be used in the 

hospitals by the medical staff. In particular, the developments on the eye-lens dosimetry and the 

active personal dosemeters will result in an improvement of the practical measurement capabilities 

in the field.  
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The ORAMED project: General  Introduction 
The state-of-the-art analysis performed in the FP6 CONRAD project highlighted high extremity 

doses and a lack of systematic data analysis on exposures to the staff in interventional radiology 

(IR) and nuclear medicine (NM). To optimize the working procedures in the medical field with 

respect to radiation protection, a project focussed on improving the knowledge on extremity and 

eye lens exposures, combined with an optimization in the use of active personal dosemeters, was 

submitted for funding within the FP7 programme. This project was accepted and was called 

ORAMED: Optimization of Radiation Protection of Medical Staff.  

ORAMED was set-up as a collaboration between twelve partners:  

 Belgian Nuclear Research Centre,SCK•CEN, Belgium (coordinator) 

 Greek Atomic Energy Commission, GAEC, Greece 

 ENEA Radiation Protection Institute, ENEA, Italy 

 Institute for Radiological Protection and Nuclear Safety, IRSN, France 

 University Hospital Center Vaudois,CHUV, Switzerland 

 Institute of Energy Technology – Universitat Politècnica de Catalunya, UPC, Spain 

 Laboratoire National Henri Becquerel (LNE-LNHB) at the Comissariat à l’Energie atomique, 

CEA, France 

 Slowak Medical University, SMU, Slovak Republic 

 Nofer Institute of Occupational Medicine, NIOM, Poland 

 Federal Office for Radiation Protection, BfS, Germany 

 RADCARD, Poland 

 MGP Instruments, France 

The ORAMED project started in January 2008 and was concluded with a workshop by February 

2011. In the course of the project and afterwards a lot of effort has been devoted to the 

dissemination of the results. A major tool for this dissemination is the ORAMED website: 

www.oramed-fp7.eu, which will remain active for many years after the project has ended. A lot of 

information is freely available at this website: 

 The official public deliverables of the project 

 Reports with the detailed results of all measurements and simulations 

 Scientific papers on ORAMED results that have been published 

 The guidelines for optimization of the radiation protection of Medical Staff 

 Training material (video, dose estimation tool, presentations) 

 The presentations given at the ORAMED workshop 

Even though all this material is available, there was still the need to have an extensive overview of 

all the important ORAMED results in one document. This EURADOS report will act as an extensive 

ORAMED overview report. For each work package the methodology, the detailed results, the 

analyses of the results, the conclusions and the guidelines are given.  

 
Interventional radiology and cardiology 

The medical staff performing IR/IC procedures stand close to the patient and thus close to the 

primary radiation beam. Although they wear a lead apron and a thyroid collar, their hands, legs and 

http://www.oramed-fp7.eu/
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eyes are not protected. Therefore, these parts could receive significantly high doses.The dose 

ranges for the same kind of procedures vary a lot,  as many factors affect extremity and eye lens 

doses such as the use of protective devices, X-ray beam geometry and X-ray spectra, the irradiated 

part of the patient, etc. There are cases mentioned in the literature where the extremity doses can 

approach the dose limits. In these cases either the high workload or the lack of a proper radiation 

protection policy are responsible for the high doses observed. Routine monitoring of extremities is 

difficult, since “the most exposed area” defined by ICRP recommendations cannot easily be found. 

In most cases only finger or hand doses are reported; doses to the eye lens or legs have not been 

evaluated. In some studies (especially when no protective shielding on the couch is used) doses to 

the legs can be even higher than doses to the hands. Even when ring/hand dosimetry is used for 

extremity monitoring the position of the dosemeter is not clear. Moreover, there is evidence that 

eye lens doses are high in IR/IC, and cases of cataract have been reported in recent years. However, 

eye lens doses are never measured in routine applications, and also very few data can be found in 

the literature. There was no suitable dosemeter available and the standards for the operational 

quantity measurements are not complete. This situation is partly due to the lack of conversion 

coefficients and a suitable calibration procedure. A lack of appropriate equipment is also identified 

in the field of active personal dosemeters (APD) for typical fields in interventional radiology. Very 

few devices can detect low energy fields, and none of them are really designed for working in 

pulsed radiation fields. In summary, in interventional radiology, there is an insufficient knowledge 

about which is the most exposed part of the body in the different procedures and the influence 

and effectiveness of protection measures. Furthermore, there are no suitable eye-lens dosemeters 

or active personal dosemeters available. 

 

Nuclear medicine 

The literature concerning radiation exposure and protection of nuclear medicine staff is limited and 

mostly refers to conventional diagnostic nuclear medicine. As a consequence of the definition that 

the dose limit for the skin has to be applied to ‘the dose averaged over any area of 1 cm² regardless 

of the area exposed’ it is advisable to measure the local skin dose at the location with presumably 

the highest exposure. This requirement is the central dilemma of extremity dosimetry and causes 

severe practical difficulties. In daily practice when preparing and administering radio-

pharmaceuticals in nuclear medicine it is not easy to comply with that requirement since it is often 

not known which part of the hand receives the highest dose. Moreover, the dose distribution over 

the hand may vary during a single process as well as when various persons perform the same 

procedure. Unsealed radiation sources are being increasingly used in nuclear medicine diagnostics 

and therapy, in particular, nuclides that emit beta or mixed beta/gamma radiation.Considering the 

preferential use of beta emitters, the dosemeters must be appropriate for detection of beta 

radiation, taking into account both the energy spectra of the nuclides and the spectral dose 

response of the dosemeter. In nuclear medicine therapy, staff may be exposed to high doses, even 

exceeding the annual limit of the dose to the skin of 500 mSv. Thus, adequate safety measures 

including extremity monitoring of personnel is a strict requirement.  
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The ORAMED project: Structure and Objectives 

The ORAMED project proposed to develop methodologies for better assessing and reducing 

exposures to medical staff. This general objective has been achieved through the development of 

5 main topics, structured in 5 work packages.  

 WP1: Extremity dosimetry and eye lens dosimetry in interventional radiology and 

cardiology 

 WP2: Development of practical eye lens dosimetry 

 WP3: Optimization of the use of active personal dosemeters in interventional radiology and 

cardiology 

 WP4: Extremity dosimetry in nuclear medicine 

 WP5: Training and dissemination 

The objective of WP1 was to obtain a set of standardized data on doses for staff in interventional 

radiology and cardiology and to optimize staff protection. A coordinated measurement program in 

different hospitals in Europe has been performed to help towards this direction. Moreover, 

simulations of the most representative workplaces/procedures in IR/IC were performed to 

determine the main parameters that influence the extremity and eye lens doses. 

The objective of WP2 was to establish a sound theoretical and experimental basis to assess eye lens 

doses. This implied the need to revise the approach for the definition and calculation of conversion 

coefficients for Hp(3), the operational quantity for the measurement of equivalent dose to the eye 

lens (HT(lens)). This was done using the Monte Carlo codes MCNPX and PENELOPE during the first 

two years of the project. A second important objective was to develop a practical eye lens 

dosemeter. During the third and last year of the project a final design of an eye lens dosemeter was 

produced. In addition, a guide for type testing and calibration of eye lens dosemeters was 

implemented.Finally, after the characterization of the prototype, it was also used in a trial 

campaign in some European hospitals during IR/IC procedures. 

The objective of WP3 was to optimize the use of active personal dosemeters (APDs) in 

interventional radiology. Interventional radiology procedures can be very complex and they can 

lead to relatively high doses to medical staff that stand close to the primary radiation field and are 

mostly exposed to radiation scattered by the patient. Very few devices can detect low energy 

radiation fields and none of them are specially designed for working in pulsed radiation fields. 

Therefore, an extensive test programme has been performed, leading to specific guidelines for the 

use of APDs. Finally, taking into account the aforementioned tests and the characteristics of the X-

ray fields used in IR/IC, a new device with an improved response under such conditions has been 

developed.   

The objective of WP4 was to detect the most exposed part of the skin by measuring the extremity 

doses and dose distributions across the hands of the medical staff working in nuclear medicine 

departments. Afterwards, the most suitable position of an extremity dosemeter had to be assessed. 

To achieve this, an extensive measurement and simulation program was performed in many 

European hospitals. 

The last objective of the project (WP5) was to design and develop an accurate teaching and 

knowledge dissemination program and to make sure that the conclusions and recommendations 
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of the project are transmitted to the stake-holders, mainly medical staff, radiation protection 

officers, dosimetry services and authorities in the field. The main dissemination activities include 

the publication of reports and scientific articles together with the preparation of training material. 
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1 Extremity dosimetry and eye lens dosimetry in 
interventional radiology and cardiology 

1.1 Introduction 

Medical procedures using ionising radiation constitute by far the largest contribution to people’s 

exposures by man-made sources (UNSCEAR, 2010). Moreover, the increasing use of ionising 

radiation in the medical sector has also a very important impact on occupational doses. As part of 

the medical procedures using ionising radiation, IR/IC procedures are performed in increasing large 

numbers worldwide. There are more and more different types of applications in a wide range of 

medical specialties using fluoroscopy guided interventional techniques, which represent huge 

advantages for patients over invasive surgical procedures such as lower risk of infection, shorter 

recovery time, etc. However, these procedures often imply high radiation doses to patients, but 

also to the medical personnel. Workers exposed in medicine constitute a significant percentage of 

the European workforce that is occupationally exposed to radiation (G.Frasch, 2007). 

Major areas of concern are the ones that involve new technologies and methodologies resulting in 

high doses to hands and legs, as well as, to the eye lens of the physicians (Vanhavere et al., 2008, 

Kim et al., 2008, Martin 2009). Recent research data on the effects of eye lens exposure increase the 

concerns about possible late effects such as lens injuries or cataracts for the medical staff (Chodick 

et al., 2008; Junk et al., 2004; Vano et al., 2010; Ciraj-Bjelac et al., 2010; Mrena et al., 2011).  

IR and IC procedures require the operator and assisting personnel to remain close to the patient, 

and thus close to the primary radiation beam. Despite the fact that the body area can be 

individually shielded by protective lead aprons, the hands, legs and the eye lenses often remain 

practically unshielded. The ICRP Publication 85 (ICRP, 2000) has given examples of the doses of the 

occupationally exposed workers for various X-ray procedures. The dose ranges for the same kind of 

procedures vary a lot, since there are many factors that affect the extremity doses like the use of 

protective devices, the X-ray beam geometry and X-ray spectra, the irradiated part of the patient’s 

body, etc.  

The state-of-the-art analysis has highlighted high extremity doses and a lack of systematic data 

analysis on exposures to the staff in IR/IC (Vanhavere et al., 2008, Donadille et al., 2008). The 

ORAMED project addressed these issues. More specifically, the overall objective of Work Package 1 

(WP1) of ORAMED was to obtain a set of standardized data on doses for staff in the above sectors 

and to optimize staff protection. 

A coordinated measurement program in different hospitals in Europe was performed together with 

a set of simulations of the most representative workplaces/procedures in IR/IC in order to 

determine the main parameters that influence the extremity and eye lens doses. More specifically, 

the objectives of WP1 were: 

 To perform a systematic study of measurements and simulations of extremity and eye lens 

doses of medical staff in selected IR/IC procedures 

 To study the parameters that influence the extremity and eye lens doses for the medical 

staff in IR/IC  

 To propose a methodology for reducing the doses of medical staff (recommendations)  



Vanhavere et al. 

 

 

 6 EURADOS Report 2012-02 

 

1.2 Measurement campaign 

1.2.1 List of procedures 

. The list of procedures includes 3 cardiac and 5 radiology (diagnostic and therapeutic) 

examinations. More specifically, the list is composed of:  

 cardiac angiographies (CA) and angioplasties (PTCA) 

 radiofrequency ablations (RFA) 

 pacemaker and cardiac defibrillator implantations (PM/ICD) 

 angiographies (DSA) and angioplasties (PTA) of the lower limbs (LL), the carotids and the 

brain (C/B) and the reins (R) 

 all types of embolisations 

 endoscopic retrograde cholangiopancreatographies (ERCP).  

The choice of the procedures was based on their potential impact on the annual exposure of the 

staff, so two main selection criteria were defined: high annual frequency and possible high KAP 

values. However, some procedures of low frequency were included in the study, in order to take 

into account different parts of the patient body that areirradiated. Finally, ERCP procedures were 

selected not only for their high frequency but also for the fact that they are performed by 

gastroenterologists who, usually, don’t have any training on radiation protection issues. For each 

procedure at least ten measurements were performed in each irradiation room. 

The final distribution of the procedures for which measurements were performed in each country is 

shown in Table 1.1. 

 

Table 1.1: Number of procedures followed per country 

 
Interventional Cardiology Interventional radiology 

Country 
CA/ 

PTCA 
RFA 

PM/ 

ICD 

DSA/PTA   
Embolisation ERCP 

LL    C/B R 

Belgium 102 70 60 38 11 16 54 93 

Greece 33 22 30 43 24 12 32 28 

France 20 24 24 30 0 26 25 26 

Switzerland 37 33 26 19 0 2 23 25 

Poland 40 20 41 22 20 3 28 0 

Slovakia 30 19 16 18 7 6 12 17 

TOTAL 261 183 197 170 62 65 174 189 

Total number of 

procedures 
1329 
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1.2.2 Measurement protocol 

For the measurement campaign a unified protocol was used in all countries for the collection of 

data in terms of parameters related to the angiographic system, the type of procedure, the position 

of the operator, the use of protective equipment, the experience of the operator and some field 

parameters (kVp values, filtration, projections, KAP -Kerma Area Product- values etc.). For the dose 

measurements it was decided to use thermoluminescent dosemeters (TLD) of LiF:Mg,Cu,P type. 

They were sealed in small plastic bags and taped on the parts of the operator’s body to be 

monitored. More specifically, 8 TLDs were used, one on each ring finger (L finger & R finger) and 

wrist (L wrist & R wrist), two on the legs about 5 cm below the lead apron (L leg & R leg), one 

between the eyes (M eye) and one near the left/right eye (L/R eye) depending if the tube is on the 

left/right side of the operator, respectively. The TLDs on the hands were placed on the palmar side 

when the tube was below the table and on the dorsal side for over-couch configurations.  The 

position of the TLDs is shown in figure 1.1. The operational quantity Hp(0,07) suitable to monitor 

the equivalent dose to the skin has been used. In the present study, the same quantity has been 

used for the measurement of the doses near the eyes. At the end of the measurement campaign, 

additional dose measurements were performed with an eye lens prototype dosemeter, calibrated 

in terms of Hp(3). The Hp(0.07) measurements, near the eyes, and the Hp(3) measurements were 

comparable with mean differences of 15%. The measurement protocol is a two page form with 7 

tables to be filled in and is presented in Annex 1. 

 

Figure 1.1: The position of the TLDs (eyes, wrists, fingers and legs) on the operator’s body 

 

Eyes

(Left or Right,

and Middle)

Wrists

(Left and Right)

Rings

(Left and Right)

Legs

(Left and Right)

11 22
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1.2.3 Measurement’s database - Methodology for the statistical analysis of the results 

The whole series of measurements has been grouped in a database with all the data recorded for 

each measurement:  

 the name of the partner who performed the respective measurements,  

 the type of procedure,  

 the name of the hospital and worker’s ID,  

 his/her experience,  

 his/her task,  

 the access of the catheter,  

 the position of the operator according to Figure 1.2,  

 the shielding equipment (personal and other shields installed in the room, see Figure 1.3),  

 the tube configuration (tube above/below the table or a bi-plane system, see Figure 1.4),  

 whether the operator goes out of the room during image acquisitions,  

 the dose measurements on fingers, wrists, legs, and eyes (in mSv),  

 the KAP values (in μGym2),  

 the doses normalised by the respective KAP values and  

 some comments.  

 

 

 

 

 

Figure 1.2: The possible operator’s positions relatively to the patient’s body 
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Figure 1.3: Protection equipment in interventional rooms: (a) table shield, (b) ceiling suspended 

shield, (c) mobile shield and (d) radiation protection cabin 
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system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: (a) Tube below configuration, (b) Tube above configurations and (c) bi-plane 

configurations 

Afirst analysis of the measurements was performed using simple statistics. The measurement 

results are presented in box plots (presenting minima and maxima, the 1st and 3rd quartile and 

median and average values). Two-way analysis of variance (ANOVA) tests that measure the effects 

of two factors simultaneously were used for the study of the parameters that affect the results. The 

significance levels that were used for testing the null hypotheses were 0.05. The statistical 

packages used for this purpose were the SPSS and STATISTICA.  

For each type of procedure parameters influencing the doses were analyzed: the use of protective 

equipment (table shield or ceiling suspended shield), X-ray tube configuration (tube above and 

tube below configurations and bi-plane systems), catheter access route (radial or femoral) and the 
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use of automatic contrast injector which allows the operator to go outside the room during the 

image acquisitions.  

The analysis was applied on the median values of the doses normalised to the respective KAP 

values, Hp(0.07)/KAP. When the influence of one parameter was investigated the measurement 

results were compared to cases with similar irradiation conditions. For example, when the effect of 

the ceiling suspended screen was studied, comparisons were made for the same type of procedure, 

the same tube configuration (tube below, biplane, tube above) and/or catheter access route (radial 

or femoral).Conversely, for studying the effect of the tube configuration the shielding conditions of 

all data includedin the analysiswere similar (with or without ceiling screen, table shield). 

Finally, the position of maximum dose was investigated for each procedure. As the annual limit is 

not the same for the extremities (500 mSv) and for the eyes (150 mSv), a similar analysis has been 

performed for maximum doses normalised to the respective annual limit.  

1.2.4 TLD measurements 

Since every partner used its own set of TLDs (of LiF:Mg,Cu,P type) and calibration procedure, to 

assure that coherent results would be obtained an intercomparison exercise was organized before 

starting the measurements in the hospitals. Samples of TLDs of each partner contributing in the 

measurement campaign were irradiated to 137Cs beams and a more realistic X-ray field (70 kV, with 

a 4.5 mm Al and 0.2 mm Cu filtration) on an ISO slab phantom (ISO, 1999). They were read blindly 

by each partner using their own calibration procedure, and the response of the TLDs was checked 

against the conventionally true Hp(0.07) value of the corresponding irradiation. Reference Hp(0.07) 

values were equal to 8.0 and 6.6 mSv for 137Cs and the 70 kV X-ray field, respectively. For the X-ray 

field the reference was calculated using Monte Carlo simulations. The range of the relative 

deviations of dosemeters’ responses of all partners was within ±15% and was considered 

acceptable.  

For every measurement in hospital the dosemeters worn by the monitored operator were 

accompanied by unused ones for subsequent background subtraction. The lower detection limit 

(LDL) of each partner was evaluated as twice the standard deviation calculated from the set of 

background dosemeters. LDLs ranged from 4 to 32 µSv, depending on the partner. Any dosemeter 

reading below the LDL was set equal to the LDL. Finally, for single measurements relative 

uncertainties were estimated in the range 13% – 20%, depending on the partner, taking into 

account the following components: calibration, repeatability, homogeneity, and dose, energy and 

angle responses. 

1.2.5 Limitations of the measurement’s methodology 

The main limitation of the measurement campaign lies in the fact that since real procedures were 

monitored the different parameters influencing the doses, i.e. time, distance, shielding and 

intensity and characteristics of the radiation field, varied simultaneously during any single 

procedure and also between procedures of the same type. This lead to strong interactions in the 

data analysis, attenuating the effect of some parameters.  

Another limitation was the exact knowledge of the use and positioning of the collective protection 

equipment. In the data base these equipment were marked as either ‘used’ or ‘not used’. However, 
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it was observed that they were frequently not appropriately positioned, efficiently used only for a 

fraction of the time or even almost not used at all though available. From the protocol this was not 

always clear, so the ‘partial use’ or ‘inappropriate use’ have been regarded as ‘used’ in the analysis. 

 

1.3 Simulation campaign 

Measurements performed within the ORAMED project helped to define the dose levels to the 

operators’ hands, wrists, legs and eye lenses during several types of IR/IC procedures, and also to 

determine the parameters that affect the doses. Assessing the influence of each parameter 

separately is very important in order to provide specific guidelines concerning the radiation 

protection of the occupationally involved personnel during interventional procedures. However, 

studying the effect of each parameter separately is only possible using Monte Carlo simulations, as 

in clinical practice many of those parameters change simultaneously. 

1.3.1 Description of the input file 

The numerical simulations have been performed using the MCNP-X v.2.5 code (Pelowitz, 2005). 

MIRD type anthropomorphic models (Snyder, 1978) have been used for simulation of the patient 

and the operator. The “patient” phantom is in supine position, and the “operator” one is standing 

next to it (Figure 1.5), in a configuration that is typical for an IR/IC procedure. The original model of 

the "operator" phantom was modified in order to represent more realistically the irradiation 

scenario: eyes have been added, the arms have been redefined and the forearms and the hands are 

bent in a more realistic position. A thyroid collar and a lead apron of 0.5 mm Pb in front of the body 

have also been added. Finally, a cell filled with air representing the KAP chamber and an image 

intensifier (II) have been added to the input file. 

 

Figure 1.5: The anthropomorphic phantoms as patient and operator. The hands of 

the operator have been added and are bent above the patient. A lead apron and 

thyroid collar are added. The image intensifier is also shown above the patient 

phantom 

Operator

Patient

Image Intensifier

Lead Apron
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MCNP-X related F6 tallies (absorbed dose in a volume) were used for the calculation of the doses to 

the eye lenses, hands, wrists and legs. The tally volumes were positioned at 0.07 mm and at 3 mm 

depth for the calculation of Hp(0.07) and Hp(3) respectively. It should be mentioned that, within 

MCNP-X v.2.5, the f6 tally is a dose estimator that can be employed in the photon energy range and 

situations in which kerma approximation is valid i.e. when the equilibrium of secondary charged 

particles (electrons in this case) is guaranteed, which is the case of the present calculations. For the 

determination of the KAP values the f2 tally (particle fluence through a surface) was chosen. This 

tally calculates the photon fluence through the front surface of the KAP cell volume. To determine 

the air kerma in the KAP chamber, the f2 tally is folded with the air kerma per unit fluence 

coefficients taken from ICRU 57 report (ICRU 1998).  

1.3.2 Geometry characteristics 

The X-ray tube was simplified to a point source. The energy spectra for the selected kVp and 

filtrations were determined using the X-ray data of the Institute of Physics and Engineering in 

Medicine (IPEM), Report 78 (Cranley et al., 1997). Moreover, the lead collimator was not simulated 

explicitly, but defined as a volume killing all the photons (not further simulated) entering inside it. 

The first parameters examined within the simulation campaign are the tube voltage and the 

filtration. More specifically, the tube voltage was changed from 60 to 110 kVp, and the filtrations 

from 3 to 6 mm Al and from 0 to 0.9 mm Cu.  

Also a range of beam projections were considered in the simulation campaign:  

 Anterior Posterior (AP) and Postero-Anterior (PA),  

 Left Anterior Oblique (LAO) and Right Anterior Oblique (RAO) at angles of 30°, 60° and, 90° 

 Caudal (CAU) and Cranial (CRA) projections at 20° and 40°  

Several combinations of these beam projections are considered as observed in clinical practice (see 

figure 1.6). 

The irradiation of the patient was simulated for 4 parts of the body: head/neck, thorax, 

abdomen/pelvis and lower limbs. 

The X-ray field size at the II is changed from a diameter of 14 to 40 cm, depending on the part of 

the body that is considered to be irradiated.  

Different positions of the operator were considered, representing for example femoral or radial 

access for which the operator is positioned at the groin level or the arm level of the patient, 

respectively.  

The influence of protective lead glasses for the operator was investigated by performing 

simulations in the following situations:  

 no glasses,  

 lead glasses of 0.5 mm and 1 mm Pb equivalent thickness  

 different sizes/diameters for the glasses. 

The influence of the collective protective equipment in the room was evaluated by simulating the 

table shield and ceiling suspended shield in different positions and shapes. 
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Figure 1.6: The various beam projections used at the simulation campaign 

 

1.3.3 Sensitivity study 

The number of simulations and computing time increased to an unrealistic level when trying to 

include all these parameters one by one. Therefore, it was decided to investigate the influence of 

the beam energy with a simplified geometry, where the patient is simulated by a slab or a 

cylindrical phantom depending on the irradiated part of the body, and no phantom for the 

operator is included. More specifically, for the head and neck irradiations, a head phantom is used 

(a PMMA cylinder of 20 cm diameter and 20 cm height, filled with water); for the lower limbs and 

abdomen irradiations the ISO 4037(ISO, 1999) slab phantom is used and for the thorax irradiations 

a lung phantom is used (a PMMA slab with outside dimensions of 20x20x14 cm3 and 15x15x12 cm3 

tissue insert). The difference in extremity and eye lens doses for different energy beams is assessed 

on realistic positions around the patient phantom. The tube voltage is changed from 60 to 110 kVp, 

filtration from 3 to 6 mm Al and from 0 to 0.9 mm Cu. Using this setup, the tally values (at eyes, 

wrists, hands and legs) were calculated, using the f5 tally instead of the f6 that was used in the 

detailed geometry. Unlike the f2 and f6 tallies, the f5 does not require a particle to reach the 

detection location for scoring, but it scores at every collision the probability that the next event will 

reach the detector site. Thepositions for scoring (tally detectors) in this simplified set-up are shown 

relative to the geometry of the detailed input file in Figure 1.7. 

It is obvious that when the operator is standing at the femur of the patient, the distance between 

the X-ray beam and the operator is larger for head and neck irradiations, than it is for the abdomen 

irradiations. This was taken into account when the tally positions were defined for the simplified 

geometries.  

Finally, it is noted that for normalisation purposes, every result is divided by the dose in the air cell 

at the entrance of the II and not at the KAP chamber. Since the MCNP results are normalised to the 

number of photons emitted by the source, the tally values normalised to the KAP ones would not 

have taken into account the differences in the scattered field. Real angiographic systems use the 
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Automatic Exposure Control (AEC), which means that tube voltage (kVp), tube load (mAs), filters, 

etc. all change automatically depending on the patient thickness, the projection, the chosen 

protocol, in a such way that a constant dose at the detector is maintained.  

 

 

 

Figure 1.7: The MCNP-X geometry of the simplified (left) and detailed(right) 

simulations 

 

1.3.4 Validation methodology 

In order to validate the numerical methodology described in the previous paragraph, a series of 

measurements in the primary and scattered beam were performed and compared with the results 

of similar simulations. 

The measurements were performed by two partners, GAEC and SCK. 

1.3.4.1 GAEC measurements 

The irradiations in laboratory conditions were performed at the Secondary Standard Dosimetry 

Laboratory at GAEC. The irradiations were performed using a PANTAK X-ray tube with an RQR5 (70 

kV) beam. For the measurements a spherical A3 Exradin chamber was positioned once in the 

primary beam at 1 m from the source (without slab phantom), and then in the scattered beam on 

the side of the slab phantom, representing the operator's position. The irradiations in hospital 

conditions were performed on a C-arm angiographic system. 5 TLDs taped on Styrofoam were 

positioned at a distance of 10 cm from a 30x30x20 cm3 PMMA phantom.  

Both of the above setups were simulated using the MCNP-X v.2.5 code. The results of the 

measurements and the simulations, all normalized per KAP, were in quite good agreement. The 

discrepancies between simulation results and measurements were less than 5%. 
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1.3.4.2 SCK measurements 

The laboratory measurements were performed at the nuclear calibration laboratory at SCK•CEN. A 

source beam spectrum of 60 kVp ; 4 mm Al and 0.6 mm Cu (ISO N-60) was used. A PMMA slab 

phantom to represent the patient was positioned at 1 m from the focal spot. Measurements were 

performed with an ionization chamber (Farmer, 600 cc) and with TLDs. The measurements in the 

scattered field were performed at 15 cm from the slab phantom. Monte-Carlo calculations were 

performed with the MCNP-X code, for which the same geometry of the measurements is applied.  

The comparison showed that the measurements and the simulations were in agreement better 

than 4%.  

Moreover measurements were performed in hospital conditions. A source beam spectrum of 70 

kVp, 4.5 mm Al and 0.1 mm Cu was used. A PMMA slab phantom to represent the patient was 

positioned on the patient support table at 45.7 cm from the focal spot. The tube was positioned 

under the patient support table. The measurements were performed using TLDs. The 

measurements in the scattered field were performed at 15 cm from the slab phantom. For the 

simulation the MCNP-X code was used. The comparison showed again good agreement between 

the measurements and simulations (differences less than 9%).  

 

1.4 Results 

1.4.1 Measurements 

1.4.1.1 Generalities 

In the following Figures (1.8,1.9 and 1.10) the frequency of the observed use of personal and room 

protective equipment, the access of the catheter, the tube configuration and the use of the 

automatic contrast injector (leaving the room during cine acquisition) are shown for IR, IC and ERCP 

procedures, respectively. As it can be seen from the pie charts the majority of the operators wear a 

protective apron and thyroid collar. Only 2% of the operators in IR do not use any personal 

protective equipment. Protective eye glasses are used in around 30-35% in the IR and IC 

procedures, but only 6% use them in ERCP procedures. Only a very small fraction (2%) of the 

operators in IR uses protective gloves. The small percentage is mainly due to the fact that the 

gloves are not so comfortable.   

For the room protective equipment, it is noted that there is a percentage of 24% to 46% who does 

not use any room protective equipment, with the highest fraction for the ERCP procedures. As it 

can be seen from the pie charts the table shield is used more often than the ceiling suspended 

shield. The table shield is used in the majority of the cases that were monitored. Special protective 

equipment like a radiation protection cabin and a floor movable shield were observed in a few 

cases.  

As far as the tube configuration is concerned, the cases with the X-ray tube below the operating 

table are used most frequent, in almost 90% of the IR/IC procedures. There were cases where 

biplane systems are used (from 4% in IR to 8 % in IC). For the ERCP procedures, it is noted that there 

is a large percentage of cases (46%) where the X-ray tube is positioned above the operating table.  
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From the pie charts it is seen that the femoral access is preferred over the radial one, especially in 

the IR sector. For the ERCP procedures, the access of the endoscope and the catheter for contrast 

injection is always done through the mouth of the patient.  

Finally, we observed that the automatic contrast injector system is mainly used at IR procedures. 

Almost 50% leaves occasionally or always the room during image acquisition.  

 

 

Figure 1.8: Statistics in interventional radiology about the use of the room and 

personal protective equipment, tube configuration, access, and use of automatic 

contrast injector (operator goes outside the room during the image acquisitions) 
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Figure 1.9: Statistics in interventional cardiology about the use of the room and 

personal protective equipment, tube configuration and access 
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Figure 1.10: Statistics in ERCP procedures about the use of the room and personal 

protective equipment and tube configuration 

 

In Figure 1.11 a box plot of the recorded KAP values for the studied procedures is presented. It is 

clearly seen that for embolisation and PTA procedures the highest KAP values were recorded, while 

the lowest were observed for ERCP. In general, the cardiology procedures have lower KAP values 

compared to the radiology procedures. For PM/ICD and RF ablations mainly fluoroscopy is used 

and much less images are acquired compared to the radiology procedures. The same accounts for 

the ERCP procedures.  
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Figure 1.11: KAP values for all IR procedures 

 

μGym
2
 CA PTCA RFA PM/ICD 

DSA 
LL PTA LL DSA R PTA R 

DSA 
C/B Embolisations ERCP 

minimum 432 470 92 13 169 176 2928 2071 3920 370 35 

1
st
 quartile 1665 3350 1165 445 4192 1866 7471 13394 7950 7119 504 

median 2777 5669 3026 1364 7818 7236 9896 25340 10750 18113 1516 

3
rd
 quartile 5385 11507 7698 3922 15138 24653 11860 28662 14524 34120 3179 

maximum 38409 41966 41500 50980 84205 256025 15840 53952 30690 358110 35673 

average 4283 8878 5861 3801 12712 23805 9718 22968 12598 40378 2832 

 

1.4.1.2 Measured Dose values 

In Tables 1.2, 1.3 and 1.4 the minimum, 1st quartile, median, 3rd quartile, maximum and average 

values of Hp(0.07)  at the various monitored positions are presented for the three types of 

categories (IR, IC and ERCP). Among the IR procedures special attention should be paid to 

embolisations, particularly to the doses to the eye lenses. Operators are also significantly exposed 

during therapeutic procedures such as angioplasties of the lower limbs and the renal arteries. 

During cerebral and carotid procedures the doses are relatively low since femoral access is usually 

used and the operator stands at a larger distance from the irradiated part of the patient’s body 

compared to other procedures performed in the thoracic or abdominal region. 

 

In general, an average dose to the left hand for the DSA/PTA of the lower limbs is obtained around 

240 µSv, for the embolisations around 320 µSv and for the cerebral DSA/PTA procedures around 60 

µSv. Average eye doses for the DSA/PTA procedures are around 40 µSv, but for the embolisations 

around 120 µSv. Average doses to the left leg are of the order of 60 µSv. Among the cardiac 
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procedures that were included in the measurement campaign, the doses to the operators are 

higher during the pacemakers and implantation of cardiac defibrillators, even though the 

respective KAP values are relatively low since only fluoroscopy is used. During these procedures 

the operators work very close to the irradiation field and most of the time without any protective 

shielding. Average doses of 410 μSv have been recorded for the left finger for the PM/ICD, while for 

the CA/PTCA and RFA the respective values are 180 µSv and 60 μSv. For the eyes, the average doses 

lie within the range 40 and 60 μSv. Finally, the leg doses are a little bit higher, 160 to 250 μSv.  

Finally, for ERCP procedures the doses are generally low. Average doses for the monitored 

positions lie within the range [50-110] μSv.  
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Table 1.2: The minimum, 1st quartile, median, 3rd quartile, maximum and average values of Hp(0.07) ) 

and the mean Hp(0.07)/KAPat the various monitored positions are presented for the monitored IR 

procedures 

DSA PTA LL 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 8 8 8 8 4 4 8 8 

1
st
 quartile 27 17 19 16 13 13 11 12 

median 73 32 58 35 25 24 20 18 

3
rd

 quartile 275 127 167 90 57 58 55 39 

maximum 4017 857 2178 865 828 902 664 354 

average 242 105 166 91 70 64 52 37 

meanμSv 
Gy

-1
cm

-2
 

 
36.4 

 
15.2 

 
2.5 

 
10.1 

 
3.0 

 
5.2 

 
4.6 

 
1.0 

DSA/PTA C/B 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 8 8 8 8 8 8 8 5 

1
st
 quartile 18 13 25 17 18 13 18 13 

median 19 18 46 30 23 20 24 18 

3
rd

 quartile 92 21 79 56 33 24 50 22 

maximum 377 98 353 115 226 370 276 167 

average 60 27 68 38 35 31 48 28 

meanμSv 
Gy

-1
cm

-2
 1.6 0.9 1.1 0.7 1.0 0.8 0.6 0.4 

DSA/PTA Renal 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 8 8 8 8 0 4 8 8 

1
st 

quartile 20 13 25 13 19 13 13 12 

median 84 45 81 50 49 35 24 18 

3
rd

 quartile 170 111 203 143 167 72 51 36 

maximum 1470 514 1036 715 2342 470 595 533 

average 190 80 150 108 218 78 57 42 

meanμSv 
Gy

-1
cm

-2
 

 
2.5 

 
1.1 

 
1.8 

 
1.3 

 
2.5 

 
1.6 

 
0.5 

 
0.4 

Embolisations 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 8 6 6 4 4 4 8 8 

1
st
 quartile 28 18 39 20 9 8 32 18 

median 82 41 88 49 31 26 80 43 

3
rd

 quartile 266 86 281 109 91 63 180 116 

maximum 7325 912 9506 780 7822 1741 2441 1224 

average 318 90 359 100 202 87 193 116 

meanμSv 
Gy

-1
cm

-2
 

5.1 1.2 3.6 1.1 1.1 1.0 2.3 1.3 
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Table 1.3: The minimum, 1st quartile, median, 3rd quartile, maximum and average values of Hp(0.07) 

and the mean Hp(0.07)/KAP  at the various monitored positions are presented for the monitored IC 

procedures 

CA/PTCA 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 8 8 8 8 6 4 4 4 

1
st 

quartile 29 18 32 22 16 13 17 13 

median 66 32 83 47 37 29 32 23 

3
rd

 quartile 154 63 192 82 191 59 54 42 

maximum 5000 503 1775 579 1567 1232 820 644 

average 176 57 163 70 163 62 52 42 

mean μSv 
Gy

-1
cm

-2
 

 
3.3 

 
1.3 

 
3.4 

 
1.6 

 
3.0 

 
1.2 

 
1.0 

 
0.8 

RFA 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 5 4 4 4 5 4 4 4 

1
st
 quartile 10 8 24 12 13 8 8 8 

median 28 17 53 29 33 31 18 16 

3
rd

 quartile 57 32 137 58 156 57 39 32 

maximum 896 446 1838 880 1819 780 880 633 

average 59 34 124 56 159 55 44 30 

mean μSv 
Gy

-1
cm

-2
 2.3 1.6 3.8 2.4 3.8 2.0 1.6 1.8 

PM/ICD 

μSv 
L Finger R Finger L Wrist R Wrist L Leg  R Leg L/R Eye 

Middle 
Eye 

minimum 5 8 4 4 4 4 4 4 

1
st 

quartile 60 34 32 32 20 18 8 8 

median 167 106 99 83 67 64 29 22 

3
rd

 quartile 405 278 234 219 233 258 62 61 

maximum 6564 4328 4852 3825 4996 4046 1083 810 

average 418 281 309 237 250 241 60 51 

mean μSv 
Gy

-1
cm

-2
 22.9 17.4 15.3 14.8 12.9 13.0 5.5 5.5 
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Table 1.4: The minimum, 1st quartile, median, 3rd quartile, maximum and average values of Hp(0.07) ) 

and the mean Hp(0.07)/KAP at the various monitored positions are presented for the ERCP 

procedures 

ERCP 

μSv 
L Finger R Finger L Wrist R Wrist L Leg R Leg L/R Eye 

Middle 
Eye 

minimum 8 8 8 8 8 8 8 8 

1
st
 quartile 8 8 8 8 8 8 8 8 

median 20 23 24 23 18 18 18 18 

3
rd 

quartile 32 40 45 32 32 32 40 32 

maximum 1983 916 828 1317 3717 2784 4072 3166 

average 89 58 66 56 89 59 146 102 

meanμSv Gy
-

1
cm

-2
 

        
1.4.1.3 Effect of the collective protective equipment 

In this section the effect of the protective equipment to the doses of the eyes, hands and legs is 

studied. 

1.4.1.3.1 Effect of ceiling suspended shield 

The overall database of measured eye doses demonstrates a reduction of the eye dose from a 

factor 2 to 7 with a ceiling suspended shield. The reduction is higher in cases where the X-ray tube 

is placed above the operating table. In Table 1.5 the reduction ratios as they are calculated from the 

median normalised doses are shown for their effect on the eye doses. Moreover, the ceiling 

suspended shield can also have an effect for the doses to the hands (fingers and wrists). The 

reduction ratios for the different procedures vary from 1.3 to 19 and from 1.3 to 13, for the fingers 

and wrists respectively. The highest effect of the ceiling suspended shield to the hands is observed 

for the embolisation procedures. In Tables 1.6 and Table 1.7 the reduction ratios, as they are 

calculated from the median normalised doses, are shown for their effect on the finger and wrist 

doses respectively. 

Table 1.5: Reduction ratios (without/with ceiling suspended shield) of the median values of 

personal dose equivalent Hp(0.07) measured at the eyes per the respective KAP values 

 Reduction ratio:  

median Hp(0.07)/KAPwithout shield/ Hp(0.07)/KAPwith shield 

Procedure: Left/Right Eye Middle Eye 

CA/PTCAa 1.6 2.3 

DSA PTA Re  3.0 2.8 

Embolisations  7.4 2.5 

ERCP  1.7 2.2 
a
 For cases where the tube was positioned below the operating table and radial artery access was used 
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Table 1.6: Reduction ratios (without/with ceiling suspended shield) of the median values of 

personal dose equivalent Hp(0.07) measured at the fingers per the respective KAP values 

 Reduction ratio:  

median Hp(0.07)/KAPwithout shield/ Hp(0.07)/KAPwith shield 

Procedure: Left Finger Right Finger 

CA/PTCAa 1.3 1.6 

DSA PTA Re  2.2 1.0 

Embolisations  19.3 3.8 

ERCP  1.9 1.8 

a
 For cases where the tube was positioned below the operating table and radial artery access was used 

 

 

 

 

Table 1.7: Reduction ratios (without/with ceiling suspended shield) of the median values of 

personal dose equivalent Hp(0.07) measured at the wrist per the respective KAP values 

 Reduction ratio:  

median Hp(0.07)/KAPwithout shield/ Hp(0.07)/KAPwith shield 

Procedure: Left Wrist Right Wrist 

CA/PTCAa 1.7 1.3 

DSA PTA Re  2.5 1.0 

Embolisations  13.0 2.5 

ERCP  2.5 1.0 
a
 For cases where the tube was positioned below the operating table and radial artery access was used 

For CA/PTCA procedures there is a statistically significant effect of the ceiling suspended shield on 

median normalised doses to fingers, wrists and eyes only for the radial access and tube below the 

table setup: finger and wrist normalised doses are reduced by a factor of 1.3 to 1.6 and 1.3 to 1.7, 

respectively. The median normalised eye doses are reduced by a factor of 1.6 and 2.3 at the left and 

middle positions, respectively when a ceiling suspended shield is used for the aforementioned 

setups (Figure 1.12).  
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Figure 1.12: Box plot of the eye doses measured for CA/PTCA procedures when radial 

access was used showing the effect of the ceiling suspended shield 

 

For RFA procedures and tube below configuration no statistically significant effect of the ceiling 

suspended screen on the normalised doses to fingers, wrists and eyes is observed.  

For PM/ICD, no significant effects of the ceiling suspended shields are observed for the doses to 

fingers, wrists and eyes. This can be explained by the fact that the hands are very close to the 

primary beam during PM/ICD implantations and even when the ceiling shield is used the hands are 

not protected (see Figure 1.13). Concerning the eyesit could be due to the image intensifier which 

provides significant protection when positioned correctly, that is as close to the patient as possible. 

 

 

Figure 1.13: Operator’s hands close to the irradiation field, not protected by the 

ceiling suspended shield 
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For all the IR procedures the effect of room protective equipment on the hand and eye normalised 

doses is clear. The calculated reduction ratios are 2.3 for the right finger and 1.9 for the left finger 

(Figure 1.14).  For the eyes the reduction ratios range from 1.3-to 1.6 (Figure 1.15).  

 

 

Figure 1.14: Box plot of the finger doses measured for IR procedures showing the 

effect of the ceiling suspended shield  

 

Figure 1.15: Box plot of the eye lens doses measured for IR procedures showing the 

effect of the ceiling suspended shield  

 

1.4.1.3.2 Effect of table shield 

The proper use of the table shield can reduce the doses to the legs from 2 to 7 times. A typical table 

shield is of 0.5 mm Pb equivalency. In Table 1.8 the reduction ratios are shown for the various 
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procedures that were monitored. The range of the reduction ratios that is observed is due to fact 

that the table shield is usually fixed in one position on the table, however the operators’ position as 

well as the beam orientation usually change during the procedures.Also there is a big influence 

whether the tube is above or below the table.  

More specifically, for CA/PTCA procedures a significant effect on the normalised leg doses is 

observed when the table shield is used for femoral access and tube below setup only, with a 

reduction factor of 3.5 and 1.3 for left and right leg, respectively. Also, for RFA a significant effect of 

the table shield on leg doses is shown, with a reduction factor of 4 and 1.9 for left and right sides, 

respectively. Finally, for PM/ICD with tube below configurations the table shield reduces doses to 

legs by a factor of 1.4 and 1.6 for left and right sides, respectively (Figure 1.16). 

For the legs in the IR field a significant effect of the table shield is also observed. The leg doses are 

reduced 4.5 and 6.8 times for the right and left leg respectively when table shield is used (Figure 

1.17).  

 

 

 

Table 1.8: Reduction ratios (without/with table shield) of the median values of personal dose 

equivalent Hp(0.07) measured at the legs per the respective KAP values 

 

 Reduction ratio 

median Hp(0.07)/KAPwithout shield/ Hp(0.07)/KAPwith shield 

Procedure: Left Leg Right Leg 

CA/PTCAa 3.5 1.3 

RF Ablations 4.0 1.9 

PM/ICDs 1.4 1.6 

DSA PTA Re 5 2.1 

DSA PTA LL 1.1 1.4 

Embolisations 2.1 1.5 

ERCP 1.8 1.8 

a
For cases where the tube was positioned below the operating table and radial artery access was used 
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Figure 1.16: Box plot of the leg doses measured for PM/ICD procedures showing the 

effect of the table shield (ZOOM graph) 

 

 

Figure 1.17: Box plot of the leg doses measured for the various IR procedures 

showing the effect of the table shield (ZOOM graph) 
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1.4.1.4 Effect of the X-ray tube configuration 

From the measurement campaign it was observed that when the X-ray tube is placed below the 

operating table the doses to the eyes and to the hands are 2-27 times and 2-50 times lower, 

respectively, compared to above the table configurations. However, the doses to the legs are 

higher in these cases. The ratios that show the increase in the leg doses when the tube is 

positioned below the operating table vary from 1.5 to 10. This effect can be compensated by the 

use of a properly positioned table shield as it was discussed in paragraph 1.4.1.3.2. In many cases 

biplane systems were used for CA/PTCA, RFA and embolisation procedures. Hand doses are higher 

for bi-plane systems compared to the tube below configurations. 

More specifically, for CA/PTCA procedures the effect of tube configuration was studied only for two 

cases: tube below the table and biplane systems.The other parameters that could affect the doses 

were similar: femoral access and ceiling and table shields were used in all cases. The finger and 

wrist normalised doses are statistically similar between biplane systems and tube below 

configurations. In the biplane cases the normalized eye doses are lower than in tube below cases, 

by a factor 0.3 to 0.5 (see Figure1.18). In these cases the eyes were either very well protected by the 

ceiling or lateral suspended shield or they were protected by the image intensifier of the lateral X-

ray tube of the biplane system. 

 

Figure 1.18: Box plot of the eye doses measured for CA/PTCA procedures showing 

the effect of the tube configuration 

For RFA with only considering the shielded cases finger and wrist normalised doses were 1.9 and 

1.7 times higher in biplane than in tube below configurations, respectively. The situation is 

reverted for the eyes, and the observations are explained by the improper use of the ceiling shields. 

It has to be noticed that although biplane systems resulted in lower normalized doses to the eyes, 

this wasn’t the case for the absolute doses because total KAP values associated with biplane 

configurations were higher than those with below configurations and are distributed over 2 
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different X-ray tubes: mean KAP was 11800 for bi-plane against 5700 µGym² for tube-below for 

CA/PTCA and 5500 against 5200 µGycm² for RFA, respectively. 

For PM/ICD comparisons were made between tube below and tube above configurations, with no 

room protective equipment present. As expected the doses to the eye positions are increased by a 

factor 2.3-2.4 for the tube above configuration compared to the tube below configuration (see 

Figures 1.19). 

An overview of the ratios for different procedures and tube configurations are shown in table 1.9. 

 

Table 1.9: Ratios (biplane/below) of the median values of personal dose equivalent Hp(0.07) 

per the respective KAP values 

 

 Ratiomedian Hp(0.07)/KAPbiplane/ Hp(0.07)/KAPbelow 

Procedure: Eyes Hands Legs 

CA/PTCAa 0.4 ** ** 

RF Ablationsb 0.3 1.8 0.38 

 Ratiomedian Hp(0.07)/KAPabove/ Hp(0.07)/KAPbelow 

PM/ICDc 2.4 ** 0.11 

Embolisations 8-18 6.8-28 0.2-0.7 

    

ERCP 1.7-1.8 1.4-2.4 0.5-0.7 

a
For femoral access and table and ceiling shields present 

b
Shields are present 

c
 No shields are present 

** Not statistically observed difference 
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Figure 1.19: Box plot of the eye doses measured for the PM/ICD procedures showing 

the effect of the tube configuration (ZOOM graph) 

For the ERCP procedures, when the tube is positioned below the operating table the doses to the 

eyes, wrists and fingers are lower than in the case where the tube is above. The reduction ratio that 

is observed goes up to 2.4. It should also be noted that the effect of the tube configuration is not so 

strong for the eye and hand doses when a ceiling suspended shield is present (Figure 1.20). 

 

 

Figure 1.20: Box plot of the eye doses measured for the ERCP procedures showing 

the effect of the tube configuration with and without the use of ceiling suspended 

shield 
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Finally, for the embolisations, when the tube is located below the operating table or biplane 

systems are used, the normalized doses to the eyes are 8 to 18 times lower compared to the case 

where the tube is above the table. As far as the wrists and fingers are concerned, the respective 

reduction ratio is 6.8 (for the right wrist) and 28 times(for the left finger).  

As far as the doses to the legs are concerned, for CA/PTCA procedures there is no significant 

difference between the leg normalised doses between biplane systems and tube below 

configurations. 

For RFA and shielded cases leg normalised doses are observed to be 2.6 times lower in biplane 

than in tube below configurations. 

For PM/ICDs, the normalised doses to the legs are reduced by a factor 5.5-5.9 when the tube is 

above the operating table (see Figure 1.21). 

For the embolisation procedures, the doses to the legs were found higher 1.5 to 4.3 times when the 

X-ray tube was below the table compared to tube-above.  

For the ERCP procedures, similar effect is observed for the legs where the reduction ratios range 

from 1.45 to 2 for the tube above configuration, compared to the tube below configuration. 

 

 

Figure 1.21: Box plot of the leg doses measured for the PM/ICD procedures showing 

the effect of the tube configuration (ZOOM graph) 

 

1.4.1.5 Effect of the access of the catheter 

The effect of the access of the catheter was studied for CA/PTCA, comparing radial and femoral 

accesses. This was the only procedure, where both cases appeared on a regular basis and enough 
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data was available to compare. When no ceiling shield is used and the X-ray tube is below the 

table, higher doses to fingers, wrists and eyes are observed for the radial access, by factors ranging 

from 1.1 to 4.8 as, in this case, the operator is closer to the X-ray beam compared to the femoral 

access (Figure 1.22). 

 

 

Figure 1.22: Box plot of the finger and wrist doses measured for the CA/PTCA 

procedures showing the effect of the catheter access (ZOOM) when the ceiling 

suspended shield is absent and the X-ray tube is below the table 

However, if a ceiling shield is used, the differences are smaller and even adverse effects could be 

observed. A possible explanation is that the ceiling shield can be more easily positioned for 

procedures with radial access as the operator is closer to the X-ray beam and can be more 

efficiently be protected from the scattered radiation.  

The influence of the catheter access on the  leg doses were studied for cases with table shield 

present and it was observed that higher doses are received for femoral access than for radial 

access, by a factor 1.7 (Figure 1.23). This can again be explained by the fact that when the operator 

is closer to the X-ray beam (radial access), it is easier to position the shielding for efficient 

protection. 
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Figure 1.23: Box plot of the leg doses measured for the CA/PTCA procedures showing 

the effect of the catheter access (ZOOM) when the ceiling suspended shield is 

present and the X-ray tube is below the table 

 

1.4.1.6 Effect of the use of automatic contrast injector 

When the operator uses the automatic contrast injector he can leave the room during the image 

acquisition. The effect of the use of the automatic contrast injector is shown in Figure 1.24. From all 

procedures monitored in the IR workplaces, 38% use this technique and the operator will thus 

leave the room when image acquisitions are performed. The operator is only in the room when 

fluoroscopy is performed. The use of this technique reduces the doses for all monitored positions 

by a factor of 2.3 to 4.1. 
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Figure 1.24: Box plot of the normalised doses at the various positions for the 

embolisation procedures when the operator stays inside the room or goes outside 

during image acquisitions 

 

1.4.1.7 Position of the maximum dose 

 

From the database of measurements, it was investigated on which of the monitored positions the 

maximum dose was measured most frequently. This could give an idea of what the most important 

place for possible dose monitoring would be. On almost all occasions, the maximum dose was 

recorded at the left part of the operator’s body. On figure 1.25 the frequency of the position where 

the maximum dose was recorded is shown. It can be seen that most frequently the maximum dose 

was recorded at L-Finger, L-Wrist and L-Leg positions. Clear pre-eminence of L-Finger is seen for 

PM/ICD because with a direct access the left hand is very close to, and even sometimes inside, the 

direct X-ray beam. For the IR procedures (Figure 1.26a) the highest frequency of the location of the 

maximum dose is on the left hand, 23% on the finger and 22% on the left wrist. 

However, since the annual limit for hands and legs (500 mSv) is different to that for eyes (150 

mSv)(ICRP, 2007), thiscan be taken into account by dividing the maximum dose by the respective 

annual limit. This is done on figure 1.26b which shows the frequency of the position where the 

maximum ratio of the dose to the annual limit for the corresponding position is given. In this case 
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we can conclude that also the eyes come into the picture (65% for the IR procedures) on where the 

highest doses (with respect to the limit) are observed. 

 

Figure 1.25: Pie Chart showing the frequency of the location of the maximum dose 

for the IC procedures (a) CA/PTCA (b) RF Ablations and (c) PM/ICDs 

 

 

 

 

 

 

 

 

 

Figure 1.26: (a) Pie Chart showing the frequency of the location of the maximum 

dose for the IR procedures (b) Pie Chart showing the position of the maximum dose 

when the respective annual limits are taken into account 

 

1.4.1.8 Extrapolation to annual doses 

Apart from the doses measured per procedure, as discussed above, extrapolation to the annual 

doses was performed for the eyes, hands and legs. According to the ICRP recommendations (ICRP, 

2007) the annual dose limit for deterministic effects to the skin is set to 500 mSv averaged over 

1cm² area of skin regardless of the area exposed. For the eyes the annual limit is set at 150 mSv. 

Annual doses are estimated by multiplying the average measured dose to the hands, legs or eyes 

for a specific operator with his given annual workload per procedure. If different procedures were 

monitored for a specific operator the annual doses for each procedure are added. Information on 

the annual workload was gathered from 84 physicians. 

When it is possible that 3/10th of the annual limit can be reached, it is legally required that doses 

are routinely monitored. Therefore, frequency distributions are determined for: 
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 Annual doses larger than the annual limit (500 mSv for skin and 150 mSv for eyes) 

 Annual doses larger than 3/10th of the annual limit (150 mSv for skin and 45 mSv for eyes) 

 Annual doses larger than 1/10th of the annual limit (50 mSv for skin and 15 mSv for eyes) 

 Annual doses smaller than 1/10th of the limit 

In Figure 1.27 (a,b and c) the frequency distributions are shown for the eyes, hands and legs, 

respectively for all procedures together. 

We can observe that the annual doses to the eyes have never exceeded the annual limit. For 8% of 

the operators for which annual doses could be estimated, the annual dose to the eyes exceeds the 

3/10th of the limit. There is not even one specific procedure that can be attributed to this 8% 

resulting in the higher annual eye doses. All interventional procedures, except ERCP, can give 

relatively high doses to the eyes.  However, it should be noted that the eye doses do not take into 

account the reduction due to the use of eye protective glasses. 

Concerning the eye lens dose limit, a recent ICRP statement recommends reducing the limit to 20 

mSv/year, averaged over a period of 5 years, with no single year exceeding 50 mSv (ICRP 2011). 

With this new proposed limit, 45% of the operators have annual eye doses above 3/10th of the 

annual limit of which 24% exceed the new proposed annual limit. 

For the annual doses to the skin of the hands, 4% of the operators receive annual doses above the 

limit. The procedures for which these highest doses are observed are mainly pacemaker 

procedures and orthopedic procedures, like vertebroplasty (Struelens et al., 2011). For both 

procedures ceiling suspended shields are seldom used and the hands are regularly in the primary 

beam. However, also for the CA/PTCA procedures it is important to monitor hand doses as 12% of 

the operators received annual doses to the hands larger than 3/10th of the limit. In general, the 

annual doses to the hands calculated for RFA are low, as the operators for which the annual 

workload was received were well protected. It is important to notice that operators who perform 

RFA, often also perform pacemaker procedures. The operators performing ERCP procedures have 

in general low annual doses to the skin of the hands; 90% of the estimated annual doses were 

lower than 50 mSv, the remaining 10% was around 70 mSv.     

For the annual doses to the skin of the legs, 1% of the operators received annual doses larger than 

the annual limit. These are observed within the field of interventional radiology. However, also for 

cardiology procedures, like CA/PTCA and PM/ICD procedures, annual doses to the legs were 

estimated above 3/10th of the annual limit. For the ERCP procedures, all estimated annual doses to 

the legs were below 50 mSv.  

The annual doses estimated in the ORAMED project were based on the procedures which are 

monitored within the project. This means that the annual doses could be underestimated, as the 

monitored operators could also perform other procedures which were not monitored 

withinORAMED. This is especially true for the interventional radiology procedures, for which there 

exist a very broad range of procedures.  
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 (a) 

 

 (b) 

 

(c) 

Figure 1.27: Frequency distribution of the annual doses estimated for  

the eyes (a), hands (b) and legs (c) for the various monitored procedures 
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As a general conclusion it can be said, that monitoring of eye lens doses can be recommended for 

all procedures, except ERCPs. If the dose limit will be reduced to 20 mSv, many physicians will 

surpass this limit, and monitoring and the proper use of radiation protection equipment will even 

be more important. Also for the annual hand doses it is possible that 3/10th of the annual limit can 

be exceeded. Therefore, routine monitoring of hand doses is necessary, except for ERCP 

procedures. If the table shield is properly used, leg doses can be reduced significantly and no 

routine monitoring is necessary. 

1.4.1.9 Correlations 

Another objective of the analysis of the measurement result was to determine if the measured 

doses could be correlated to the KAP values. Moreover, it was investigated if doses to the eyes 

could be linked to the doses to the hands and if the doses to the fingers could be estimated by the 

doses to the wrists. If this was the case, it would provide a simple mean to estimate the extremity 

doses of the operator. 

In order to examine the correlation between the various quantities mentioned above Pearson’s 

productmomentcorrelation coefficient, r, was used which gives an indication of the strength ofa 

linear relationship between X and Y and can range from -1 to +1inclusively. If the correlation is 

strong, it can be approximated by a straight line called ’regression line’ or least squares line that is 

determined such as the sum of the squared distances of all data points from the line is the lowest 

possible when the Pearson correlation coefficient, r, is squared then theresulting value, r2, called 

coefficient of determination ranges between 0 and 1. The coefficient of determination represents 

the proportion of common variation in the two variables showing thus the strength of the 

correlation. If there is no correlation between X andY in the overall population, there might still be 

a chance that randomsampling could result in a correlation coefficient different from zero. The P 

value helps in quantifying how often this could actuallyhappen. If the P value is large, then there is 

no reason to conclude that the two variables have a real meaning. For P values below 0.05 the 

correlation can be considered reliable i.e. with a chance of mistake of 5% (Campbell et al., 2007; 

Bland et al., 2000). 

In the measurement database general correlations were very difficult to find and their strength was 

mostlyinfluenced by three main parameters: the X-ray tube configuration, the room collective 

radioprotectiveequipment and the access of the catheter.  

 

1.4.1.9.1 Correlations between the doses to the eyes and the KAP for operator 

The quality of the correlations between the doses to the eyes and the KAP values depends strongly 

on two main parameters, the X-ray tube configuration and the use of collective radiation 

protection equipment liable to shield the eyes i.e. ceiling screen, radiation protection cabin or 

mobile protective wall. The use of lead glasses could not be investigated as the measurements 

were performed with the TLDs outside the glasses when the operator does wore any. 

When the procedures are performed without any room collective radiation protection equipment, 

the doses to the eyes are strongly linked to the KAP values with a value for r² of0.78 and 0.72 for 
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respectively below and above X-ray tube configurations as it is often the case correspondingly for 

cardiac procedures, and for ERCP and embolisations procedures ( figure 1.28). 

 

 

 

Figure 1.28  Correlations between the KAP values and the doses to the L/R eye for respectively tube 

below and no shielding, for tube above and no shielding and for biplane tubes 

 

For biplane tubes employed mostly during CA/PTCA and RF ablations procedures, excellent 

correlation was found between the doses to the eyes and the KAP values for operator even though 

measurements performed with or without collective radiation protection equipment liable to 

shield the eyes are considered together (figure 1.28).  

 

1.4.1.9.2 Correlations between the doses to the legs and the KAP for the operator 

The doses to the left leg are strongly correlated to the KAP for operator with a r² value of 0.8when 

no table shield was used and for femoral access such as for embolisations or RF ablations 

procedures. 

When the legs were shielded, the correlation was statistically significant only for the doses to the 

right leg.  

 

1.4.1.9.3 Correlations between the doses at the ring and wrist positions and the KAP for the 

operator 

Three parameters needed to be considered in order to find statistically significant correlations: the 

absence of ceiling shield, the access of the catheter and the X-ray tube configuration. 

 

Table 1.10: Correlations between the doses at the ring and wrist positions and the KAP for the 

operator 

Left finger Right finger Left wrist Right wrist 

no ceiling shield, femoral 
access and tube above  

KAP for 
operator 

r² 0.68 0.59 0.81 0.58 

tube below and no ceiling 
shield and shoulder access  

KAP for 
operator 

r² 0.57 0.59 0.54 0.62 

r²=0.78 r²=0.77 r²=0.95 
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Given the quality of the correlations, the doses to the fingers or the wrists can be estimatedbased 

on the KAP values when no ceiling shield is used and when either the procedures are performed 

with tube above and through a femoral access of the catheter(e.g. DSA PTA LL and embolisations 

procedures) or with tube below and shoulder access for PM and ICDs implantations (table1.10). 

 

1.4.1.9.4 Correlations between the doses at the ring and wrist positions 

The main parameter in this case is the use of ceiling shield that can protect the hands. Excellent 

correlation was found between the doses to the left finger and to the left wrist when no ceiling 

shield was used (r²=0.69). The coefficient of determination is even closer to one when the 

procedures are either performed through the shoulder access for PM and ICDs implantations 

(r²=0.85) or with an above X-ray tube configuration used mainly for ERCP or embolisations 

procedures(r²=0.82). 

The doses at the right ring and at the right wrist positions were only statistically significantly 

correlated when the procedures were performed with an above X-ray tube configuration used 

mainly for ERCP or embolisations procedures (r²=0.61 ) or when the procedures were carried out 

with a ceiling shield and with both a below X-ray tube configuration and a femoral access of the 

catheter such as in CA&PTCA, RF ablations, embolisations and general angiographies or 

angioplasties procedures (r²=0.69). 

As the left ring and wrist positions are likely to be more exposed than the right ones, the most 

important correlation remains between the dose to the left and the dose to the left wrist. 

 

1.4.1.9.5 Correlations between the doses to the hands and to the eyes 

The main parameters in this case are the X-ray tube configuration and the use of ceiling shield. 

 

Table 1.11 Correlations between the doses to the eyes and the doses to the ring and wrist positions 

 

Left/Right Eye  Middle Eye 

Tube below and ceiling shield present  Left finger r² 0.62 0.63 

Tube above and ceiling shield present  
Left finger r² 0.53 0.67 

Left wrist r² 0.76 0.86 

Shoulder access and no ceiling shield  
Left finger r² 0.91 0.91 

Left wrist r² 0.66 0.69 

 

Quite good correlationswerefound between the doses to the left ring and wrist positions and the 

doses to the eyes when a ceiling shield is used for both below and above X-ray tube configurations 

(table 1.11). 
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When no ceiling shield is present, correlations were difficult to be found. The doses to the eyes 

were strongly correlated with the doses at the ring and wrist positions only forPM and ICD 

implantations (table 1.11). 

In practice, the dose to the eyes can be estimated given the dose to the fingers or to the wrists but 

the X-ray tube configuration and the use of ceiling have to be considered. 

1.4.2 Simulation results 

1.4.2.1 Effect of the beam projections 

Interventional procedures are dynamic procedures, where the X-ray beam moves around the 

patient. The effect of these different beam projections on the doses to the left hand, wrist, leg and 

eye lens, were tested. Monte Carlo calculations are performed for different beam projections, 

without any protective shielding present and each time using the same X-ray beam energy (80 kVp; 

3 mm Al and 0 mm Cu).The X-ray field size was always kept at a diameter of 20cm at the entrance of 

the II. The influence of the beam projection is investigated for all irradiated parts of the patient 

(head, thorax, abdomen, lower limbs). The results for head irradiation, when the operator stands at 

40 cm from the irradiation field, are presented in Figure 1.28. 

 

 

Figure 1.29: The doses normalised to the dose at the II for different beam projections 

for head irradiation are presented. The X-ray spectrum is 80 kVp, 3 mm Al, 0 mm Cu 

and the field diameter at the II is 20 cm 
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The following conclusions can be drawn from Figure 1.29: 

 the LAO projections (X-ray tube nextto the operator) present higher doses than the RAO 

projections, 

 the cranial projections present the highest doses for undercouch irradiations, 

 the left wrist of the operator seems to be the most exposed part and the eye seems to be 

the least exposed for most projections for this specific geometry.  

One should also notice the difference between overcouch (AP) and undercouch (PA) irradiation, as 

well as the difference between the two lateral projections LAO 90o and RAO 90o. The ratios AP/PA 

and LAO 90ο/RAO 90ο for head, abdomen and thorax irradiation are presented in Table 1.12. 

 

Table 1.12: The dose ratios for overcouch (AP)/undercouch (PA) irradiation, and for 

the two lateral projections LAO 90o/RAO 90o, for head, abdomen and thorax 

irradiations, are presented. 

 

Head Irradiation 

 Left hand Left wrist Left leg Left eye lens 

AP/PA 5.6 1.6 0.1 5.8 

LAO 90
ο
/RAO 90

ο 
2.4 22.1 2.7 3.1 

Abdomen Irradiation 

AP/PA 6.0 3.7 0.1 12.3 

LAO90
ο
/RAO90

ο
 3.0 13.7 1.0 1.3 

Thorax Irradiationa 

AP/PA (radial) 4.6 2.9 0.1 8.1 

AP/PA (femoral) 8.3 4.4 0.1 7.0 

a
RAO 90

o
 is not usually used for thorax irradiation and was not included in the study. 

 

The results in Table 1.12 indicate that all doses, except for the legs, are higher when the tube is 

above the operating table (AP projection). More specifically, the doses to the left hand, left wrist 

and left eyes lens are found to be up to 8, 4 and 12 times higher respectively for overcouch 

irradiations. The eye lens is the most affected part in this case, which makes very important the 

proper use of shielding equipment (lead glasses and/or ceiling suspended shield) when such 

systems are used. 

For the lateral projections, all doses are found higher for the LAO 90o projection (the X-ray tube is at 

the side of the operator). For this tube configuration, which is very common in clinical practice, the 

doses to the left hand, left wrist and left eyes lens are found up to 3, 22 and 3 times higher 

respectively. The left wrist seems to be most affected in this case. When lateral projections are 

needed, the RAO projection should be preferred where the X-ray tube is on the opposite side of the 

operator’s position and the image intensifier is next to the operator. First of all, the largest part of 
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the scattered radiation is backscattered, in case of RAO projections, means away from the operator. 

Secondly the large image intensifier partly will shield the operator from the scattered radiation.  

 

1.4.2.2 Effect of the collective protective equipment 

One of the most important radiation protection measures during interventional procedures is the 

use of protective shielding. Monte Carlo simulations have been used to study the effect of the 

ceiling suspended shield, the lead glasses and the shield attached to the operating table, on the 

protection of the eyes, hands, wrists and legs for four beam projections: PA, LAO 90o, RAO 30o and 

CRA 40o. An X-ray spectrum corresponding to 80 kVp, 3 mm Al, 0 mm Cu (HVL=3.1 mm Al) was used 

for the simulations. 

Three scenarios were selected to study the effect of the ceiling suspended shield on the doses to 

the eyes, hands and wrists of the operator, for a specific patient-operator setup: thorax irradiation, 

20 cm field diameter at the II, operator’s distance from the centre of the field 70 cm representing 

femoral access. In the first scenario (A1) an arc type ceiling suspended shield of 0.5 mm Pb is 

positioned very close to the patient and is slightly rotated around the z axis towards the operator 

(Figure 1.30a). In the second case (A2) the same arc-type shield is (incorrectly) positioned leaving a 

gap of 15 cm between the patient and the shield (Figure 1.29b). The third scenario (B1) describes a 

rectangular ceiling shield positioned in touch with the patient, without tilt (Figure 1.30c). The effect 

of the table shield (0.5 mm Pb) to the leg doses was studied at the same time (Figure 1.30e). Finally, 

the effect of the lead glasses (0.5 mm Pb) to the eye lens doses was studied when there was no 

ceiling shield present (Figure 1.30d).  
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               (a)               (b)                      (c) 

 

   (d)    (e) 

Figure 1.30: (a) Arc type ceiling suspended shield of 0.5 mm Pb, tilted and positioned 

close to the patient (A1). (b) Arc type ceiling suspended shield of 0.5 mm Pb, tilted 

and positioned 15 cm above the patient (A2). (c) Rectangular ceiling shield 

positioned in touch with the patient, without tilt (B1). (d) The lead glasses of 0.5 mm 

Pb and the (e) table shield of 0.5 mm Pb are also presented. 

The dose reduction from the different protective barriers and the different setups for PA projection 

are shown in Figure 1.31. All results are normalised to the situation without the respective shielding 

condition.  
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Figure 1.31: The effect of the different protective shields for thorax irradiation, 20 cm 

field diameter at the image intensifier and PA projection, as well as the respective 

dose reduction is presented 

 

For the LAO 90o projection, an additional setup (B2) is considered, where the rectangular ceiling 

shield is positioned on the left side of the operator and not above the patient (Figure 1.32). The 

effectiveness of B1 and B2 case is examined and the results are shown in Figure 1.33. 

 

 

 

Figure 1.32: B2 case, the ceiling suspended shield is placed on the left side of the 

operator for the LAO 90o projection 
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Figure 1.33: The effect of the position of the B1 ceiling shield, for thorax irradiation 

and LAO 90o projection and the respective dose reductions are presented 

 

Including all four tested projections (PA, LAO 90o, RAO 30o and CRA 40o) the results can be 

summarized in the following;  

 The lead glasses are very effective for the protection of the left eye lens reducing the dose 

83-90%.  

 The table shield is very effective for the protection of the legs when it is properly 

positioned (dose reduction 83-99%).  

 About the ceiling suspended shield, it is very effective for the protection of both eye lenses 

(dose reduction up to 93%), except for the LAO 90o projection. The dose reduction to the 

left eye lens for this projection is only 22% for the A1 and A2 cases and 46% for the B1 case. 

However, when the ceiling shield is positioned at the side of the operator (B2 case) there is 

an important effect on the dose to the left eye lens and the dose reduction is 92%. 

 The effect of the ceiling shield to the doses of the hands and wrists is very interesting. The 

dose reduction to the hands for the A1 scenario is only 21% compared to the 68% for the 

B1 case for the PA projection. This is due to the fact that in the A1 case there is a small gap 

between the patient and the shield, while for B1 the shield is touching the patient. The 

dose reduction to the left wrist was up to 73% for the A1 case. Finally, in the A2 case, where 

there is a large gap between the patient and the shield, the dose reduction to the left hand 

and wrist is 2-29% depending on the projection. This emphasizes the importance of 

placing the ceiling shield correctly. In practice, in order to avoid gaps between the patient 

and the shield, a ceiling shield with lead flexible stripes at the bottom is advised. 
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1.4.2.3 Effect of lead glasses 

Additionally to the protective equipment, a “sensitivity study” on the effect of the lead glasses was 

performed. Four cases were selected; a small area lens with lead equivalent thickness of 0.5 mm 

and 1 mm Pb, and a large area lens that covered better the eyes, with the same lead thicknesses. 

The results for an X-ray beam of HVL=3.5 mm Al and for two beam projections are presented in 

Table 1.13. 

 

Table 1.13: The effect of 4 different types of lead glasses on the eye lens dose, for PA and CRA 20 

projection is presented. 

Left eye 

Ratio with/without glasses 

PA CRA20 

Small lens (0.5 mm Pb) 0.30 0.28 

Large lens (0.5 mm Pb) 0.15 0.14 

Small and thick lens (1.0 mm Pb) 0.26 0.25 

Large and thick lens 0.14 0.13 

 

Lenses of thickness higher than 0.5 mm Pb did not improve the protection of the eye lens 

significantly. However, larger lenses that provide better coverage of the eye lens had a higher 

influence on the eye lens dose. 

1.4.2.4 Effect of the field size 

The effect of the field size was studied for the case of thorax irradiation for two positions of the 

operator representing radial and femoral access. Two field sizes 30 cm and 20 cm, for a beam 

quality of HVL=3.5 mm Al (90 kVp, 3 mm Al, 0 mm Cu), were tested and the respective ratios are 

presented in Figure 1.34. 

For all monitored positions the doses are higher when a larger field size is used as more scattered 

radiation is produced when a larger part of the patient is irradiated. When the operator stands 

close to the irradiation field (radial access) the dose reduction due to the more collimated beam is 

more significant, especially to the hands and wrists. The highest dose decrease is observed for 

radial access to the left hand (~10 times) which is the closest to the irradiation field, while for 

femoral access the dose is reduced only 1.3-1.7 times for all positions monitored. The doses to the 

legs and the eye lenses seem to be the less affected by the beam collimation. 
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Figure 1.34: The ratios of the doses calculated for two field sizes 30 cm and 20 cm, for 

two positions of the operator representing radial and femoral artery access, are 

presented 

 

1.4.2.5 Effect of the beam quality 

The effect of different beam qualities was investigated by using the simplified geometry explained 

in paragraph 1.3.3. The dose ratios of the different HVL values relative to the lowest HVL of3.1 mm 

Al are presented in Figure 1.35 for the head irradiation and the dose to the leg.  
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Figure 1.35: The effect of different beam qualities to the leg doses is presenteda) 

same kVp different filters, b) same filter different kVps (the missing points are cases 

that were not simulated) 

The use of higher filtration has an influence not only to the patient dose but also to the dose of the 

operator. For the specific conditions that were studied, the doses to all the anatomic regions of the 

operator are found lower when the filtration is higher. It is stressed again that the evaluated doses 

are normalised to the doses at the entrance of the II. The reduction is more significant to the legs 

among all other anatomic positions, for undercouch irradiations. This can be explained as with 

higher filtration, the beam is more energetic and therefore less backscatter is created. For the 

highest kVp value and filtration that was tested (110 kVp, 4 mm Al, 0.9 mm Cu, corresponding to 

HVL=10.7 mm Al) the dose reduction compared to HVL=3.1 mm Al was 22-60% to the eye lenses, 

15-50% to the hands and wrists and 30-60% to the legs, depending on the beam projection. It 
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should be noted however, that the use of higher filtration could result in deterioration of the image 

quality. 

 

1.4.2.6 Effect of the operator’s position 

The position of the operator is usually related to the artery access of the catheter. 36% of the 265 

CA/PTCA procedures that were monitored within the ORAMED project were performed using radial 

artery access. Both cases were simulated and the doses normalised to the dose at the II for both 

femoral and radial access, for thorax irradiations, are presented in Figure 1.36.  

In the case of femoral access the legs were the most exposed, while for the radial access the left 

hand and left wrist were the most exposed parts of the operator’s body, when no shielding was 

present.  

 

 

Figure 1.36: The doses to the different anatomic positions using femoral and radial 

artery access are presented for thorax irradiation, for PA projection 
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1.5 Recommendations 

The measurement and simulation campaign performed within the ORAMED project revealed a 

large variability of practices in clinical work followed in different hospitals. As a consequence, the 

measured doses, even for specific procedures, vary significantly from one case to another. On the 

other hand, the simulation data showed the way that the various parameters can influence the 

extremity and eye lens doses separately and not in combinations as it is the case from the 

measurement results. The combined data led to the following recommendations. It is important to 

note that some of the proposed guidelines cannot easily be adopted since there are restrictions 

from the medical point of view. However, some of them are easily adjustable and can improve the 

protection of the medical staff significantly.  

 The equipment used for interventional cardiology and radiology should fulfil specific 

requirements and standardisation in their design, manufacture, acceptance and 

maintenance (AAPM 2001, IEC 2010). A wide range of equipment of various degrees in 

imaging technology has been encountered during the campaign. Advances in the field 

have lead to very complex equipment. Therefore, there is a need to follow specific 

equipment requirements and standards in order to fill in the gap between the technology 

and the end users.  

 Personal protective equipment should be used for all the personnel in the room (at least 

lead collar and aprons). From all the procedures that were monitored it was observed that 

the majority of the operators wear protective apron and thyroid collar.  

 The ceiling suspended shield should be placed just above the patient, especially in the 

cases that the tube is above the operating table; the operator should stand well behind it. 

The combination of transparent ceiling shield and lead drapes that touch the patient is very 

efficient for the protection of the hands. When the ceiling shield is properly used there is a 

significant reduction of the eye dose (2-7 times), especially in cases where the tube is 

placed above the operating table. During the measurement campaign it was observed that 

the use and position of this ceiling shield can be very different between operators. 

Moreover, the effectiveness of the ceiling shield also depends on the position of the 

operator with respect to the X-ray beam and the X-ray beam geometry, which explains the 

wide range in reduction ratios for the eyes.  

 When ceiling suspended shield is not available protective lead glasses should be used; 

most effective are the ones designed with large area lenses, well covering the eyes, and 

with the lateral shadow. 

 The table shield should be always properly adjusted to protect both legs. The proper 

positioning of the table shield is very important for the assistant operator, who, in many 

cases, stands close to the main operator but his legs are not protected. There are also cases 

where the operator needs to change his position during the procedure, and stands close to 

the table without having his legs protected anymore. The proper use of table shield can 

reduce the leg doses from 2 to 5 times. A typical table shield is of 0.5 mm Pb equivalency. 

The range of the reduction ratio that is observed is due to the various distances of the legs 

from the table shield, and from the X-ray beam. The degree of reduction also depends on 

thebeam projection.  
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 The tube should be placed below the operating table. As compared with an overcouch 

configuration, there is a significant reduction at the eye (2-27 times) and hand doses (2-50 

times). However, the increase at the leg doses in this setup has to be compensated by the 

use of a properly positioned table shield. The large variation of the reduction factors that is 

observed is related to the different conditions that are studied. For example, it should be 

noted that when no ceiling suspended shield is used the influence of the tube 

configuration is much stronger than when the shield is used.  

 If biplane systems are used, the proper use and positioning of a ceiling shield is very 

important for the protection of the eyes. The operator is exposed in these cases to scatter 

radiation produced from two different beams. In this setup, lateral projections are very 

common and the simulation campaign showed that an extra lateral ceiling shield, 

positioned at the side of the operator (or next to the operator) is very effective for the 

protection of the eyes.  

 Mobile floor shield should be used for the assisting personnel that need to be in the 

irradiation room. During the measurements campaign it was observed that many people 

need to be in the irradiation room. From radiation protection point of view, it is better for 

them to stand behind a mobile shield and move around the room when needed. 

 The femoral access of the catheter should be preferred compared to the radial one, if it is 

possible from the medical point of view, and as long as it is associated with a larger 

distance from the X-ray field than when radial access is applied. The hand and eye lens 

doses, if the shields are properly used, are lower for femoral access, by 2 to 5 times.  

 The use of an automatic contrast injector can reduce the doses to the various monitored 

positions significantly (4 to 16 times), especially to the hands. It is stressed that when this 

system is used the operator can leave the irradiation room during the image acquisitions. 

The above observed range is due to the different distances of the monitored positions from 

the scattering source and the differences in use of protection shields. 

 The operators should avoid direct exposure of hands to primary radiation. Figure 1.37 

shows the hand of the operator during a procedure which is in the irradiation beam. Many 

bad practices were observed during the measurement campaign where the hands of the 

operators were displayed on the monitors of the systems. 

 

 

Figure 1.37: Operator’s hand, as well as his ring, are shown in the irradiation field 
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 Monitoring of the eyes and fingers (or wrists) should be performed on routine basis. The 

dosemeters should be worn on the side of the operator which is closest to the X-ray tube. 

This is because the maximum dose was always observed on the part of the operator closer 

to the X-ray tube for all the procedures that were examined. The finger (or wrist) dosemeter 

should be placed on the dorsal or palmar side of the hand when the X-ray tube is placed 

above or below the operating table, respectively.  
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1.7 Guidelines to reduce extremity and eye lens doses in interventional 

cardiology and radiology procedures 
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1.8 APPENDIX 1:Measurement protocol 

 



ORAMED : Optimization of Radiation Protection of Medical Staff 

 

 

EURADOS Report 2012-02 61  

 

 

  



Vanhavere et al. 

 

 

 62 EURADOS Report 2012-02 

 

2 Development of practical eye lens dosimetry based on a 
new reference phantom 

2.1 Introduction 

Cataract is the loss of transparency of the lens of the eye. The cataracts progress slowly to cause 

vision loss and may eventually lead to blindness; they are typically associated with old age and 

metabolic conditions like diabetes. It is known that cataract can also be radiation induced. In the 

present ICRP approach, cataract induction is a deterministic effect with a definite threshold (ICRP, 

2010). This threshold is between 0.5 and 2 Gy for acute exposures, and 5-6 Gy for prolonged 

exposures. There is a latency period that can last for many years. Until the beginning of 2011 the 

annual dose limit for occupationally exposed workers is set to 150 mSv per year.  

Recently eye lens doses have received a lot of attention because of some epidemiological studies 

on Chernobyl clean-up workers, interventional radiology and cardiology physician and bomb 

survivors (Worgul et al., 2007, Junk et al., 2008, Vano et al., 2010, Cirac-Belaj et al., 2010) showed 

that the threshold dose for cataract induction could be lower than that assumed, even lower than 

0.8 Gy. It is not even sure that there is a threshold at all. The previously explained arguments put in 

evidence the need of a detailed re-evaluation of the eye lens radio-sensitivity and to an associated 

reliable dose assessment. For this reason ICRP issued a “Statement on Tissue Reaction” containing a 

series of recommendations including a revision of the eye lens limit (Paragraph 3) that lowers the 

annual limit from 150 mSv to 20 mSv (ICRP 2011). 

The operational quantity for eye lens is Hp(3) but it was not usually monitored. Such scarce interest 

on the Hp(3) quantity is also demonstrated by the lack of official data on the ICRP-74 and ICRU-57 

(ICRP 1997, ICRU 1998). Some years ago a set of Hp(3,)/Ka conversion coefficients for photons were 

calculated for the 30x30x15cm3 4-elements ICRU tissue slab at the former GSF in Munchen (actually 

Helmholtz Zentrum) by Till and Zankl (Till and Zankl 1995). In a more recent study by Ferrari et al. at 

ENEA it was also tried to propose a reduced dimension cuboid to better mimic the head shape 

(Ferrari, P. et al. 2005). 

Following the previous considerations, it was felt within the ORAMED project that an overall 

procedure for a correct eye lens dose assessment should be proposed, starting from a better suited 

study on the operational quantity Hp(3), the construction of a dosemeter prototype optimized to 

respond in terms of Hp(3), the better suited reference and calibration phantoms and finally the 

definition of an adequate procedure for type test and calibration of eye lens dosemeters.  

The studies herewith presented carried out within the ORAMED project had the main scope to 

guarantee an optimized approach to the eye lens dosimetric evaluations, in all the aspects, from 

the theoretical operational quantities to the operative practice. 

It is worth to remark that individual dosemeters have to be calibrated on phantoms providing 

reasonable approximation of the backscatter properties of the part of the body on which they are 

worn. Therefore, a set of phantoms of different shapes (i.e. slab or cylindrical shapes) are suggested 

by the International Organization for Standardization (ISO) to be used for the calibration of 

individual dosemeters: a rod PMMA calibration phantom is required for the finger and a pillar 

phantom made of a PMMAwater filled cylinder is suggested for the wrist and ankle, whilst a 30 x 30 
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x 15 cm3 water filled PMMA phantom is indicated for whole body dosemeter calibration in terms of 

Hp(10) and Hp(0.07). No special phantom is recommended for Hp(3) but “if another phantom has not 

been agreed with the dosemeter manufacturer” the same slab, representing a human torso, is 

suggested by ISO 12794 (ISO, 2000) for calibrating personal dosemeters in terms of Hp(3) 

independently on the place the dosemeter is worn (very likely the head). 

This work, based on both Monte Carlo and experimental studies, was also aimed at analyzing the 

angle and energy dependence of response of photon personal dosemeters in terms of Hp(3)  on a 

new proposed square cylindrical phantom of ICRU tissue with 20 cm diameter and 20 cm height 

that can be more representative of the head than the previous phantoms. 

2.2 Theoretical discussion on Hp(3) operational quantity 

A dosemeter designed in terms of the Hp(3) quantity and consequently calibrated on the best 

suited phantom should be able to estimate as better as possible the eye lens equivalent dose. 

The choice of a well suited theoretical phantom should be based on physical considerations on the 

scattering properties of this phantom compared with the head. It seems therefore intuitive that the 

phantom until now proposed, i.e. the trunk phantom made of 4 element ICRU theoretical material 

of 30x30x15 cm3, is not a good solution to achieve an optimized procedure for eye lens dosimetry. 

In fact the mass of such a phantom (13500 cm3) is far larger than a real head volume (about 6300 

cm3) with an associated larger quantity of tissue available asscatter of the incident radiation. 

Secondly a thickness of 15 cm is too small to represent the head and this leads to unphysical lack of 

shield in a PA irradiation. Thirdly the presence of the edges leads again to unphysical effect at large 

incident angles, already criticized also for Hp(10) that exhibits a sharp drop at 90° impinging 

radiation incidence. Of course, according to the choice made by the MIRD Committee, the best 

simple structure could be an elliptical cylinder, but this choice seems to be rather unpractical 

especially from the point of view of the possible corresponding calibration phantom. 

A reasonable compromise, in compliance with the mass under study and the shape, was a right 

cylinder of 20 cm diameter and 20 cm height. It could have been proposed a smaller diameter, but 

the decision was taken on the basis of two considerations: 

 establishing a head simple model, taking into account the presence of the bone structures 

besides the only soft tissue. As the theoretical model is composed by only soft tissue, a 

slightly larger diameter might compensate the higher interaction properties of the bone, 

contributing both to absorption and scattering. 

 
 Easy and cheap fabrication - a concern was based on the fact that a suitable PMMA pipe 

could be easily commercially found with no need to look for unusual dimensions that could 

increase very significantly the cost. A simple cylindrical container of 20 cm diameter with 

two disks and a water filling tip could cost about 200-300 euro. 

2.3 Hp(3) operational quantity study 

The problem was investigated through Monte Carlomodelling. The codes MCNP5 (X-5 Monte Carlo 

Team, 2003), PENELOPE (Salvat, F, 2006) and MCNPX (Pelowitz, D.B. (ed.), 2005) were used to obtain 

the conversion coefficients. The phantom was simulated (in vacuum) as a 20 cm x 20 cmsquare 
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cylinder of  4 elements ICRU tissue (10.1% H, 11.1% C, 2.6% N and 76.2% O) with a mass density of 

1.0 g·cm-3.  

2.3.1 Air kerma to Hp(3) conversion coefficients 

Hp(3) was calculated at the depth of 3 mm below the phantom surface in a set of forty scoring 

circular sector volumes (Figure 2.1). The values were evaluated with MCNP5 and PENELOPE (both 

used by CEA). A study on the influence of the usage of different photon interaction libraries was 

performed at ENEA with MCNPX comparing mcplib04 (White, M. C, 2003) and the older mcplib02 

(Hughes, H. G, 1996). 

Mono-energetic photons were transported with source energies from 10 keV to 10 MeV, in an 

aligned and expanded field. In figure 2.1 the irradiation model is shown. 

A series of 23 monochromatic photon beams and 22 different incident angles were analyzed (Table 

2.1). 

Particular attention was devoted to the evaluation of photon-electron non equilibrium at 3 mm 

depth occurring for energies above 1 MeV source photons with MCNP5 and PENELOPE. Even if this 

energy domain is rather unusual for direct irradiation of the eye, it is anyway necessary to point out 

this effect shown in Figure 2.2. 

 

 

Figure 2.1: Schematic view of the set of forty scoring circular sector volumes used to 

provide Hp(3) 

 

Table 2.1: Photon beams energy and directions with respect to the normalto the incident 

surface of the phantom. 

Energy Angles 

10, 15, 20, 30, 40, 50, 60 keV, 0°, 10°, 20°, 30°, 

70, 80, 90, 100, 200 keV, 40°, 45°, 50°, 60°, 70°, 75°, 

300, 400, 500, 600, 800 keV, 80°, 90°, 100°, 110°, 120°, 

1, 2, 3, 6, 8, 10 MeV. 130°,140°,145°,150°,160°,170°,180°. 
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Figure 2.2: Photon-electron non equilibrium condition above 1 MeV at a depth of 3 

mm in tissue 

The complete tabulation of the conversion coefficients Hp(3)/Ka is provided in Tables 2.2 and 2.3. 

The values reported are the averages between PENELOPE and MCNP5 (mcplib04) values. 

In parallel with the ORAMED activities on the operational quantity, detailed computational studies 

on the radiation protection HT(eye lens) both for electrons and photons were carried out by 

Behrens and Dietze (Behrens et al. 2009, Behrens and Dietze 2011, Behrens and Dietze 2011), with 

an improved detailed model of the eye. In Figure 2.3 the Behrens model is compared with a section 

of the MIRD head in which the eye is represented by a homogeneous cylindrical sector. 

 

Fig. 2.3: The Behrens eye model (Courtesy R. Behrens) and an axial section of the 

MIRD head at the level of the eyes. In the first model, the dose is computed only in 

the radiosensitive volume. 
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Taking into account the recently calculated values of HT(eye lens) by Behrens et al. for the sensitive 

volume of the eye, a comparison of the herewith presented data was performed to demonstrate at 

what extent the cylindrical shape was correctly simulating the head with embedded eyes. The 

comparison was also performed against conversion coefficients calculated on the trunk phantom 

30x30x15 cm3. 

For this purpose the AP irradiation and the LAT irradiation were studied (see Figures 2.4 – 2.5 – 2.6). 

It can be seen that for AP irradiation the trunk phantom, as expected, produces a larger backscatter 

component (about 20% higher than the real head and the simplified cylinder (Figure2.5)). The 

difference is much more pronounced at 90° incidence (LAT irradiation). This is due to the presence 

of the edge in the slab, implying a non-physical effect compared with the head (cylinder), much 

more noticeable for high angles of incidence (Figure 2.6) 

 

Hp(3,0°)/HT(eye lens AP)Behrens 

 

Figure 2.4: AP irradiation: Hp(3.0°)/HT(eye lens) from 10 keV to 10 MeV 
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Hp(3,0°)/HT(eye lens AP)Behrens 

 

Figure 2.5: AP irradiation: Hp(3,0°)/HT(eye lens) from 10 keV to 1 MeV 

 

Hp(3,90°)/HT (eye lens LAT) Behrens 

 

Fig. 2.6: LAT irradiation: Hp(3,0°)/HT(eye lens) from 10 keV to 10 MeV 



Vanhavere et al. 

 

 

 68 EURADOS Report 2012-02 

 

Table 2.2Hp(3,0°)/Ka and Ratio Hp(3,α) / Hp(3,0°) values averaged from PENELOPE and MCNP5 – kerma approximation 

 

Photon   
Ratio Hp(3,α) / Hp(3,0°)       Kerma approximation 

energy Hp(3,0°)/Ka 

(MeV) (Sv/Gy) 0° 10° 15° 20° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 180° 

0.010 0.244 1.000 0.978 0.951 0.917 0.809 0.571 0.274 0.044 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

0.020 0.919 1.000 0.996 0.992 0.986 0.969 0.919 0.821 0.612 0.220 0.018 0.001 0.000 0.000 0.000 0.000 

0.030 1.219 1.000 0.998 0.995 0.991 0.982 0.956 0.899 0.775 0.482 0.161 0.047 0.017 0.008 0.005 0.004 

0.040 1.448 1.000 0.998 0.996 0.992 0.984 0.959 0.912 0.815 0.584 0.279 0.126 0.065 0.040 0.030 0.028 

0.050 1.597 1.000 0.997 0.995 0.993 0.984 0.963 0.919 0.834 0.632 0.348 0.185 0.110 0.077 0.062 0.057 

0.060 1.667 1.000 0.997 0.995 0.993 0.986 0.964 0.926 0.848 0.663 0.391 0.224 0.143 0.103 0.086 0.080 

0.070 1.674 1.000 0.998 0.996 0.994 0.987 0.970 0.935 0.863 0.689 0.421 0.250 0.164 0.123 0.103 0.097 

0.080 1.649 1.000 0.999 0.999 0.995 0.990 0.974 0.944 0.878 0.710 0.444 0.270 0.180 0.136 0.115 0.109 

0.090 1.614 1.000 1.000 0.999 0.997 0.992 0.979 0.952 0.891 0.728 0.462 0.285 0.192 0.146 0.124 0.117 

0.100 1.581 1.000 1.000 0.999 0.997 0.994 0.983 0.958 0.901 0.742 0.477 0.298 0.203 0.154 0.131 0.124 

0.110 1.550 1.000 1.000 0.999 0.997 0.995 0.985 0.963 0.910 0.755 0.492 0.310 0.212 0.161 0.138 0.131 

0.150 1.449 1.000 0.999 0.999 0.998 0.997 0.994 0.979 0.938 0.794 0.535 0.348 0.244 0.188 0.161 0.153 

0.200 1.372 1.000 1.000 1.000 0.999 1.000 1.000 0.993 0.959 0.830 0.578 0.388 0.278 0.218 0.188 0.179 

0.300 1.286 1.000 1.000 1.002 1.001 1.002 1.005 1.006 0.986 0.875 0.642 0.453 0.338 0.270 0.236 0.227 

0.400 1.240 1.000 1.001 1.001 1.000 1.002 1.008 1.011 0.997 0.902 0.684 0.502 0.384 0.316 0.279 0.268 

0.500 1.210 1.000 1.001 1.002 1.002 1.002 1.010 1.014 1.003 0.919 0.716 0.539 0.422 0.351 0.315 0.303 
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0.600 1.191 1.000 1.000 1.001 1.001 1.005 1.010 1.014 1.007 0.929 0.740 0.569 0.454 0.383 0.345 0.334 

0.700 1.176 1.000 1.000 1.001 1.000 1.002 1.008 1.014 1.010 0.940 0.760 0.595 0.483 0.411 0.373 0.360 

0.800 1.167 1.000 0.998 0.999 1.000 1.002 1.007 1.012 1.009 0.945 0.773 0.614 0.504 0.435 0.396 0.384 

0.900 1.156 1.000 1.001 1.002 1.001 1.004 1.009 1.015 1.012 0.951 0.789 0.636 0.526 0.458 0.420 0.407 

1.000 1.152 1.000 0.997 0.999 1.001 0.999 1.005 1.010 1.009 0.955 0.795 0.651 0.545 0.476 0.437 0.424 

1.100 1.144 1.000 1.000 0.999 1.002 1.002 1.009 1.013 1.013 0.960 0.810 0.667 0.560 0.494 0.456 0.444 

1.500 1.129 1.000 1.003 1.001 1.002 1.003 1.009 1.014 1.011 0.968 0.837 0.712 0.616 0.552 0.516 0.504 

2.000 1.120 1.000 0.999 1.002 1.001 1.002 1.007 1.009 1.007 0.973 0.860 0.747 0.659 0.600 0.565 0.554 

3.000 1.110 1.000 1.000 0.999 0.999 1.000 1.003 1.006 1.002 0.973 0.876 0.781 0.704 0.651 0.619 0.610 

4.000 1.103 1.000 0.999 0.997 0.998 0.999 1.001 1.000 1.000 0.976 0.895 0.810 0.742 0.695 0.665 0.656 

5.000 1.098 1.000 0.997 0.997 0.997 0.998 0.999 0.997 0.995 0.974 0.901 0.824 0.762 0.716 0.691 0.682 

6.000 1.090 1.000 0.998 0.998 0.996 0.999 0.997 1.000 0.994 0.973 0.905 0.836 0.776 0.733 0.707 0.699 

7.000 1.085 1.000 0.998 0.998 0.998 0.998 1.000 0.999 0.995 0.976 0.906 0.836 0.778 0.737 0.711 0.703 

8.000 1.079 1.000 1.000 1.000 0.997 0.999 0.998 0.995 0.993 0.972 0.911 0.846 0.793 0.752 0.729 0.725 

10.000 1.070 1.000 0.995 0.999 0.999 0.997 0.998 0.997 0.992 0.975 0.912 0.852 0.800 0.765 0.741 0.734 
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Table 2.3Hp(3,0°)/Ka  and Ratio Hp(3,α) / Hp(3,0°) values averaged from PENELOPE and MCNP5 – electron transport 

 

Photon   
Ratio Hp(3,α) / Hp(3,0°)       Dose 

energy Hp(3,0°)/Ka 

(MeV) (Sv/Gy) 0° 10° 15° 20° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 180° 

0.010 0.244 1.000 0.977 0.954 0.918 0.808 0.572 0.276 0.044 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

0.020 0.914 1.000 1.000 0.997 0.992 0.976 0.923 0.821 0.611 0.221 0.019 0.001 0.000 0.000 0.000 0.000 

0.030 1.217 1.000 0.999 0.992 0.997 0.988 0.959 0.896 0.775 0.487 0.161 0.047 0.017 0.008 0.005 0.004 

0.040 1.442 1.000 1.005 0.989 0.995 0.991 0.966 0.915 0.819 0.592 0.284 0.126 0.064 0.042 0.031 0.027 

0.050 1.593 1.000 0.997 0.993 0.991 0.989 0.965 0.922 0.836 0.638 0.350 0.187 0.112 0.075 0.062 0.054 

0.060 1.670 1.000 0.997 0.989 0.992 0.984 0.962 0.918 0.843 0.665 0.391 0.223 0.142 0.103 0.085 0.082 

0.070 1.671 1.000 0.999 0.997 0.996 0.990 0.966 0.934 0.863 0.688 0.423 0.251 0.163 0.121 0.101 0.097 

0.080 1.644 1.000 1.002 1.000 0.998 0.994 0.976 0.947 0.876 0.715 0.448 0.269 0.184 0.134 0.113 0.111 

0.090 1.607 1.000 1.004 1.002 1.004 0.996 0.976 0.955 0.889 0.732 0.465 0.288 0.194 0.146 0.125 0.118 

0.100 1.573 1.000 1.006 1.006 1.008 0.998 0.980 0.960 0.904 0.751 0.482 0.300 0.205 0.155 0.132 0.121 

0.110 1.541 1.000 1.003 1.003 1.007 1.001 0.985 0.964 0.916 0.766 0.495 0.313 0.215 0.164 0.139 0.129 

0.150 1.452 1.000 0.997 0.996 0.998 0.998 0.985 0.975 0.930 0.801 0.537 0.348 0.243 0.187 0.159 0.153 

0.200 1.369 1.000 1.003 0.997 1.003 1.003 1.002 0.993 0.958 0.835 0.579 0.392 0.279 0.217 0.188 0.181 

0.300 1.281 1.000 1.009 1.005 1.006 1.010 1.012 1.009 0.984 0.888 0.644 0.456 0.338 0.272 0.236 0.228 

0.400 1.242 1.000 1.003 0.999 1.007 1.003 1.006 1.006 0.991 0.909 0.689 0.503 0.382 0.315 0.280 0.270 

0.500 1.209 1.000 1.006 1.002 1.006 1.006 1.007 1.005 1.002 0.927 0.719 0.542 0.423 0.351 0.314 0.304 

0.600 1.184 1.000 1.008 1.000 1.014 1.010 1.010 1.014 1.006 0.943 0.748 0.573 0.464 0.385 0.350 0.337 
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0.700 1.169 1.000 1.003 1.009 1.012 1.006 1.013 1.013 1.008 0.948 0.770 0.598 0.486 0.417 0.380 0.365 

0.800 1.155 1.000 1.010 1.010 1.015 1.009 1.016 1.019 1.015 0.960 0.786 0.618 0.512 0.438 0.403 0.397 

0.900 1.154 1.000 1.006 0.999 1.008 1.008 1.014 1.013 1.007 0.956 0.790 0.635 0.530 0.457 0.420 0.414 

1.000 1.147 1.000 1.007 1.006 1.004 1.008 1.014 1.012 1.014 0.967 0.800 0.656 0.546 0.475 0.444 0.431 

1.100 1.131 1.000 1.004 1.008 1.008 1.013 1.019 1.025 1.024 0.974 0.821 0.674 0.569 0.502 0.464 0.448 

1.500 0.975 1.000 1.008 1.007 1.023 1.045 1.083 1.132 1.153 1.124 0.977 0.822 0.712 0.640 0.596 0.584 

2.000 0.740 1.000 1.021 1.020 1.052 1.093 1.209 1.336 1.428 1.431 1.292 1.118 0.995 0.909 0.853 0.841 

3.000 0.461 1.000 1.028 1.038 1.080 1.164 1.399 1.688 1.987 2.139 2.041 1.873 1.703 1.596 1.514 1.504 

4.000 0.328 1.000 1.017 1.031 1.074 1.174 1.476 1.933 2.491 2.835 2.828 2.656 2.482 2.330 2.244 2.213 

5.000 0.250 1.000 1.018 1.046 1.089 1.204 1.523 2.108 2.908 3.527 3.654 3.477 3.328 3.146 3.026 2.995 

6.000 0.201 1.000 1.026 1.041 1.089 1.196 1.555 2.202 3.262 4.189 4.446 4.335 4.156 3.939 3.841 3.770 

7.000 0.168 1.000 1.034 1.051 1.091 1.194 1.560 2.252 3.510 4.746 5.264 5.193 4.959 4.750 4.635 4.590 

8.000 0.145 1.000 1.036 1.054 1.083 1.191 1.550 2.279 3.723 5.286 6.004 5.997 5.791 5.530 5.404 5.360 

10.000 0.115 1.000 1.022 1.045 1.069 1.175 1.513 2.259 3.901 6.162 7.358 7.457 7.287 7.051 6.886 6.803 
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2.3.2 Uncertainties of the calculated values due to x-section libraries 

The MCNPX values obtained, using mcplib02, are in good agreement with the other two sets of 

data (based on mcplib04) for energies above 80 keV, whilst for lower energies both Hp(3)/ and 

Ka/show a remarkable difference due to the coarser interaction parameter representation. 

InFigures2.7 and 2.8 the total photon cross section for air and ICRU soft tissue for mcplib02 and 

mcplib04 are shown. 

 

Figure 2.7: Air photon x-sections (m1-mcplib02, m2-mcplib04) 

 

Figure 2.8: Soft tissue photon x-sections (m1-mcplib02, m2-mcplib04) 



ORAMED : Optimization of Radiation Protection of Medical Staff 

 

 

EURADOS Report 2012-02 73  

 

It has to be taken into account that the air kerma per unit fluence Ka/ value is evaluated only on 

the basis of the mass energy transfer coefficient for the source energy with no transport involved, 

whilst the Hp(3)/ is calculated following the transport of photons (kerma approximation) or 

photons and secondary electrons (coupled full transport) within the phantom. The ratio of the two 

quantities is of interest and it can be expected a compensation effect (at least partial) that could 

reduce the discrepancy due to the libraries. 

In Figures 2.9 – 2.11 the ratios of the values obtained with mcplib02 (and MCNPX) and those based 

on mcplib04 (and MCNP5) are plotted.  

Despite the deviations encountered in Hp(3)/and  Ka/  evaluations below 80 keV, their ratios, 

Hp(3)/Ka, are in good agreement down to 10-20 keV, because of compensating effects between the 

two quantities as can be seen in figure 2.11 showing Hp(3)/Ka at 0° and 60°.  

However it has to be advised to use mcplib04 instead of mcplib02. 

 

Figure 2.9:Ka/ ratio between values based on mcplib02 and mcplib04 
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Figure 2.10:Hp(3)/ ratio between values based on mcplib02 and mcplib04 

 

Figure 2.11 Hp(3)/ Ka ratio between values based on mcplib02 and mcplib04 

 

2.4 Development of the eye-lens dosemeter prototype 

One of the tasks of the ORAMED project was to develop a thermoluminescent (TL) dosemeter 

especially dedicated to measurements of Hp(3).  The dosemeter had to satisfy the following 



ORAMED : Optimization of Radiation Protection of Medical Staff 

 

 

EURADOS Report 2012-02 75  

 

conditions: 1-measuring correctly Hp(3), 2- being comfortable for users and for dosimetric services, 

3-waterproof, and 4- inexpensive. 

From the beginning of the development process it was decided that the dosemeter would be 

designed in a modular form, consisting of two separate parts: the measuring element, i.e. a capsule 

with a thermoluminescent detector (TLD), and a holder, which would fix position of a capsule close 

to an eye. This approach ensured flexibility, both at the development stage and in future; because 

following feedbacks from the users changes to the holder could be needed. 

The process of designing consisted of optimization of two main dosimetric characteristics:  photon 

energy response and angular response. The photon energy range of interest is mainly 20-100 keV. 

The optimization could be achieved by variation of four factors: TLD type, TLD dimensions, capsule 

material and capsule dimensions. 

2.4.1 Choice of TLD type 

A variety of TL detectors is available, however the most commonly used are those based on lithium 

fluoride (LiF).  It was therefore decided to limit the investigated TLD types to LiF detectors, which 

show very good dosimetric properties:  sensitivity (detection threshold below 1 µSv), dose 

equivalent response (linear up to 1 Sv), quite flat energy dependence stability at various conditions. 

Two types of TLDs based on lithium fluoride, are available: the standard LiF:Mg,Ti (marketed by 

Radcard as MTS-N) and the high-sensitive LiF:Mg,Cu,P (marketed as MCP-N), which photon energy 

response is significantly different (Figure 2.12). It can be seen that the measured response of 

LiF:Mg,Ti is up to about 10% higher compared to what can be predicted from the mass energy 

absorption coefficients. The measured photon energy response of LiF:Mg,Cu,P is lower than 

predicted on the basis of mass energy absorption coefficients, with a characteristic minimum at 

100 keV.  The observed differences are due to the dependence of intrinsic thermoluminescence 

efficiency on ionization density and can be explained with microdosimetric models (Olko, 2002). 

Both LiF:Mg,Ti (MTS-N) and LiF:Mg,Cu,P (MCP-N) types of TLDs were considered for application in 

the eye-lens dosemeter. 
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Figure 2.12:  Photon energy response of LiF:Mg,Cu, P (MCP-N)  and LiF:Mg,Ti (MTS-N) 

as measured in several experiments.  Solid lines indicate dependence of the mass 

energy absorption coefficient (after Olko, 2002). 

2.4.2 Designing of the dosemeter 

The main tool in the dosemeter design process was computer modelling.  

 

Figure 2.13:   Model of the geometry used in the MCNP-X calculations. On the right, a 

zoom of the capsule with the TL sensor is shown. 

The theoretical response of dosemeter models mounted on a 20 cm diameter 20 cm height 

cylinder with 0.5 cm PMMA walls, filled with water (Figure 2.13), was studied through Monte Carlo 
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simulations relying on MCNP-X. The applied irradiation geometry is illustrated in the Figure 

2.13HP(3) values were calculated according to the formalism described by Gualdrini et al (Gualdrini, 

G. et al. 2011). The response of TL detectorsfor the given photon radiation was calculated by 

folding the dose D(Ee)delivered in the detector by secondary electrons of energy  Eewith the 

calculated relative efficiency of LiF:Mg,Cu,P for monoenergetic electrons (Ee). 

 eeeph dEEEDER )()()(      (1) 

This was obtained employing the microdosimetric model of TL efficiency (Olko, 2002). Finally, the 

relative response (in terms of Hp(3))R(Eph)Hp(3) of the dosemeter normalized to Cs-137, was calculated 

according to 

137P137

P
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)3(/)(
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HER

HER
ER       (2) 

The first series of calculations were aimed at initially selecting a material for manufacturing of 

measuring capsules and TLD type, and was realized under several simplifications (smaller source 

dimensions, smaller statistics, etc). Many polymer materials were studied, as well as both types of 

TLDs with different thickness. Some examples of the results are presented in Figures 2.14 and 2.15. 

The results indicated that the optimum configuration of the dosemeter is a polyamide capsule with 

a LiF:Mg,Cu,P detector. It is also apparent that within the energy range of interest (above 20 keV) 

there is no need to decrease TLD thickness below the standard 0.9 mm. The choice of polyamide 

was also good from the technological point of view, as polyamide is a good material for the 

injection moulding, which was the preferred production technology.  
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Figure 2.14. Calculated relative photon response of 0.9 mm thick MCP-N TLDs 

located inside a 3mm thick capsule of hemispherical shape, constituted by various 

materials. 
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Figure 2.15. Calculated relative photon response of MCP-N TLDs of different 

thicknesses, located inside a 3 mm thick capsule of hemispherical shape constituted 

by polyamide. 

The correctness of this choice was verified through measurements with different X-ray spectra. The 

irradiation tests were done at CEA LIST LNHB French primary laboratory using Cs-137 gamma rays 

and RQR spectra (IEC-61267 2005). RQR spectra are much wider than N spectra ISO series, but 

better resemble the spectra at workplaces. For testing, the capsule models were manufactured 

with the machine cutting technology from polyamide and also, for comparison, from PMMA and 

PVC. Similarly, for comparison, LiF:Mg,Ti detectors were also used. 

The results of measurements, presented in Figure 2.16, confirm conclusions drawn from the 

calculations. The LiF:Mg,Ti detectors exhibited a significant over response, as expected.  The 

photon energy response of LiF:Mg,Cu,P detectors in a polyamide capsule was the flattest.  

Therefore, it was decided to use the 3 mm thick polyamide capsule with the shape of a hollow 

hemisphere assuring the best energy and angular response. The polyamidedensity is 1.13 g/cm3, 

higher than tissue, but the increased photon absorption of the polyamide for low energy photons 

was compensated by the slight over response of LiF:Mg,Cu,P in these energy regions. 
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Figure 2.16. The measured photon energy response of the tested dosemeter 

configurations. 

The capsule will be prepared to accommodate MCP-N LiF:Mg,Cu,P TL detectors in form of pellets 

(Ø4.5 mm x 0.9 mm). The capsules were theninserted into a holder, attached to a headband (Figure 

2.17a). The new dosemeter was named EYE-D™. The capsule ensures is watertight, enabling cold 

sterilisation or disinfection. Opening of the dosimeter is easy with a special tool (Figure 2.17b).  The 

holder and the capsule are designed for unlimited usage. 

 

 

Figure 2.17. Illustration of the EYE-D™ as worn on head (a) and placed on the 

opening tool (b). 
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2.4.3 Characterization of the final prototype 

After manufacturing of the prototype batch of dosemeters, a new series of calculations and 

measurements aimed atdetermining the photon energy and angular dependence was performed. 

Irradiations were again carried out at the LNHB. This time not only RQR but also ISO narrow series 

spectra were used (ISO-4037-1 1997). 

The results are presented in Figures 2.18 and 2.19. Calculations were done using the complete N 

series of ISO, while measurements with a few well-chosen qualities allow validating these 

calculations over the all energy range of interest. Both calculations and measurements results 

indicate that the response of the dosemeter is within about 20% for narrow spectra and within 10% 

for RQR spectra (within an energy range from 8 keV to 662 keV), what should be considered as a 

very encouraging result. The minimum of the response for LiF:Mg,Cu,P occurs at 100 keV. The 

angular response is presented, normalized to normally incident Cs-137, representing the standard 

calibration condition. The obtained values are between 1.05 (RQR-4, 0°) and 0.81 (RQR-9, 75°). 

Whilst these results are quite satisfactory, they might be still improved by correcting a small (5-

20%) under response observed at larger angles. This can be achieved by applying a 5-10% 

correction factor to the Cs-137 calibration and consequently shifting all results up. In this way the 

relative response of the EYE-D™ for RQR wide spectra should be within about +/-12% around unity 

for all angles. 

Simulation of the dosemeter response for beta-rays fields was not performed and is planned for the 

near future.  

 

Figure 2.18. Calculated (open symbols) and measured (full symbols) HP(3) response 

of the new EYE-D™ dosemeters for RQR and ISO N X-ray spectra. 
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Figure 2.19. Angular HP(3) response of the new EYE-D™ dosemeter for RQR spectra 

(normalized to response to Cs-137 gamma rays, normal incidence). 

 

2.4.4 Conclusions 

The new eye-lens dosemeter responding in terms of HP(3) was designed, optimized and tested. It 

consists of a MCP-N (LiF:Mg,Cu,P) TL detector inside a polyamide capsule. The dosemeter holder 

enables comfortable wearing it on a head, at position fixed close to an eye. The dosemeter is 

designed for an unlimited usage and enables cold sterilization. The test measurements and Monte 

Carlo calculations of the photon energy response and angular response produced very satisfactory 

results: all obtained values are within about 20% around unity (with respect to Cs-137). The 

dosemeter fulfils all requirements (see next chapter) for its application in dosimetry for 

interventional radiology. 

The dosemeterwas named EYE-D™ and is commercially available from the RADCARDcompany. 

 

2.5 Establishing the calibration and type test procedures for Hp(3) 

2.5.1 Scope 

This chapter has not been conceived as a standard including all basic definitions but it is set to 

become the basis of the future standard or new version of existing standards which will include the 

eye lens dosimetry. Prior to going into the details of the type test criteria and the calibration 

procedure we should bear in mind a couple of basic information on dosimetry system, type testing 

and calibration, and on the specificity of exposures in IC/IR. 
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For passive dosemeters, the assessment of doses does not depend only onthe dosemeter itself. The 

doses are evaluated using electronic devices (readers). Therefore a “dosimetry system” includes any 

devices needed for assessing the doses e.g. dosemeter plus reader plus auxiliary equipment. The 

word “detector” refers only to the sensitive part of the dosemeter. 

Before being available on the market, dosimetry systems are type tested according to the relevant 

EN/IEC or ISO standards to determine their rated ranges of use for all influence quantities. 

Comparing these rated ranges with those required for a given workplace, one can judge the 

suitability of the dosemeter for measurements in workplace conditions . It has to be noticed that 

this test is not mandatory in all countries. Failure of any part of the test should be clearly detailed 

and reasons for the failure considered (European Commission, 2009). To carry out type tests is the 

responsibility of the manufacturer. All the radiation fields used must be well characterized and 

traceable to a national standard. As long as the dosimetry system is unchanged, the results of the 

type test remain valid. 

Afterwards, when used by dosimetry services, the dosimetry system must be calibrated against a 

national reference in order to ensure the traceability to the international system of units. This 

reference calibration of the dosimetry system should be repeated at regular intervals (every 2 or 3 

years) depending on the stability of the dosimetry system and the uncertainty budget associated 

to dose measurements. There should be more frequent periodic checks on the performance of the 

dosimetry system which may be carried out using non-reference fields and a fixed procedure. 

(European Commission, 2009). The present chapter deals only with the suggested modifications to 

the type testing procedure required for Hp(3) passive dosimetry. 

2.5.2 State of the art. 

2.5.2.1 Available standards 

Type tests are intended to demonstrate the basic performance of the type of the dosemeter. For 

dosimetry systems based on passive personal dosemeters, to monitor individuals occupationally 

exposed to external radiation, two International and European standards exist for type testing. 

They cover photon and beta radiations. 

 IEC 62387-1 “Radiation protection instrumentation – Passive integrating dosimetry systems 

for environmental and personal monitoring – Part 1: General characteristics and 

performance requirements” (IEC, 2007). 

 ISO 12794 “Nuclear energy – Radiation protection – Individual thermoluminescence 

dosemeters for extremities and eyes” (ISO, 2000).  

A few remarks can be done about these standards: 

 Even if the goal of these standards is the same, two slightly different approaches are used. 

ISO standard is based on the characteristic of the dosemeter itself while IEC standard 

studies a dosimetric system including other requirements about the reader and ancillary 

equipment and procedures for converting the reading into dose.  

 Only the ISO standard takes into account the eye lens dosimetry, 

 ISO standard is especially written for TLD based dosemeters while IEC standard includes 

any type of dosemeters. 
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 None of these standards takes into account the pulsed radiation fields.  

 

Table 2.4: Comparison of the main requirements of ISO and IEC standards for passive 

photon dosimetry. (Adapted from [European commission, 2009]). The proposal of 

this work has been added in the first column. 

(Influence) quantity 

 

This work (proposal) ISO 12794 IEC 62387-1 

All passive 

Eyes lens 

TLD, 

Extremity and eyes lens 

Hp(0.07) and Hp(10) 

All passive 

Hp(0.07) 

All passive; 

Hp(10) 

Radiation energy   

(15 keV to 3 MeV) 

 0.6 ≤ response ≤ 1.4 

(20 keV to 100 keV) 

 0.7 ≤ response ≤ 1.3 

(15 keV to 3 MeV) 

 0.5 ≤ response ≤ 1.5 
Energy 

 30 keV to 250 keV 

and angle: 

0.71 ≤ response ≤ 1.67 

 

Energy  

80 keV to 1.25 MeV 

and angle: 

0.71 ≤ response ≤ 1.67 

 
Angle of incidence  

(0 to 60°) 

0.85 ≤ response ≤ 1.15 

 (0° to 60°) 

0.7 ≤ response ≤ 1.3 

 (0° to 75°) 

at 60  5 keV: 

0.85 ≤response≤ 1.15 

Threshold 0.2 mSv 1 mSv 0.01 mSv (from the “scope and object” chapter) 

Linearity 
0.2 mSv to 1 Sv 

0.9 ≤ response ≤ 1.1 

1 mSv to 1 Sv: 

0.9 ≤ response ≤ 1.1 

1 mSv to 3 Sv 

 0.91 ≤ response ≤ 1.11 

0.1 mSv to 1 Sv 

 0.91 ≤ response ≤ 1.11 

Coefficient of 

Variation 

Criteria from both IEC and 

ISO standard are relevant 

reproducibility: 10% 

batch homogeneity: 15% 

from 15% (< 1 mSv) 

 to 5% ( 11 mSv) 

from 15% (< 0.1 mSv) 

 to 5% ( 1.1 mSv) 

Environmental 

conditions and 

others 

 

temperature up to +40°C 

and humidity up to 90%: 

0.9 ≤ response ≤ 1.1 

light exposure: 

0.9 ≤ response ≤ 1.1 

temp.:-10°C to +40°C, 

humidity 40% to 90%, 

fading, light, reader stability 

and power supply combined: 

0.83 ≤ response≤ 1.25 

Additivity (1) 

Not treated  

in this paper 

no requirement 

 

0.91 ≤ response ≤ 1.11    

Electromagnetic 

Compatibility (EMC) 

IEC 61000-6-2 

deviation (2) limited 

Mechanics IEC 60068-2-32 ; deviation (2) limited 

Software WELMEC Guide 7.2 (3) 

(1) Additivity of measured values for different irradiation conditions. 

(2) Deviation is an additional indication which is due to the influence quantity, e.g. to additional or lost pulses as a result 

of EMC. 

(3) A guide to software requirements from the European Corporation in Legal Metrology, recommended for application 

all over Europe. 



Vanhavere et al. 

 

 

 84 EURADOS Report 2012-02 

 

As it is mentioned in the introduction of ISO 12794, this international standard should be used in 

conjunction with IEC 61066 (which has been replaced by 62387-1) (IEC, 2006).Additional 

requirements relative to additivity and to the reader (electromagnetic compatibility, mechanics 

and software) could be added later on the basis of IEC standards.  

2.5.2.2 Wearing conditions at the workplace and consequences on type test criteria and 

calibration procedure. 

The most used high voltage in IR/IC lies between 60 and 110 kVp, therefore, the photon spectrum 

lies from 20 keV to the maximum high voltage values; usually the X-ray tube can reach 150 kVp. 

Taking into account this energy range, where a quite large variation of the energy response of the 

dosemeter can be encountered a stricter criterion for the energy response in the field of IC/IR could 

be set. It should be noted that this difficulty is not specific to the eye lens dosimetry, it is also the 

case for whole body and extremity dosimetry in IC/IR.  

Collective and individual protective equipment (glasses, ceiling shielding) can be used to reduce 

radiation exposure to eye. Thus, the scattered X-ray spectrum incident on the eye and the 

associated dose equivalent rates depend on the use of protection [Carinou & al. 2009]. So, to 

measure the real exposure, it is advisable to wear the dosemeter (close to the eye at the level of the 

temple) in contact with the skin to account for the real shape of the head and on the side of the 

fore-head facing the X-ray tube. The sensitivity of the dosemeter system must be sufficient to 

measure low X-ray equivalent dose behind the shielding materials. Apart from accidental 

circumstances, the main part of the radiation, to which the medical staff is exposed, is scattered by 

the patient. The table curtain and ceiling suspended shield are used to screen part of this scattered 

radiation. So the angle of incidence of the radiations toward the medical staff could be restricted to 

a particular solid angle. Therefore, the angular response of the dosemeter is a critical parameter 

and a more drastic requirement than the one proposed in the IEC standard may be introduced. 

However, it has to be taken into account that such more drastic requirements for the angle and/or 

energy responses can be difficult to fulfil. 

2.5.3 Type test procedure 

Concerning the passive dosemeters for the eye lens dosimetry, the following table, taken from ISO 

12794 (Individual thermoluminescence dosemeters for extremity and eyes) described the influence 

quantities and their associated criteria. 
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Table 2.5: Performance requirements for extremity and eye dosemeter (ISO, 2000) 

 

No Performance 

Characteristics 

Class of 

dosemeter 

Performance requirements Test 

required 

1 Batch Homogeneity R/D The coefficient of variation of the evaluated value for n 

dosemeters shall not exceed 15% for a dose of 10 mSv or less 

Q 

2 Reproducibility R 

 

 

D 

The coefficient of variation of the evaluated value for n 

dosimeters shall not exceed 10% for each dosemeter 

separately for a dose of 10 mSv or less 

 

No requirement 

Q 

3 Linearity R/D The response shall not vary by more than 10 % over the dose 

equivalent range 1 mSv to 1 Sv 

T 

4 Stability of 

dosemeters under 

various climatic 

conditions 

R/D The evaluated values of the dosemeters irradiated either at the 

beginning or at the end of a storage period shall not differ 

from the conventional true value by more than 

5% for 30 d storage under standard test conditions, or 

10% for 48 h storage at 40%C and 90% relative humidity  

T 

5 Detection Threshold R/D The detection threshold shall not exceed 1 mSv T 

6 Self irradiation R/D After a storage period of 60 days, the zero point shall not 

exceed 2 mSv 

T 

7 Residue R After irradiation with a conventional true value of 100 mSv, the 

detection threshold limit shall not exceeded and the response 

shall remain within the requirement for linearity at a dose level 

of 2 mSv (not clear-some language errors) 

T 

8 Effect of light 

exposure on the 

dosemeter 

R/D As a result of exposure to 1000 W.m² equivalent to bright 

sunlight (295 nm to 769nm) for 1 day. the zero point shall not 

change by more than 1 mSv and, for exposure during one 

week, the evaluated value shall not differ from the evaluated 

value of a dosemeter kept in the dark by more than 10% 

T 

9 Isotropy (photons) R/D When irradiated with photons of (60 +/- 5) keV, the mean 

value for the response at angles of incidence of 0°, 20°, 40° and 

60° from normal shall not differ from the corresponding 

response for normal incidence by more than 15% 

T 

10 Energy response 

 (photons) 

R/D When irradiated with photons in the energy range 15 keV to 3 

MeV, response shall not vary by more than +/-50% 

T 

11 Energy response 

(Beta) 

R/D When irradiated with beta radiation in the energy range (Emax) 

0.5 MeV to 3 MeV, response shall not vary by more than +/-

50% 

T 

Two kinds of performance requirements are identified: type tests (T) and quality control tests (Q). 

Type tests are intended to demonstrate the basic performance of the type of the dosemeter and 

quality control tests are intended to verify the performance of a specific production or delivery 
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batch of dosemeters. Because IEC standards do not introduce such a distinction, we will deal with 

both aspects in the following. 

Among the characteristics listed in the table 2.5, some are not entirely transposable to in 

IC/IRdosimetry: 

 point 11 is out of the field of this study,  

 points 5, 6, 8, 9 and 10 have to be changed following the information discussed above. 

2.5.3.1 Detection threshold and linearity 

The definition of the detectionthreshold used is in this study is taken from the ISO 12794: 

“minimum evaluated value for which the readout of a dosemeter or detector is significantly 

different (at the 95% confidence level) from the readout value of an unirradiated dosemeter or 

detector”. A few methods, partly based on the evaluation of the uncertainty of the background 

level, are used to determine it (Hirning & al. 1992, ISO 2010). ISO 12794 and IEC 62387 propose the 

rather high value 1 mSv for Hp(0.07) measurements, compared to values currently reported by the 

dosimetry services, 0.05 mSv (Carinou & al.2001, Vanhavere & al.2001). Taking into account that 

when protection is used, Hp(3) can be very low, a good compromise solution, could be a threshold 

of 0.2 mSv. Such a threshold has consequences on the requirement for sensitivity to self irradiation 

which should be reduced down to 0.2 mSv, as well as on to the lower limit for linearity which 

should be set to this value with the same criterion in both ISO and IEC standards (that is 10%). 

Thus, if it is foreseen that the average dose equivalent to be measured will be about one tenth of 

the monthly exposure limit (1.25 mSv), this criterion allows assessing accurately the dose 

equivalent.  

On the other hand the recent ICRP decision to lower the eye-lens dose limit to 20 mSv/y induces to 

restrict the detection threshold putting it at 50 µSv per month, following the same criterion 

adopted for Hp(10), which annual limit is 20 mSv.  

2.5.3.2 Performance requirements for energy response. 

The standard ISO12794was published to meet the needs in a range of energies between15 keV and 

3 MeV, therefore broader than that met in IC/IR. For the dosemeters based on the TLD of the LiF 

type, the criterion of +-50% makes it possible to take into account the over response in terms of 

dose equivalent for energies lower than 100 keV. In the case of exposure to radiation in industry, it 

is generally retained as probable assumption that the worker can be exposed to a broad spectrum 

covering most of the energy range between 15 keV and 3 MeV and angles such that, on average, 

even an over-estimate of 50% on part of the energy domain does not generate a too important 

over-estimate of the dose. However, the range of over-response of LiF:Mg,Ti is precisely the field of 

energy of IC/IR, therefore this over-response could generate an important over-estimate of the 

doses. Taking into account that the exposures of the medical staff in IC/IR can be high, a more 

drastic criterion than +-50% could be used. Taking example from the data of EC 160 report 

[European commission 2009] for the values of assessed annual dose values at or near the dose 

limit, the maximum variation could be +/-20% or in a more general probabilistic approach the 95 

% confidence interval should not exceed 0.67 to 1.5 ,i.e. about +/- 40% (with a coverage factor of 2). 
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Radiation qualities recommended for the photons are those of the ISO standard 4037. The “narrow” 

radiation qualities shall be used for studying the energy response, namely N-15 to N-150 for 

IC/IR.They must be traceable to the SI of units through a national reference. In most of the cases, 

routine calibrations are performed using 137Cs or 60Co. These radiation qualities are far from those 

met at workplace for IC/IR, so it could be useful to carry out a specific calibration choosing a 

radiation quality close to the one met at workplace especially if it is impossible for a dosemeter to 

respect the criterion in terms of response according to energy. Thesection “calibration” of this 

report deals with this issue. In such a case, and exclusively in the case of IC/IR, the energy range can 

be restricted to 20-150 keV with a maximum variation of 30%. 

2.5.3.3 Performance requirements for angle response 

The requirement for isotropy proposed in the IEC standard is not enough drastic for the particular 

issue of IC/IR exposure. Therefore, for isotropy conditions, we would remain on the criteria of the 

ISO standard, that is to say: “the mean value of the response at angle of incidence 0°, 20°, 40° and 

60° from the normal shall not differ from the corresponding response for the normal incidence by 

more than 15% when irradiated with photons of 60 keV”. If the angle range is extended to 75°, 

taking into account the difficulty of the measurements at such angles, the criterion could be 

enlarged up to 30%. 

2.5.3.4 Other requirements. 

IEC standard gives requirements on the reader, namely stability, ambient temperature, light 

exposure, primary power supply, electromagnetic disturbances… Additional requirements are also 

given in IEC standard about the mechanical performance of the dosemeter,  

These requirements are not reported in the present document but have to be fulfilled. 

2.5.4 Calibration 

In case of IR/IC procedures the radiation fields are significantly different from the N series and 

specific calibration with beam qualities better approximating the field conditions are to be advised. 

Such a radiation qualities met at workplaces  in IR/IC has been characterised at CEA LIST LNHB  

during the CONRAD project (Bordy et al. 2007 see table 2.6.it can be seen that the resolution of this 

spectrum is very large. 

Radiation qualities close to the workplace field met in IC/IR in terms of resolution and energy range 

can be found:  

(i) RQR qualities taken from IEC 61267, and (ii) W qualities taken from ISO 4037. The choice of the 

calibration beam has to be done by the calibration laboratory in accordance with the end user. 

Table 2.6 gives the conversion coefficients, from air kerma to dose equivalent at 3 mm depth for 

these radiation qualities calculated in the square the herewith presented right cylindrical phantom 

(20 cm of diameter and height made of 4 element ICRU tissue).  
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Table 2.6: Characteristics of radiation fields employed during the CONRAD project. 

Quality 
Tube 

potential (kV) 

Mean energy 

(keV) 

Resolution, 

% (keV) 
Total filtration 

ISO 4037- W 60 60 45 48 (29) 4 mm Al 

ISO 4037- W 80 80 57 55 (44) 4 mm Al 

ISO 4037- W 110 110 79 51 (56) 4 mm Al 

ISO 4037- W 150 150 104 56 (84) 4 mm Al 

CONRAD Primary beam 70 48 60 (29) 4.5 mm Al + 0.2 mm Cu 

CONRAD scattered beam - 42 52 (22) - 

IEC 61267 RQR 4 (1) 60 37 73 (27) (2.2 + 0.52) mm Al 

IEC 61267 RQR 7 (1) 80 48 67 (32) (2.2 + 0.8) mmAl 

IEC 61267 RQR 9 (1) 120 57 77 (44) (2.2 + 1.19) mm Al 

(1) Filtration defined at CEA LIST / LNE LNHB to reach the HVL of the standard  

 

Table 2.7: Conversion coefficient Hp(3) / Ka (Sv/Gy) from air kerma to dose equivalent 

at 3 mm depth in the square right  cylindrical phantom. Monte Carlo calculations 

with PENELOPE (Salvat & al. 2006), standard uncertainties less than 0.3% 

Angle 

(degree) 
RQR4 RQR7 RQR9 W 60 W 80 W 110 W 150 N30 N80 N120 

Conrad Primary 

beam 70 kV 

0 1.239 1.376 1.461 1.47 1.58 1.65 1.57 1.019 1.665 1.588 1.495 

20 1.229 1.373 1.452 1.46 1.58 1.63 1.54 1.009 1.659 1.584 1.484 

45 1.179 1.326 1.406 1.42 1.53 1.60 1.54 0.955 1.599 1.554 1.429 

60 1.108 1.253 1.347 1.34 1.47 1.54 1.50 0.875 1.546 1.516 1.367 

75 0.953 1.107 1.210 1.20 1.34 1.45 1.40 0.698 1.420 1.424 1.231 

90 0.599 0.768 0.884 0.87 1.02 1.15 1.17 0.336 1.118 1.167 0.900 

 

To conclude this section 2 key points should be pointed out. The present proposals are based on 

the existing standard for eye lens dosimetry (ISO 12794) for which the requirement has been 

adapted to the particular case of IC/IR. The conversion coefficients have been calculated using the 

phantom described in section 2.2. For calibration purposes a phantom having the same shape and 

external dimensions but made of a PMMA tank (0.5 cm thick walls) filled with water 

isrecommended. The longitudinal axis of this phantom is perpendicular to the axis of the radiation 

beam. The axis of the beam crosses the phantom along its diameter at its middle height (Z level). 

The centre of the detector must be at this point in Z, being fixed at the surface of the phantom. 

 

2.6 General conclusions on Hp(3) studies 

The scope of the present ORAMED task was to discuss the operational quantity Hp(3), to evaluate a 

set of suitable conversion coefficients for photons and then to propose an optimized Hp(3) 

dosemeter prototype and a feasible calibration procedure. The present chapter provided all this 
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material, including the tables of the air kerma to personal dose equivalent conversion coefficients 

Hp(3)/Ka. It is worth to emphasize that the efforts of the present study someway anticipated the 

radiation protection implications subtended in the recent ICRP recommendations on the new eye 

lens dose limits.  
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3 Optimization of the use of active personal dosemeters in 
interventional radiology and cardiology 

3.1 Introduction 

Active personal dosemeters (APDs) are used in the context of operational radiation protection 

(Ginjaume et al., 2007) taking advantage of an immediate dose reading and an alarm at a pre-set 

dose and/or dose rate level. In interventional radiology and cardiology (IR/IC), the possibility to 

assess the personal dose equivalent and the personal dose equivalent rate in real time is 

particularly interesting since operators can receive relatively high doses while standing close to the 

primary radiation field. However, the current technology of APDs does not suit all the specificities 

of the X-ray fields used in IR/IC. These X-ray fields are characterized by low energy photons [20-100 

keV] and pulsed fields with instantaneous high dose rates. 

In this context, the main objectives of this part of the ORAMED project were the following:  

 to make a study of the behavior of several commercial APDs under laboratory conditions 

both in continuous and pulsed fields (Clairand et al., 2011; Clairand et al., 2011, Denoziere 

et al., 2009) and in hospitals (Struelens et al., 2011); 

 to establish guidelines for the use of APDs in interventional radiology, using the input of 

above mentioned laboratory tests and tests in hospitals; 

 to develop a new APD prototype with an improved response for IR/IC procedures. 

 

3.2 Tests of several commercial APDs 

3.2.1 Typical fields in IR/IC 

In order to test some APDs in conditions as close as possible to those used in IR/IC, it was necessary 

first to determine the typical fields and parameters encountered for these specific applications. 

These data were gathered through a literature review and system quality control outputs. In 

addition, the dose equivalent rate at specific points of interest and typical scattered radiation 

spectra were calculated using the Monte Carlo codes MCNPX (Pelowitz, 2005) and Penelope 

(Salvat, 2006). 

Table 3.1 gives an overview of typical radiation fields encountered in IR/IC whatever the considered 

procedure. The dose equivalent rate in the direct field at the level of the table ranges from 2 to 

300 Sv.h-1. The personal dose equivalent rate in the scattered beam at the level of the operator 

ranges from 5.10-3 to 10 Sv.h-1. 

Figure 3.1 shows the shape of the calculated scattered radiation spectra for both codes. In addition 

the corresponding incident primary beam spectra, determined with the XCOMP5 software, are 

presented. The average energy of the scattered radiation spectra determined with Monte Carlo 

calculations ranges from 20 to 100 keV. 
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Table 3.1: Typical radiation field characteristics in interventional radiology and 

cardiology 

Parameter Range 

Peak high voltage 60 - 120 kV 

X-ray tube current 5 - 1000 mA 

Inherent Al equivalent filtration 4.5 mm 

Additional Cu filtration 0.2 - 0.9 mm 

Pulse duration 1 - 20 ms 

Pulse frequency 1 - 30 s-1 

Personal dose equivalent rate integrated 

over the pulse in the direct beam (on patient table) 
2 - 300 Sv.h-1 

Personal dose equivalent rate in the scattered beam 

(operator – above the lead apron)* 
5.10-3 - 10 Sv.h-1 

Average energy range of scattered spectra 20 - 100 keV 

*distance patient-operator = 30 cm 

 

 

Figure 3.1: Scattered radiation spectra calculated with MCNPX and Penelope and 

incident primary beam spectra calculated with XCOMP5 for a tube high voltage 

equal to 70 kV 
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3.2.2 Selection of APDs 

The selection of APD models was based on the results from two previous international 

intercomparisons: one performed in the framework of the CONRAD project, a coordination action 

supported by the European Commission within its 6th Framework Program (Bordy et al., 2008; 

Clairand et al., 2008) and another one organized by EURADOS and IAEA (International Atomic 

Energy Agency, 2007). 

The following APDs were selected for the current study (Figure 3.2), according to their capability to 

detect low energy photons: DMC2000XB (MGPi), EPDMk2.3 (Thermo), EDMIII (Dosilab), PM1621A 

(Polimaster), DIS-100 (Rados), EDD30 (Unfors), AT3509C (Atomtex) and DoseAware (Philips). Their 

main characteristics as provided by the manufacturers in the technical notes are presented in Table 

3.2. 

 

 

Figure 3.2:Active personal dosemeters tested in this study 
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Table 3.2: Main characteristics of tested APDs as provided by the manufacturers in 

the technical notes 
 

APD Energy range Personal dose equivalent 

rate range 

Personal dose 

equivalent range 

Detector type 

 Min Max Min Max Min Max  

DMC2000XB 

MGPi 

20 

keV 

6 MeV 0.1 µSv.h-1 10 Sv.h-1 1 µSv 10 Sv Silicon diode 

EPDMk2.3 

Thermo 

17 

keV 

6 MeV 1 µSv.h-1 4 Sv.h-1 1 µSv 16 Sv Silicon diode  

EDMIII 

Dosilab 

20 

keV 

6 MeV 0.5 µSv.h-1 1 Sv.h-1 1 µSv 1 Sv Silicon diode 

PM1621A 

Polimaster 

10 

keV 

20 MeV 0.01 µSv.h-1 2 Sv.h-1 0.01 µSv 9.99 Sv Geiger Muller 

tube 

DIS-100 

Rados 

15 

keV 

9 MeV 1 µSv.h-1 40 Sv.h-1 1 µSv 50 mSv Specific 

detector  

EDD30 

Unfors 
* * 0.03 mSv.h-1 2 Sv.h-1 1 nSv 9999 Sv Silicon diode 

AT3509C 

Atomtex 

15 

keV 

10 MeV 0.1 µSv.h-1 5 Sv.h-1 1 µSv 10 Sv Silicon diode 

DoseAware 

Philips 

33 

keV 

118 keV 10 µSv.h-1 50 mSv.h-1 1 µSv 10 Sv Silicon diode 

*not indicated in the technical note, but dedicated to interventional radiology 

 

3.2.3 Tests of APDs with continuous X-ray beams in laboratory conditions 

3.2.3.1 Material and methods 

The tests with continuous X-ray fields were made in two calibration laboratories (IRSN in France 

and SCK•CEN in Belgium). These tests were performed to determine the response of selected APDs 

in terms of personal dose equivalent, energy, personal dose equivalent rate and angle. The 

following reference fields were used (N-15, N-20, N-25, N-30, N-40, N-60, N-80, N-100, N-120, S-Cs 

and S-Co) as defined in the ISO 4037-1 standard (International Organization for Standardization, 

1996). 

Three measurements per APD were performed. Two dosemeters of each type were tested. 

Dosemeters were placed on an ISO slab phantom (International Organization for Standardization, 

1999). The results were analysed considering the requirements of the IEC 61526 standard 

(International Electrotechnical Commission, 2010). Each type of irradiation was repeated three 

times for the same APD unit and the repeatability of each APD system resulted in a dosemeter 

reading standard deviation smaller than 5% (k=2). The reference dosimetry was realized with cavity 

ionization chambers linked to a primary reference laboratory. The reference dose equivalents 
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Hp(10) considered for the tests in continuous mode are given with an uncertainty smaller than 5% 

(k=2). 

 

3.2.3.2 Results 

A. Personal dose equivalent response 

The personal dose equivalent response of the tested APDs is linear over the dose range of interest 

in radiation protection, i.e. up to 500 mSv (Figure 3.3). 

 

 

Figure 3.3: Dose response of APDs in continuous mode (for a personal dose 

equivalent rate 
.

H p(10) around 10 mSv.h-1) 

 

B. Energy response 

The energy response of tested APDs (Figure 3.4) is within the interval [0.71 – 1.67] as required in the 

IEC 61526 standard (International Electro technical Commission, 2010) from S-Co energy down to 

N-30 for all APDs except EDD30 and DoseAware. The response is within the required interval 

between N-80 and N-20 for EDD30 and between N-120 and N-40 for Dose Aware. These two APDs, 

however, are intended to be used only in the low energy range.  
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Figure 3.4: Energy response of APDs in continuous mode (for a personal dose 

equivalent rate 
.

H p(10) around 10 mSv.h-1, and an integrated personal dose 

equivalentHp(10) around 0.5 mSv) 

 

C. Personal dose equivalent rate response 

The personal dose equivalent rate response of APDs is presented in figure 3.5. Hp(10)mis the APD 

reading and Hp(10)ref is the reference value of the personal dose equivalent defined by the 

calibration laboratory. For all APD types, the mean response of the two devices is plotted, since the 

respective values were very close, except for the PM1621A. For the Polimaster device the response 

was completely opposite for both types. 

The requirement of IEC 61526 standard (International Electrotechnical Commission, 2010) 

concerning the personal dose equivalent rate response is [0.83-1.25]. Most APDs satisfy this 

requirement up to 1 Sv.h-1and their response is more than 0.5up to 10 Sv.h-1, except for PM1621A, 

for which the response diverges rapidly from 0.5 Sv.h-1. In addition, EDD30 and DoseAware saturate 

for personal dose equivalent rates above 2 and 4 Sv.h-1respectively, according to their 

specifications. It is interesting to notice that most APDs can stand personal dose equivalent rates 

higher than those indicated in their technical note (Table 3.1). 
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Figure 3.5: Personal dose equivalent rate response of APDs in continuous mode,tests 

made with S-Co for all APDs and N-150 for Dose Aware (except for PM1621A, whose 

response diverged, the mean value of the 2 units of each APD type is represented).  

 

D. Angular response 

The angular response is shown for all APDs tested in figures 3.6 to 3.13. (Hp(10, α)m is the 

APD reading for an angle alpha and Hp(10, α)ref is the reference value of the personal dose 

equivalent for that specific angle. To perform the tests, the APDs were shifted between 0° 

to +/-60° according to their vertical and horizontal axis. 

The angular response is within the interval [0.71 – 1.67] as required in the IEC 61526 

standard (International Electro Technical Commission, 2010) for energies down to N-30 

and angles up to 60° for all APDs, apart from AT3509C(Figure 3.12), for which the angular 

response is within the before mentioned interval at 60° and 45° only for N-80. 
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Figure 3.6: Response of DMC2000XB at different photon radiation energies and 

angles of incidence 

 

 

Figure 3.7: Response of EPDMk2.3at different photon radiation energies and angles 

of incidence 
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Figure 3.8: Response of EDMIII at different photon radiation energies and angles of 

incidence 

 

Figure 3.9: Response of PM1621A at different photon radiation energies and angles 

of incidence 
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Figure 3.10: Response of DIS-100 at different photon radiation energies and angles 

of incidence 

 

Figure 3.11: Response of EDD30 at different photon radiation energies and angles of 

incidence 
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Figure 3.12: Response of AT3509Cat different photon radiation energies and angles 

of incidence 

 

Figure 3.13: Response of DoseAware at different photon radiation energies and 

angles of incidence 
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3.2.3.3 Conclusions on laboratory tests in continuous mode - response of each APD 

DMC2000XB 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: response varies between 1.3 and 0.7 up to 10 Sv.h-1 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from 137Cs energy down to N-30 

- Angular response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard down to N-30 and for angles up to 60° 

EPDMk 2.3 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: response decreases from 0.9 to 0.5 from 1 to 10 Sv.h-1 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from 137Cs energy down to N-20 

- Angular response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard down to N-30 and for angles up to 60° 

EDMIII 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: response decreases from 1 to 0.5 from 1 to 10 Sv.h-1 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from 137Cs energy down to N-30 

- Angular response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard down to N-30 and for angles up to 60° 

PM1621A: 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response:the response is diverging rapidly from 1 Sv.h-1. Moreover, the two 

PM1621A models tested behave completely different on dose rate response. 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from 137Cs energy down to N-15 

- Angular response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard down to N-30 and for angles up to 60° 

DIS-100: 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: response very close to 1 from 1 to 10 Sv.h-1 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from 137Cs energy down to N-20 

- Angular response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard down to N-40 and for angles up to 60°. For several points, the response is 

slightly outside the interval at N-30. 

EDD30: 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: saturates for dose rates higher than 2 Sv.h-1 
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- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from N-80 down to N-20 (these results are consistent with the fact that this 

APD is calibrated at low energy, and not at 137Cs) 

- Angular response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard down to N-30 and for angles up to 60° 

AT3509C: 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: response varies between 0.9 and 1.2 up to 10 Sv.h-1 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from 137Cs energy down to N-15 

- Angular response: response is within the interval [1.67 – 0.71] as required in IEC 61526 

standard at 60° only from N-80, the angular response is correct for 30° down to N-40 

DoseAware: 

- Dose response: linear response with the dose up to 500 mSv 

- Dose rate response: response varies between 0.8 and 0.5 up to 4 Sv.h-1 

- Energy response: response within the interval [1.67 – 0.71] as required in IEC 61526 

standard from N-120 energy down to N-40 

- Angular response: response is within the interval [1.67 – 0.71] as required in IEC 61526 

standard at 60° only down to N-40 

All APDs have a linear response with the dose and most of them have a satisfactory response at low 

energies down to N-30, which is sufficient for IR/IC. Most APDs provide a satisfactory response for 

high dose rates up to 10 Sv.h-1, except PM1621A for which the response is diverging rapidly from 

1 Sv.h-1as well as EDD30 and DoseAware which saturate for dose rates respectively above 2 and 

4 Sv.h-1. However, as indicated in Table 3.1, the dose rates in the direct beam can be much higher 

than those tested here. Therefore, the results of these tests in continuous fields do not deliver any 

conclusion that the APDs will correctly handle these very high dose rates in the direct beam. In 

addition, a problem of angular response at low energies was observed for AT3509C. 

 

3.2.4 Tests of APDs with pulsed X-ray beams in laboratory conditions 

3.2.4.1 Material and methods 

The tests in pulsed mode (Denoziere et al., 2009) were performed at the French standard laboratory 

for ionizing radiation (Laboratoire National Henri Becquerel, CEA-LIST LNE-LNHB in France).  

Three measurements per APD were performed. Two dosemeters of each type were tested. The 

influence of several parameters on the response of the APD in pulsed mode was studied. Table 3.3 

presents the parameters considered for this study. The following radiation quality ‘70 kV, 4.5 mmAl 

+ 0.2 mm Cu, HVL: 5.17 mmAl’ was used. This radiation quality has been defined and used in 

previous work to match the characteristics of the radiation quality typically used in IR/IC (Bordy et 

al., 2007; CONRAD-EURADOS-WG9, 2009). The facility used for these tests is a commercially 

available medical X-ray generator for which the pulse duration is 20 ms when multi-pulse mode is 

used. The beam was monitored with a parallel flat chamber (PTW 233612) calibrated against the 
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primary standard made of a free air chamber (Denoziere et al., 2009). The reference dose 

equivalents Hp(10) considered for the tests in pulsed mode are given with an uncertainty smaller 

than 6% (k=2). 

Table 3.3: Parameters considered for the tests performed in pulsed radiation field 

(X-ray generator: GEHC PHASIX 80, 70 kVp, 4.5 mmAl + 0.2 mmCu, HVL 5.17 mmAl) 

Test 
Pulse duration 

(ms)* 

Pulse frequency  

(s-1) 

Personal dose 

equivalent rate (Sv.h-

1) integrated over the 

pulse 

Effect of 

personal dose 

equivalent rate 

20 10 

0.1 to 50 

(up to 1.8 for 

DoseAware) 

Effect of pulse 

frequency 
20 

1, 10 and 20 

(1 and 10 for 

DoseAware) 

1.8 to 6.8 

(0.9 and 1.8 for 

DoseAware) 

Effect of pulse 

width 
20 to 1000 Single pulse mode 1.8 

*for technical reasons, tests with a pulse width lower than 20 ms were not possible 

 

3.2.4.2 Results 

A. Personal dose equivalent rate response 

For most APDs, the response decreases when the personal dose equivalent rate increases 

(Figure 3.14). For personal dose equivalent rates lower than 0.2 Sv.h-1, the deviation compared to 

the reference value is within 20%. For higher dose rates, the response falls down more or less 

rapidly, except the DIS-100 for which the deviation compared with the reference remains within 

20% up to 55 Sv.h-1. It was noticed that PM1621A, equipped with a Geiger-Muller tube, does not 

provide any signal at all in pulsed mode. DMC2000XB, EPDMk2.3, EDMIII, EDD30, AT3509C and 

DoseAware contain all silicon detectors. The difference of their response to the pulsed mode is 

probably due to the time response of their electronic systems which is a compromise solution 

between the electrical consumption (directly linked to the autonomy), the efficiency of the dead 

time correction and the complexity of the correction software. Unfortunately, information on the 

specific dead time compensation of each device was not available to the authors. The DIS-100 

dosemeter (Kahilainen J., 1996), which has a “hybrid” technology between a silicon diode and an 

ionisation chamber, presents better results. 
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Figure 3.14: Personal dose equivalent rate response of APDs in pulsed modefor a 

pulse frequency equal to 10 s-1 and a pulse duration of 20 ms. 

 

B. Pulse frequency response 

For all APDs, the signal increases with the pulse frequency (Figures 3.15 to 3.21). Table 3.4 sums up 

the effect of pulse frequency as a percentage of variation in the APD response between 1 and 20 s-1. 

This increase is roughly equal to 10% for EDMIII, EDD30 and DoseAware and to 30% for the other 

devices (except PM1621A that does not provide any signal in pulsed mode). 
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Figure 3.15: Pulse frequency response of DMC2000XB in pulsed modefor a personal 

dose equivalent rate equal to 1.82 Sv.h-1 and 6.77 Sv.h-1 and a pulse duration of 20 

ms. 

 

 

Figure 3.16: Pulse frequency response of EPDMk2.3 in pulsed modefor a personal 
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ms. 

 

Figure 3.17: Pulse frequency response of EDMIII in pulsed modefor a personal dose 

equivalent rate equal to 1.82 Sv.h-1 and 6.77 Sv.h-1 and a pulse duration of 20 ms. 

 

 

Figure 3.18: Pulse frequency response of DIS-100 in pulsed modefor a personal dose 

equivalent rate equal to 1.82 Sv.h-1 and 6.77 Sv.h-1 and a pulse duration of 20 ms. 
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Figure 3.19: Pulse frequency response of EDD30 in pulsed modefor a personal dose 

equivalent rate equal to 1.82 Sv.h-1 and 6.77 Sv.h-1 and a pulse duration of 20 ms. 

 

Figure 3.20: Pulse frequency response of AT3509C in pulsed modefor a personal 
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Figure 3.21: Pulse frequency response of DoseAware in pulsed modefor a personal 

dose equivalent rate equal to 1.82 Sv.h-1 and 6.77 Sv.h-1 and a pulse duration of 20 

ms. 
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C. Pulse width response 

No significant effect of pulse width was observed on the response of all APDs (Figures 3.22 to 3.27). 

When the pulse width is larger than 1 s, the responses in pulsed and continuous radiation field are 

quite similar.  

 
Figure 3.22: Pulse widthresponse of DMC2000XB in single pulsed mode for personal 

dose equivalent rate integrated over the pulse of 1.8 Sv.h-1. 

 
Figure 3.23: Pulse widthresponse of EPDMk2.3 in single pulsed mode for personal 

dose equivalent rate integrated over the pulse of 1.8 Sv.h-1. 
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Figure 3.24: Pulse width response of EDMIII in single pulsed mode for personal dose 

equivalent rate integrated over the pulse of 1.8 Sv.h -1. 

 

Figure 3.25: Pulse width response of DIS-100 in single pulsed mode for personal 

dose equivalent rate integrated over the pulse of 1.8 Sv.h-1. 
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Figure 3.26: Pulse width response of EDD30 in single pulsed mode for personal dose 

equivalent rate integrated over the pulse of 1.8 Sv.h -1. 

 

 

Figure 3.27: Pulse width response of AT3509C in single pulsed mode for personal 

dose equivalent rate integrated over the pulse of 1.8 Sv.h-1. 
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3.2.4.3 Conclusion on tests in pulsed mode - response of each APD 

All results from the pulsed field tests show that the longer the pulses and the higher the frequency, 

the better the behaviour of the devices tends to be. 

 

DMC2000XB: 

Effect of pulse frequency 

- Variation of response : 25 to 30% 

- Response better for 20 s-1 (close to 1) because conditions close to continuous field 

- At 1 s-1, the pulse frequency is low enough to give the same response in single pulsed 

mode 

- 20% difference between 1 and 20 s-1 at 1.8 Sv.h-1 

Effect of personal dose equivalent rate 

- Response within +/- 30% up to 1.8 Sv.h-1 

- Response decreasing with personal dose equivalent rate 

- Response 0.5 at 5 Sv.h-1 (extrapolated value) with respect to response in continuous 

mode 

- Response 0.4 at 6 Sv.h-1 

- Response lower than 0.1 for dose rate higher than 20 Sv.h-1 

Effect of pulse width 

- Response 0.7 from 20 ms to 100 ms and 1.2 for 1000 ms 

- For 1000 ms: response consistent with continuous mode 

- Increase of 40% between 100 and 1000 ms 

EPDMk 2.3: 

Effect of pulse frequency 

- Variation of response : 40% at 1.8 Sv.h-1and 25% at 6 Sv.h-1 

- 40% difference between 1 and 20 s-1 at1.8 Sv.h-1 

Effect of personal dose equivalent rate 

- Response within +/- 30% up to 1.8 Sv.h-1 

- Response decreasing with personal dose equivalent rate 

- Response 0.5 at 5 Sv.h-1 (extrapolated value) with respect to response in continuous 

mode 

- Response 0.4 at 6 Sv.h-1 

- Response lower than 0.1 for dose rate higher than 50 Sv.h-1 

Effect of pulse width 

- Response 0.6 from 20 ms to 100 ms and 0.75 for 1000 ms 

- For 1000 ms: consistent with continuous mode 

- Increase of 20% between 100 and 1000 ms 

EDMIII: 

Effect of pulse frequency 
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- Variation of response : <10% 

- Less than 10% difference between 1 and 20 s-1 at1.8 Sv.h-1 

Effect of personal dose equivalent rate 

- Response within +/- 30% at 1.2 Sv.h-1 

- Over-response from 1.8 Sv.h-1 to around 10 Sv.h-1 

- Response decreasing with personal dose equivalent rate from 1.6 to 0.1 from 1.8 to 50 

Sv.h-1 

- Response 0.5 around 26 Sv.h-1 with respect to response in continuous mode 

- Response lower than 0.1 for dose rates higher than 50 Sv.h-1 

Effect of pulse width 

- For 1.8 Sv.h-1: response within +/- 30% 

- For 1000 ms: consistent with continuous mode 

PM1621A: 

No signal in pulsed mode 

DIS-100: 

Effect of pulse frequency 

- Variation of response : 30% 

- 15% difference between 1 and 20 s-1 at1.8 Sv.h-1 

Effect of personal dose equivalent rate 

- Response within +/- 30% for all personal dose equivalent rates up to 55 Sv.h-1,  

Effect of pulse width 

- A large dispersion of the results is observed. It is probably due to the resolution of the 

reading (10 µSv). Indeed, the total dose equivalent received by the detector during the 

measurements was of about 80 mSv and as the annealing procedure of the detectors 

cannot be used between measurements, therefore one does not know which detector 

(among the three detectors which composed the DIS dosemeter) is used for 

measurements. 

EDD30: 

Effect of pulse frequency 

- Variation of response : 10% at 1.8 Sv.h-1and 40% at 6 Sv.h-1 

Effect of personal dose equivalent rate 

- Response within +/- 30% up to 6 Sv.h-1 for 20 s-1 

- Response decreasing with personal dose equivalent rate: the effect of saturation 

observed in continuous mode for dose rates higher than 2 Sv.h-1 is confirmed 

- Response 1 at 6 Sv.h-1 for 20 s-1,  

Effect of pulse width 

- Response between 1 and 1.4 between 20 and 1000 ms 

- Increasing of 10% between 100 and 1000 ms 

AT3509C: 
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Effect of pulse frequency 

- Variation of response : 30% for 10 to 20 s-1 

- No response at 1 s-1 

Effect of personal dose equivalent rate 

- Response decreasing with personal dose equivalent rate 

- Response 0.8 at 90 mSv.h-1and0.3 at 1.2 Sv.h-1 

- Response 0.5 at 1 Sv.h-1 (extrapolated value)  

- Response lower than 0.1 for dose rates higher than 6 Sv.h-1 

Effect of pulse width 

- Decreasing from 0.3 to 0 from 100 ms to 20 ms 

- Response at 1000 ms: consistent with continuous mode 

DoseAware: 

Effect of pulse frequency 

- No significant effect of pulse frequency 

Effect of personal dose equivalent rate 

- Response decreasing with personal dose equivalent rate 

- Response 1 at 100 mSv.h-1 

- Response 0.5 at 900 mSv.h-1 

Effect of pulse width 

- No test 

PM1621A, equipped with a Geiger-Muller tube, does not give any reading in pulsed mode. The 

other APDs provide a response in pulsed mode, this means that they could be used in routine 

dosimetry with correction factors.  

DMC2000XB, EPDMk2.3, EDMIII, EDD30, AT3509C and DoseAware contain all a silicon detector, the 

differences of their response is probably due to the time response of the electronics. The DIS has a 

“hybrid” technology between silicon and ionisation chamber which presents correct results, on the 

other hand the procedure for annealing the detector is a constraint. 

 

3.2.5 Tests of APDs in hospitals 

3.2.5.1 Introduction 

Two different series of tests of APDs in real conditions in hospitals were done. 

The first type of tests consisted in using a real IR facility and phantoms to simulate the operator and 

the patient, considering different realistic set-ups. The value of the reference dose equivalent 

Hp(10) was measured with thermoluminescent dosemeters. The objective was to study the 

behaviour of APDs in realistic conditions with the possibility to select specific field parameters. The 

intention was to identify some trends in the behaviour of the APDs, and to compare the values with 

a typical passive dosemeter used in practice. 
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The second series of tests was made in different European hospitals in routine practice. The 

interventional radiologists and cardiologists were asked to wear an APD and an additional passive 

dosemeter above their lead apron during daily practice. The main objective of these tests was to 

have an overview of differences between active and passive dosimetry in routine practice in 

hospitals, where all kinds of procedures and parameter settings are used and without an accurate 

knowledge of the field parameters.  

3.2.5.2 Tests on phantoms 

3.2.5.2.1 Material and methods 

A first series of tests in real conditions was performed by positioning APDs on an ISO slab phantom 

(International Organization for Standardization, 1999) representing the operator. The scattered 

irradiation was produced by an anthropomorphic Rando-Alderson (RA) phantom representing the 

patient (Figure 3.28). The tests were performed in the HUB (Hogeschool Universiteit Brussel), a 

teaching school in Medical Imaging in Brussels. The X-ray system was a Philips Optimus 50 

generator and a Philips RO 1750 X-ray tube with an inherent filtration equivalent to 3.5 mm Al. 

Additional filtration of 1 mm Al + 0.2mm Cu was added. The tube voltage ranged from 40 to 150 

kVp and the tube load ranged from 0.5 to 850 mAs. The X-ray system delivers single pulses. 

The APDs tested were: DMC2000XB, EPDMk2.3, EDMIII, PM1621A, DIS-100 and EDD30. 

The routine passive thermoluminescent dosemeter (TLD, LiF:Mg,Ti) from the Belgian Nuclear 

Research Centre was used as reference. The dosemeter service fulfils the technical requirements of 

IEC 61066 Standard (IEC, 2006).An expanded relative uncertainty of 20% (k=2) is estimated for the 

TLD measurements for the used dose ranges, taking into account the energy and angular response, 

the calibration and individual sensitivity. Two units were tested for each APD type, except for the 

EDD30 dosemeter, of which only one unit was available. For each irradiation, one or two APDs (of 

different types) and one TLD badge were positioned together on the ISO slab phantom. A sufficient 

number of pulses were applied for each irradiation to supply a minimum personal dose equivalent 

of the order of 15 to 20 µSv (from 5 to 40 pulses, depending on the X-ray system settings). To 

investigate the influence of the position of the detector on the ISO slab phantom, the dose 

uniformity on the surface of the phantom was determined and resulted in an uniformity within a 

maximum relative uncertainty of 20%. In general, each type of irradiation was not repeated for the 

same APD unit, but the repeatability of each APD system had been tested in laboratory and 

resulted in a dosemeter reading variability smaller than 5% (k=2), in addition the relative 

uncertainty due to the repeatability of the experimental set up was estimated in 5% (k=2). On the 

basis of the Guide to the Expression of Uncertainty in Measurement (ISO, 2008), the total expanded 

relative uncertainty of the APD response compared with the TLD measurement is 32% (k=2).  

The thorax of the RA-phantom was irradiated and 4 realistic set-ups were considered: 

 AP direct: tube above the RA phantom at 0°, ISO slab phantom at the level of the thorax 

(representing radial access) 

 L direct: tube in lateral position at 90°, ISO slab phantom at the level of the thorax  

 AP indirect: tube above the RA phantom at 0°, ISO slab phantom at the level of the pelvis 

(representing femoral access) 

 L indirect: tube in lateral position at 90°, ISO slab phantom at the level of the pelvis 
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The effect of the variation of dose equivalent rate, kilo-voltage and pulse width was investigated 

for the four different clinical set-ups described above. A factor of 2 between the doses given by the 

two types of dosimeters was considered as acceptable. 

 

  

Figure 3.28:General set-up (left) and positioning of APDs and TLD reference on ISO 

slab phantom (right) 

3.2.5.2.2 Results 

The influence of the dose equivalent rate was tested by varying the mAs value on the X-ray system. 

The tube voltage was kept constant at 80 kVp and additional filtration of 1 mm Al and 0.2 mm Cu 

was chosen. Changing the mAs-value resulted in a range of dose equivalent rates tested from 10 

mSv.h-1 to 1.08 Sv.h-1. The response of the APD compared to the TLD for the 6 dosemeters tested is 

illustrated in Figure 3.29. It can be observed that the PM1621A does not give any signal, which is 

consistent with the laboratory tests in pulsed fields. In general we can observe that the APD 

response is within 50% for the range of dose equivalent rates tested, except for the EDM III for 

which the dose is general higher than the TLD dose. 

The influence of the tube voltage was tested by changing it from 60 kVp to 100 kVp, with a tube 

current of 625 mA, pulse width of 20 ms and additional filtration of 1 mm Al and 0.2 mm Cu. This 

resulted in a dose equivalent rate range between 100 mSv.h-1 and 1.5 Sv.h-1. No important influence 

of the tube voltage was observed on the APD response compared to the TLD. Still no signal was 

observed on the PM1621A. An example of the APD response in function of tube voltage is given in 

Figure 3.30 for the EPDMk2.3 for the 4 different set-ups.  

The influence of pulse width was tested by changing it from 5 ms to 2000 ms, with a tube voltage 

of 80 kVp, and additional filtration of 1 mm Al and 0.2 mm Cu. The tube current (mA) could not be 

kept constant, as tube current and pulse width cannot be set independently. No important 

influence of the tube width was observed on the APD response compared to the TLD. Still no signal 

was observed on the PM1621A. An example of the APD response in function of pulse width is given 

in Figure 3.31 for the DIS-100 for the 4 different set-ups. Depending on the combination of ms and 

mA, a maximum dose rate of 1 Sv.h-1 was achieved.  
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Figure 3.29: The influence of dose rate for different APDs tested compared to a 

passive TLD 

Figure3.30: The influence of tube voltage for the EPDMk2.3 compared to a passive TLD 
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Figure 3.31: The influence of pulse width for the DIS-100 compared to a passive TLD 

 

3.2.5.3 Tests on operators 

3.2.5.3.1 Material and methods 

For these series of tests, operators wore, side by side, one APD and one passive dosemeter above 

the lead apron. The dosemeters were worn during several interventions to integrate doses of at 

least 300 µSv for several types of IR/IC procedures. The dose equivalent was provided by the 

passive dosemeter according to the routine measurement protocol of the respective partner that 

performed the measurements. For practical reasons only 5 APDs were tested: DMC2000XB, 

EPDMk2.3, EDMIII, DIS-100 and DoseAware. In total 102 measurements were performed in 7 

different European hospitals. The main objective was to compare the measurements performed by 

the APD and passive dosemeter worn in routine practice where all kinds of procedures and 

parameter settings are used and without an accurate knowledge of these parameters.  

3.2.5.3.2 Results 

The results of the second series of tests performed on operators show that with respect to passive 

dosimeters, in general all 5 tested APDs under-respond. In Figure 3.32, a frequency distribution of 

the APD response related to the passive TLD is given. We can observe a large spread in the results, 

which might be explained by non-uniform irradiations or the shielding of one dosemeter by the 

other. The ratio of the APD Hp(10) reading to the TLD Hp(10) reading had a median value of 0.77 

for the DMC2000XB, 0.77 for the EPDMk2.3, 0.86 for the DIS-100, 0.88 for the EDMIII and 0.61 for the 

DoseAware. The lower ratio of the DoseAware is similar as the under-response for lower energies in 

the laboratory tests. 
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3.2.5.4 Conclusions on tests of APDs in hospitals 

The tests of the APDs on the phantoms in a clinical environment for different clinical set-ups with 

different tube voltages and pulse width compared to a TL dosemeter as reference showed that the 

APD response is roughly within +/- 30%. Only the EDMIII dosemeter gave a higher response within 

+/- 50%. The DMC2000XB and EDD30 resulted in doses slightly higher than the TLD dose, while for 

the EPDMk2.3 and the DIS-100 the doses are slightly lower than the TLD dose. The PM1621A active 

dosemeter had no response at all. 

The problems encountered for the pulse field tests in laboratory conditions were not observed in 

the hospital tests as in these tests the APDs were irradiated in the scattered field with dose rates 

below 1 Sv.h-1. For the same reason, the behaviour of the APDs is more satisfactory in hospitals than 

in laboratories with respect to the influence of tube peak high voltage and pulse width. For the 5 

dosimeters tested on operators in routine practice we observed that all APDs had a median under-

response around 20% compared to the TLDs. 

 

Figure 3.32: Frequency distribution of the APD response related to the passive TLD in 

routine practice  
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3.3 Guidelines for the use of APDs in interventional radiology 

Some recommendations were prepared within the group to help in the selection and the use of 

APDs at IR/IC workplaces(see the three page leaflet in annex of this report).  

3.3.1 Recommendations for the selection of an APD in IR/IC 

 The APD has to fulfil the requirements of the IEC 61526 standard (International Electro 

technical Commission, 2010), and, in particular, the following specific points.  

 The energy response has to be within the interval [0.71 – 1.67] for the energy range 20 – 

100 keV.  

 The angular response has to be within the interval [0.71 – 1.67] for angles from 0° to 60° 

from reference direction and for the energy range 20 - 100 keV.  

 The maximum dose equivalent rate required by the IEC 61526 standard is 1 Sv.h-1 but, since 

dose equivalent rates can be high when standing very close to the direct beam, if the APD 

can stand higher dose equivalent rates it should be taken into account as a positive 

characteristic. In any case, the APD should be able to give at least an alarm for dose 

equivalent rates higher than 1 Sv.h-1. 

 As pulsed radiation fields are not taken into account in existing standards, some 

information on the APD characteristics in pulsed field similar to those met at the workplace 

is needed (i.e. effect of pulse frequency and width on the dose equivalent response). 

Different sources of information can be used such as the results of the tests performed 

within the ORAMED project or those eventually performed by the manufacturer. It is also 

possible to perform his/her own tests using ISO slab phantoms to simulate the patient and 

the operator and placing the APD and a passive dosemeter side by side. A factor of 2 

between the doses given by the two types of dosemeters can be considered acceptable. 

3.3.2 Recommendations for the use of an APD in IR/IC 

 The APD has to be periodically (according to local regulation) calibrated or verified in terms 

of Hp(10) with X-ray beams in a calibration laboratory traceable to a primary standard, the 

conditions of calibration have to be as close as possible to those of use. 

 The APD is considered, for this application in IR/IC, as a tool to optimize and reduce the 

exposure, it is then recommended to wear it over the lead apron. 

 It is not recommended to use APD for the legal dose record in case of IR/IC, the reference 

Hp(10) value should be given by the passive dosemeter 

 The alarm should be switched ON (only visual alarm) in order to warn the operator when 

he/she is too close to the direct beam. The value to which the dose rate alarm shall be set 

depends on the characteristics of both the pulsed radiation field and the APD (Ambrosi et 

al. 2010). 
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3.4 Development of the prototype of an improved APD for interventional 

radiology 

3.4.1 Context of development of the prototype 

The objective of this part of the project was to propose technical solutions to improve the response 

of an APD for an application in IR/IC based on the results of the tests performed in laboratory 

conditions. The different technical solutions with continuous feedback, developed by MIRION 

Technologies, a partner of the ORAMED project, were tested in calibration laboratories. 

A prototype of detection module was developed in order to improve the characteristics of 

detection of the APD “DMC2000XB” already distributed by MIRION Technologies.  

In order to separate the detection considerations from the functionality and design requests of a 

whole dosimeter, the detection module developed regroups the main components involved in the 

detection: the ASICa, the detectors and the shielding.  

3.4.2 The detection module 

The components around the ASIC (Figure 3.33) have been re-designed in order to detect gamma 

and X-rays below 20 keV. It has a very low consumption in order to guarantee long battery life and 

has multi-channels amplifier/discriminator with independent counters. It integrates specific and 

dedicated counters on each detection channel in order to compensate the energy response and 

response at high dose rate. 

  

Figure 3.33: Prototype of detection module with and without shielding 

3.4.3 Improvements on the prototype 

The improvements on the prototype have been done in two major directions: one to improve the 

main detection characteristics and the other one to improve the response at high dose rate in 

pulsed field. 

The following items were analysed in details: 

 energy response, 

 angular response, 

                                                             

 

a
Application-Specific Integrated Circuit 
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 personal dose equivalent rate response in continuous and pulsed photon fields. 

3.4.3.1 Energy response 

The first improvement on the detection module consisted in having a response that did not 

depend significantly on the energy. By selecting the materials in front of the detector (shape and 

composition) and adjusting the energy thresholds of the discriminators, it has been possible to 

reduce down to +/- 10% the deviation of the energy response all over the 20-100 keV energy range 

used in IR/IC procedures. In Figure 3.34, the energy response is compared for the DMC2000XB, the 

first version and the last version of the new detection module. 

3.4.3.2 Angular response 

The second task was to reduce the angle effect on the response. The position of the two detectors 

and the shape of the detection module have been re-designed in order to have a good angular 

response for irradiations angles up to +/- 60°. The angular response is now +/ 30% deviation for 

angles up to +/-65° for the 20-100 keV energy range (Figure 3.35). 

 

 

Figure 3.34: Energy response of DMC2000XB, first and final versions of the new detection 

module.
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Figure 3.35: Angular response of final version of the new detection module 

 

3.4.3.3 Personal dose equivalent rate response in continuous and pulsed photon fields 

Finally, a study of the dead time compensation was conducted in order to reach dose rates as high 

as 10 Sv.h-1. The response is now better than +/- 20% beyond 10 Sv.h-1 in continuous mode (Figure 

3.36). When exposed to pulsed fields, the response was not as good as in continuous irradiation 

and was similar to the response without correction (dead time correction). 

The specific modification for pulsed X-ray field associated with a new dead time algorithm is 

expected to greatly improve response in high dose rate up to 50 Sv.h-1with a flat response within 

+/- 20% deviation up to 20 Sv.h-1 in pulsed mode (Figure 3.37). 

This latest improvement will give a better assessment of doses in abnormal high dose rate 

situation.  



Vanhavere et al. 

 

 

 126 EURADOS Report 2012-02 

 

 

Figure 3.36: Personal dose equivalent rate response of the new detection module in 

continuous field. 

 

 

Figure 3.37: Personal dose equivalent rate response of the new detection module in 

pulsed field. 

 

3.4.4 Conclusion on new APD prototype 

The major detection characteristics (energy response, angular response and personal dose 

equivalent rate response) have been improved and will give a better assessment of occupational 

doses during IR/IC procedures.  
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3.5 Conclusion 

Series of tests in laboratory conditions were performed on eight commercial APDs in order to 

evaluate their performances for use in IR/IC. 

On the one hand, the tests performed with reference continuous X-rays showed that all APDs have 

a linear response with the personal dose equivalent and most of them have a satisfactory response 

at low energies down to N-30 radiation quality, which is sufficient for IR/IC. Most APDs provide a 

satisfactory response for high personal dose equivalent rates up to 10 Sv.h-1. However, as indicated 

in table 3.1, the dose rates in the direct beam can be much higher than those tested here. So these 

tests in continuous fields do not mean that the APDs will correctly handle these very high dose 

rates in the direct beam. In addition, a problem of angular response at low energies was observed 

for AT3509C. 

On the other hand, the influence of the frequency and duration of pulses on the APD responses 

was studied with reference pulsed X-ray beams. PM1621A, equipped with a Geiger-Muller tube, 

does not give any signal in pulsed mode. The other APDs provide a response in pulsed mode more 

or less affected by the personal dose equivalent rate, which means they could be used in routine 

monitoring provided that correction factors are introduced. These results emphasize the 

importance of adding tests in pulsed mode in type-test procedures for APDs. 

The tests of these APDs in a clinical environment compared to a TLD as reference showed that their 

response is roughly within +/- 30%. For the 5 dosemeters tested on operators in routine practice, 

all APDs had a median under-response around 20% compared to the TLDs. 

Some recommendations are given to help in selection and use of APDs at IR/IC workplaces. These 

recommendations are compiled on a three page leaflet presented in annex of this report and 

available on the ORAMED website http://www.oramed-fp7.eu/. 

Finally, an APD prototype, improved for IR/IC procedures was developed. Performance of the 

prototype is promising and it is foreseen that shortly a new product will be available. 

  

http://www.oramed-fp7.eu/
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3.7 Guidelines elaborated in the framework the ORAMED project for the use of 

active personal dosemeters in interventional radiology and cardiology. 
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4 Extremity dosimetry in nuclear medicine 

4.1 Introduction 

Manipulation of unsealed sources in nuclear medicine (NM) may involve high skin doses to the 

hands of the staff during preparation (labelling/dispensing) and administration of the 

radiopharmaceuticals. In the framework of the FOP CONRAD project, Vanhavere et al. (2008) 

highlighted that the local skin doses can surpass the dose limit of 500 mSv per year averaged over 

an area of 1 cm²(ICRP 2007, EC Directive 96/29/ERRATUM 1996). Also known is the high dose 

gradient across the hand, particularly for beta sources (Covens et al., 2010, Mansour et al., 2010). 

This fact complicates the routine monitoring since the maximum dose is usually received at the 

fingertips, and therefore is systematically underestimated by ring and wrist dosemeters (Doraville 

et al., 2008). The CONRAD study also showed a lack of use of these dosemeters or, when used, an 

inappropriate positioning of them. In addition, the information about this topic was poor due to 

the absence of systematic studies.  

 
The objectives of WP4 (Extremity dosimetry in NM) can be summarized as follows:  

 To evaluate maximum extremity doses and dose distributions across the hands of medical 

staff working in NM departments. 

 To study the influence of protective devices such as syringe and vial shields and to improve 

such devices when possible. 

 To propose “levels of reference doses” for each standard NM procedure and to use these 

for risk assessment and optimisation of working methods.  

 To propose a methodology to reduce doses to NM workers. 

For this purpose, an extensive measurement program was performed including 124 workers from 

32 NM departments in 7 European countries, Belgium, France, Germany, Italy, Slovakia, Spain and 

Switzerland, representing the largest number of collected data on extremity dosimetry in NM. The 

purpose of this wide measurement campaign was to determine the maximum dose and dose 

distribution across the hands and to supply information on reference dose levels for each standard 

NM procedure. The experimental data were complemented with Monte Carlo (MC) simulations. MC 

calculations aimed at better determining the main parameters that influence extremity exposure, 

the effectiveness of different radiation protection measures, such as the design of shielding, and 

the degree of variability that could be “intrinsically related” to each monitored procedure.  
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4.2 Materials and methods 

4.2.1 Radionuclides 
For the ORAMED project, only those radionuclides most commonly used for diagnostic and therapy 

procedures have been considered. Concerning diagnostics, 80 to 90% of the scintigraphies are 

carried out using 99mTc(pure gamma ray source, emitting a photon of 140 keV (87%)), the rest being 

mostly associated with iodine, and to a lesser extend Thallium (131I, 123I and 201Tl). The most common 

PET radiopharmaceutical is 18F-FDG, 18F is a positron emitter with a maximum energy of 634 keV 

(97%, the spectrum of the positron is shown in Figure 4.1) and the emission of annihilation photons 

of 511 keV (194%). Concerning therapy, nuclides that emit beta or mixed beta/gamma radiation are 

used, such as 131I for metabolic therapy. 90Y-labelled antibodies (e. g. 90Y/Zevalin®) are used for 

treating Non-Hodgkin-lymphoma by radioimmunotherapy (RIT), and with 90Y or 177Lu labelled 

peptides (e. g 90Y/DOTATOC) neuroendocrine tumors are treated by peptide receptor radiotherapy 

(PRRT). 90Y is a pure high-energy beta radiation emitter with a maximum β-energy of 2.28 MeV. 

The spectrum is shown in Figure 4.2. Also 90Y, 186Re and 169Er are included for radio-synoviorthesis 

(RSO). 

 

 

Figure 4.1:18F positron spectrum. 
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Figure 4.2:90Y β- spectrum. 

 

Thus, 18F and 99mTc for diagnostics and 90Y-labelled Zevalin and DOTATOC for therapy procedures 

were included in the ORAMED project. Metabolic therapy using 131I even though more frequent 

than therapies using 90Y was not chosen because in general there is no direct manipulation of the 

nuclide. More work was done to include further therapies, such as selective internal radiotherapy 

(SIRS) with 90Y or RSO with 186Re or PPT with 153Sm. However, not enough data was collected to 

perform a statistically significant analysis. 

 

Table 4.1, extracted from Delacroix et al., gives an overview of some important parameters of the 

different radionuclides studied within the project. Those parameters are essential to evaluate the 

exposure at different circumstances as: contact with a syringe, contamination of the skin and 

efficiency of the shielding.  

 

Table 4.1: Radionuclide properties (Delacroix et al., 2002) 

Nuclide 

Skin dosedue to 

contactwith 5 ml syringe 

containing 1 MBq 

[mSv/(MBq.h)] 

Skin dose  

due to contamination 

with 1 kBq in 50 l 

[mSv/h] 

Pb-shielding to lower transmission 

to 

1/2 

[mm] 

1/10 

[mm] 

99mTc 0.354 0.00877 0.3 1 

18F 2.88 0.788 6 17 

90Y 43.5 1.35 Total -absorption in 9.2 mm 
plastic 
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4.2.2 Measurements 
The operational quantity to be monitored, Hp(0.07), was measured at 11 points on each hand 

(Figure 4.3), 8 on the palm side and 3 on the nail side, with thermoluminescent dosemeters (TLDs) 

attached (taped) to gloves or directly to the skin. When measuring extremity doses in nuclear 

medicine practices, the effective thickness of the dosemeter and the position to wear it are 

important matters of concern. In particular, the depth-dose curves in LiF for the typical nuclear 

medicine radiopharmaceuticals highlight the advantages of the use of thin-layer detectors for 

extremity dosimetry, in particular for 18F and to a lesser extent, for 90Y. However, standard TLDs are 

also acceptable for 99mTc measurements (Carnicer, Ginjaume et al., 2011). 

Each ORAMED partner provided their own TLDs, mainly LiF:Mg,Cu,P except for one case (LiF:Mg,Ti). 

Thicknesses ranged from 7 to 240 mg·cm2. Only thin-layer dosemeters (< 100 mg·cm2) were used 

for 18F measurements, whereas thick dosemeters were sometimes employed in 99mTc 

measurements. The dosemeters fulfilled ISO 12794 technical requirements (ISO, 2000) and were 

calibrated by each partner according to ISO 4037-3 and 6980-3 Standards (ISO, 1999; ISO, 2006). To 

ensure an appropriate response of all dosemeters, an internal intercomparison was organized 

before the beginning of the campaign. Two different reference standard irradiation fields were 

used in the intercomparison: 137Cs and 85Kr. The results showed the coherence among the partners’ 

TLD responses, within 10% of the reference value.  

 

 
 

Figure 4.3:Standard skin dose measuring positions 

 

A different pair of gloves was supplied for the preparation and for the administration of the 

radiopharmaceuticals, respectively, and for each considered radionuclide. The workers wore the 

gloves long enough to cumulate sufficient dose to ensure its adequate evaluation, typically from 

one day up to a week for 99mTc, from 1 to 2 days for 18F and during a single procedure for 90Y. For 

each radionuclide and hospital usually 2 workers participated in the preparation and 2 for the 
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administration. The goal for the diagnostic procedures was to perform 5 measurements per 

worker.However, since it was sometimes difficult to reach the 5 measurements, it was decided to 

also include workers with 4 measurements in the final database. For therapy procedures, no 

restriction was applied considering the limited amount of procedures performed. 

 

A measurement protocol was developed for both administration and preparation procedures. The 

same protocol was used by all partners so that measurements were homogenized and all data 

could be compared and evaluated. The following information was collected for each single 

measurement:  

 radionuclide (99mTc, 18F, 90Y),  

 procedure (preparation and administration),  

 hospital’s ID,  

 worker’s ID,  

 total manipulated activity,  

 worker’s dominant hand (right, left),  

 worker’s experience (beginner: ≤ 1 year, experienced: > 1 year),  

 radiation protection devices used (vial or syringe shielding), 

 Hp(0.07) values at each position.  

Any additional information which could help to understand the results was also collected, such as a 

contamination event. Whenever possible, pictures and videos were recorded. All information was 

gathered in a common database. 

 

Hp(0.07), measured at each position, was normalized to the manipulated activity (µSv/GBq). For 

preparation of 99mTc, this activity was considered to be the total activity withdrawn from the elution 

vial, for 18F the total activity withdrawn from the mono- or multi-dose vial and for 90Y the whole 

activity withdrawn for the preparation. For the administration the total activity in the injection 

syringe was considered. 

 

Table 4.2 summarizes all the data obtained and used for the analysis concerning diagnostic 

procedures. In total 734 measurements were performed, out of which 641 (87%) were used for the 

analysis.  

 

Table 4.2: Number of measurements obtained and used for the analysis of diagnostic 

procedures. 

Procedure 

Number of 

measurements 

in database 

Number of 

measurements 

considered for  

analysis 

Number of 

workers 

considered for 

analysis 

Number of NM 

services 

considered for 

analysis 
99mTc preparation 202 178 36 21 
99mTc 

administration 
179 157 32 20 

18F preparation 184 160 30 17 
18F administration 169 146 30 17 
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An overview on the scope of measurements for therapy procedures is given in Table 4.3. In RIT with 
90Y-Zevalin, 94 measurement series of 42 staff members, technicians, physicians or nurses, were 

performed and evaluated. Moreover, 33 measurement series of 12 staff members were made in 

PRRT during labelling and administration of 90Y-DOTATOC. 

 

Table 4.3. Data obtained for the therapy procedures. “P” stands for preparation and 

“A” for administration. 

Therapy Nuclide 
Preparation/ 

administration 

Number of 

workers 

Number of data 

sets 

RIT 131I P/A 1 4 

PPT 153Sm P 1 2 

RSO 186Re 
P 

A 

3 

3 

4 

4 

SIRS 90Y P 4 20 

PRRT  

Dotatoc 
90Y 

P 

A 

5 

7 

16 

17 

RIT Zevalin 
90Y 

P 

A 

20 

22 

49 

45 

 

4.2.3 Statistical analysis 
A common methodology was followed for the analysis of the data of each procedure with the aim 

of homogenizing the evaluation of all the important aspects of extremity dosimetry. 

 

The statistical analysis was performed with the 641 measurements collected in diagnostics around 

20 NM departments per procedure from 6 European countries (Belgium, France, Italy, Slovakia, 

Spain and Switzerland) (Table 4.2). Moreover, for therapy procedures the statistical analysis was 

carried out with 127 measurements concerning PRRT 90Y-DOTATOC and RIT 90Y-Zevalin therapies. 

Those measurements comprise 54 workers from 6 European countries (Belgium, France, Germany, 

Italy, Spain and Switzerland).  

 
For each radionuclide and procedure the analysis was performed independently. The normalized 

Hp(0.07) (µSv/GBq) measured at each of the 22 monitored positions on both hands were averaged 

over the series of measurements for each worker, a minimum of 4 series for diagnostics and the 

number of available ones for therapy. These mean values were used for the analysis. Also, the 

maximum normalized local skin equivalent dose (from now on, maximum dose) was calculated as 

the highest of those 22 mean values. 

 

The objectives of the statistical analysis were: 

 To classify the workers according to their maximum dose.  

 To estimate the annual maximum dose. 
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 To identify good and bad practices and relate them to working habits and parameters of 

influence. 

 To analyze the dose distribution across the hands. 

 To determine the frequency of the position where the maximum dose is received. 

 To determine the best position for placing the extremity dosemeter and the possible 

underestimation at the available routine monitoring positions. 

Many parameters and steps affect the local skin dose at hands, especially for preparation. In 

addition, not all the information on potential parameters of influence, such as the operation time, 

was considered. Furthermore, the tools to reduce finger doses (shields, forceps…) were sometimes 

used in some steps and not in others during a single measurement, or were either used differently 

from one measurement to another. The number of times that the activity was manipulated was not 

taken into account (e.g. number of tries to draw the radioactive liquid into a syringe to obtain the 

right volume). In general, the fact that the measurements were not systematically watched or 

recorded on video could result in some important details that were missed. Despite this, the study 

provides a good overview of the level of finger exposure from a wide range of working habits and 

working procedures. 

In order to identify the parameters to be studied that could have an influence on the skin dose, 

workers were classified into categories for those parameters for which information was available 

and whenever the data available in each category was at least 10% of the total data. Three different 

non-parametric tests (Mann Whitney-U, Kruscall-Wallis and Wilcoxon test) were applied (SPSS 

v.17.0) to analyze the differences between the skin doses received by workers within different 

categories. The Mann Whitney-U test is a non-parametric statistical hypothesis test for assessing 

whether one of two samples of independent observations tends to have larger values than the 

other. The Kruscall-Wallis test is a non-parametric method for testing whether samples originate 

from the same distribution. It is used for comparing more than two samples that are independent, 

or not related. The Wilcoxon test is a non-parametric statistical hypothesis test used when 

comparing two related samples or repeated measurements on a single sample to assess whether 

their population mean ranks differ. 

4.2.4 Simulations 

A sensitivity analysis was carried out through MC simulations employing voxel models, 

representing operator’s hands during the considered practices. The goal of the calculations was to 

quantify the influence of several parameters separately on the skin dose such as the effectiveness 

of the shielding adopted, the variability of doses when increasing the distance to the sources or 

when shielding is used. More than 200 MC simulations have been performed in order to 

understand better the parameters influencing the dose. Furthermore, with the MC simulations it 

was possible to study the appropriateness of the shielding usually utilized in these practices.  

MC simulations have been performed in 5 typical scenarios selected as the most common 

manipulations performed by workers when preparing and administrating radiopharmaceuticals. 

Those scenarios are divided in two categories, those concerning the administration and those 

concerning the preparation of the radiopharmaceutical.  

For what concerns the administration, the scenarios have been labeled as follows:  
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 injecting scenario (I1): corresponds to the administration of the radiopharmaceutical to the 

patient with a syringe. In particular the hand which pushes the piston is studied.  

 holding the syringe when injecting (I2): represents the moment when the technician holds 

a filled syringe. This scenario is found both in the administration of the dose but also in the 

preparation. For instance, right before the administration of the radiopharmaceutical, one 

hand – non dominant hand – holds the syringe while the technician tries to feel the vein 

with the other hand. 

For what concerns the preparation of the radiopharmaceutical the scenarios have been labelled as 

follows:  

 transport of vial (PTR): represents the step within the preparation of radiopharmaceuticals 

in which the vial is transported with forceps.  

 syringe manipulations (PSM): this scenario is repeated several times for the preparation of 

the radiopharmaceutical. It  represents the manipulation of the syringe from the piston or 

from the needle when capsulating the syringe. 

 shielded vial manipulations (PVM): represents the step within the preparation of 

radiopharmaceuticals in which the vial, with shield, is transported by direct contact with 

the hand. 

A selected number of wax hand phantom of realistic human dimension were prepared for the 

project representing the chosen scenarios (Figure 4.4). 

 

     

Figure 4.4. Wax hand phantoms employed for the project (from left to right the models 

represent the scenarios called I1, I2, PTR, PSM, PVM). 

 
These phantoms were scanned by a CT scanner, segmented using the DOSIsoft tool 

(www.dosisoft.com) and  converted in a MCNPX input file with the SESAME software (Huet et al., 

2009) exploiting the standard repeated structure cell feature of the MC code (lattice card). For the 

calculations, the hand phantoms were assumed to be made of soft tissue (ICRU, 1989). The voxel 

size was 0.222 × 0.222 × 0.425 cm3. 

 

Two hand models were used for the injection procedure (Figure 4.5) representing: the hand 
pushing the piston (model I1) and the hand holding the syringe (model I2).  
  

http://www.dosisoft.com/
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Figure 4.5.The two voxel models representing the injection phase compared with a 

clinical image of the same procedure. Models I1 and I2 on the left and right side, 

respectively. 

 

For the preparation of radiopharmaceuticals, four models were used representing the hand at 

several steps during the preparation procedure (Figure 4.6): manipulating the syringe (PSM model, 

two positions), employing forceps for vial transport (PTR model) and manipulating the vial (PVM 

model).   

 

 

Figure 4.6. The four voxel models (upper row) represent the selected steps of 

preparation of radiopharmaceuticals (figures from the lower row). 

 

For each model, a set of 12 scoring soft tissue cylindrical regions, 140 µm thick, of 1 cm2 cross-

section, were defined on the voxel hand surface. Their positions on the voxel hand model 

correspond to the TLD positions during the ORAMED measurement campaign. The dose was 

calculated in those regions at 70 µm depth in a cell of 10 µm thickness. Charged particle 

equilibrium was studied (Mariotti and Gualdrini 2009) and a small amount of tissue simulating the 
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gloves was added on top of the cylindrical regions(simulating the TLDs), when necessary (Table 4.), 

to ensure equilibrium.  

 
Three radionuclides were considered in the simulations: 99mTc, 18F and 90Y, the same as those of the 

measurement campaign. In the case of 99mTc only photons were transported (mode P), whilst for 18F 

(without shielding) and 90Y full photon/electron transport (mode PE) was followed. Table 

4.4.describes in detail the specific parameters considered for each simulation scenario. The source 

was simulated as a water cylinder, of the proper volume, filling the syringe or the vial and 

surrounded by the eventual shielding.  

 

Table 4.4. Specific parameters considered for each simulated scenario. 

 

 
To better understand the experimental results and to comprehend the influence of a given 

perturbation to the dose distribution, a sensitivity analysis was done using the above mentioned 

phantoms and scenarios. The following parameters have been considered for this purpose:  

 Active volume of the source.  

For the same activity, the volume of the source was modified (adding water to the source 

geometry) to check the sensitivity of the volume on the doses obtained at the different 

positions of the hands. For those geometries involving unshielded syringes, the volume of 

the source was changed between 1ml and 10ml. For those geometries involving a close 

contact with the vial (essentially PVM) the volume of the active solution was changed 

between 2.5ml and 10ml. 

 Displacement of the source along its axis.  

For those geometries involving unshielded syringes, those were displaced along their axis 

to a maximum distance of 2.7cm. For those involving unshielded vials, the displacement 

was between 3 and 8 cm. 

 Rotation of the source.  

Radionuclide 
Shielding 
(Y/N) 

Mode 
used 

Source Extras 

99mTc Y/N 
Mode P 

 

99mTc spectra  

18.25keV (2.17%) 

18.37keV (4.12%) 

20.61keV (0.98%) 

140.47keV(87.2%) 

No need to add gloves 

18F 

Y Mode P 
photon source 

511keV (193.8%) 
No need to add gloves 

N Mode PE 

Positron source 

(96.9%) 

Emax=633.5keV 

Gloves should be used 

(thickness of gloves 

200 µm) 

90Y Y/N Mode PE  
Electron source (100%) 

Emax=2280keV 

Gloves should be used 

(thickness of gloves 

200 µm) 
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For those geometries involving unshielded syringes, those were rotated with respect to 

their axis at an angle of 10 or 30 degrees, depending on the case. For those involving 

unshielded vials, only the scenario of PTR case allowed a rotation of 90 degrees. 

 Shielding thickness and material.  

After consultation with all NM departments where measurements have been performed, a 

compilation of the most frequently used shielding material and thickness was done. The 

shielding parameter was changed in the simulations accordingly to this information, this is 

summarized in Table4.5 (Pb stands for lead, W for tungsten and PMMA for 

polymethylmethacrylate). 

 

 

Table 4.5: Shields considered for the simulations 

Radionuclide Syringe shields considered Vial shields considered 
99mTc 2mm or 3mm (Pb or W) 1-4mm (Pb or W) 
18F 2-8mm (W) 1-4cm (Pb) 

90Y 
5mm (W) or 7-10mm (PMMA) or 
1cm (leadglass) 

1cm or 2cm (PMMA) + 0.5cm or 1cm 
(Pb) or 1cm (leadglass) 

 
The MC sensitivity analysis was performed for the same points on the hand used in the 

measurements and, as in the case of the measurements, the maximum dose was considered to be 

the highest dose calculated among these positions.  

 

The relative standard deviation of all the results obtained from the MC simulations is generally 

lower than 5% (10% in the case of electron transport). 

 

Since the maximum skin dose could be found in other positions, for the models representing the 

injection, a dose mapping across the voxel hand external surface was produced. The 12 scoring 

regions were removed from the geometry file, and the dose was calculated at all the voxels of the 

hand surface. The simulation parameters were maintained (geometry, source specification, 

transport mode and tallies) to allow comparison between the dose calculated in the scoring 

regions from the sensitivity study and the dose in the nearest voxels from the dose mapping, as 

well as to identify the voxel with the highest dose (both the dose and the position). 

 
Before launching the simulation program and in order to ensure the consistency between 

measurements and simulations, doses were measured by means of TLDs in some of the selected 

scenarios using the wax phantoms, and also calculated by simulation with the simulation code 

MCNPX (Carnicer at al. 2009). The results of both measurements and simulations were compared 

and used to prove the validity of the methodology followed to prepare MCNPX input files for the 

type of simulations needed. 

The accuracy reproducing the experimental results using MC simulations depends on how good 

the experimental configuration was modelled in the geometry of the simulation. The placement of 

the dosemeters was done by the observation of some pictures. This method can lead to the 

introduction of significant errors on the positioning of the dosemeters and of the source with 

respect to the hand.Taking into account the uncertainties in the methodology of the simulations, 
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the individual ratios for each position and scenario were considered acceptable. Moreover, the 

weighted mean ratios for every case (the mean is 0.99) demonstrated a good concordance 

between measurements and calculations. Hence, the methodology of the simulations, as earlier 

described was considered satisfactory for thepurpose of this work. 

 

4.3 Results and discussion 

4.3.1 Classification of workers 
In order to evaluate the exposure for each participant and to compare their maximum skin dose, 

the individual maximum skin dose Hp(0.07), normalised to the activity, was determined. As 

indicated in paragraph 4.2.3, first the mean value of the set of 4 or 5 measurements was calculated 

for each monitoring position and then the maximum value of the 22 data was assigned as 

maximum dose. In the case of therapy, the mean value was calculated with the available data, 

independently of the number of repetitions. Workers were classified per procedure with respect to 

their maximum dose in increasing order. Figure 4.7, Figure 4.8 and Figure 4.9 show the maximum 

dose for each worker (each worker is represented by a vertical bar) for diagnostics, 90Y Zevalin® and 
90Y Dotatoc procedures respectively. In Figure 4.7 and Figure 4.8 the first coloured values 

correspond to the 1st quartile (green), then the 2nd (blue), 3rd (yellow) and 4th (red) quartiles. In 

Figure 4.9 the different colours represent workers working with (blue) and without (orange) 

shielding.  
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Figure 4.7: Maximum dose for each worker for all diagnostic procedures. 

 
 

Figure 4.8. Maximum dose for each worker for 90Y-Zevalin® procedures. 

 

 

Figure 4.9. Maximum dose for each worker for 90Y-Dotatoc procedures. Workers 

working with shielding are represented in blue and those working without shielding 

in orange. 

 
First, the extremely wide range of maximum doses measured for the same procedure indicates that 

good and bad practices were monitored and thus those workers who are more exposed could 

potentially optimize their working procedures or habits. Some workers associated with very low 

exposure were found to be related to well-optimized procedures or use of advanced techniques, 

including semi-automatic dispensing tools, or the use of appropriate shields for syringes and vials 
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(Figure 4. a,b,e and f). As an example, Figure 4.10b shows a shielding device developed for the 

administration of 18F used in one of the NM departments visited. On the contrary, Figure 4.10c, d, g 

and h illustrate examples where protection means are not used properly. In Figure 4.10.c some 

parts of the hand touch directly the unshielded regions such as the needle and the bottom of the 

syringe. These cases clearly demonstrate that there is a potential to further decrease hand doses by 

optimizing procedures, not only by using the appropriate tools but also by correctly using them. 

 

 

Figure 4.10 Examples of good administration (a) (b) and preparation (e) (f) practices, 

and examples for bad administration (c) (d) and  preparation (g) (h) practices. 

4.3.2 Values of maximum doses per procedure 
The range, mean and median values of the maximum doses for all workers were calculated for each 

procedure and have been summarized in Table 4.6. The outliers concern those workers with values 

which exceed 1.5 times the inter-quartile range.Those workers have not been included in the 

calculation of the mean and median. Neither have been included those workers for whom 

contamination occurred during the procedure. In those cases, high dose values can be achieved as 

demonstrated by Covens et al.,2011. 

Table 4.6.  Range, mean and median values of the maximum dose of all workers 

monitored, excluding outliers, per procedure. 

Procedure 
Maximum normalized dose (mSv/GBq) 

Range Mean Median 
99mTc Administration  0.01 – 0.95 0.23 0.12 
99mTc Preparation  0.03 – 2.06 0.43 0.25 
18F Administration  0.14 – 4.11 0.93 0.64 
18F Preparation  0.10 – 4.43 1.20 0.83 
90Y Zevalin® Administration  1.0-11.9 4.8 2.9 
90Y Zevalin® Preparation  1.2-43.9 11.0 9.5 
90Y Dotatoc Administration 0.4 – 4.9 1.9 1.5 
90Y Dotatoc Preparation 0.1 – 7.4 2.1 1.1 
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As shown in Table 4.6 very large ranges of maximum doses were found for the same procedure. 

The preparation of radiopharmaceuticals involves higher finger doses per activity than the 

administration. There are several reasons for that: 

 the procedures are longer  

 there are more steps requiring manipulations of the vials/syringes  

 higher activities are manipulated and some of them without shielding.  

 

It is shown that preparation of 18F is the most critical of the studied procedures in diagnostic, which 

is in agreement with other authors’ findings (Chiesa et al., 1997; Vanhavere et al., 2006; Covens et 

al., 2010). 

 

On the other hand, 90Y involves higher skin doses per activity than 18F and much higher than 
99mTc because of the different dose rate factors of the three radionuclides (Table 4.1).  Figure 

4.11 illustrates these differences for the specific situation of being at contact with a 5 ml 

unshielded syringe filled with the typical administered activities of 500 MBq, 400 MBq and 1 GBq of 
99mTc, 18F and 90Y, respectively. The time needed to reach the annual skin dose limit (500 mSv) is also 

illustrated on the right side of the figure. Nevertheless, it should also be considered that diagnostic 

procedures are performed with a much higher frequency than therapy procedures.  

 

 

 

 

Figure 4.11. Dose rates at contact of a 5 ml unshielded syringe for typical 

administered activities of 99mTc, 18F and 90Y (left figure) and time to reach the 

annual dose limit for the same cases (right figure) (data derived from Delacroix et al. 

2002). 

 

4.3.3 Annual dose estimation 
With the intention of finding out whether the measured maximum doses represent a matter of 

concern from the point of view of radiation protection, the annual maximum dose was estimated 

for all workers involved in diagnostic procedures.  The estimation was based on the maximum dose 
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of each worker and the assumption that all workers were only involved in the procedure for which 

they were monitored. Two different ways of estimating the annual dose were employed. The first 

estimation was based on a workload of 1000 patients per year and the common activity 

manipulated for each of the procedures were considered. Results are shown in Table 4.7, where the 

percentage of workers exceeding the annual dose limit and the percentage of those exceeding 

3/10th of this limit (150 mSv), together with the data used in the estimation is presented. 

 

 

Table 4.7. Estimation of workers exceeding the annual dose limit and 3/10th of the 

annual dose limit. 

Procedure 
Patients per 

year 

Activity per 

patient 

(MBq) 

% workers 

exceeding 

annual dose 

limit 

% workers 

exceeding 

3/10 of the 

annual limit 

99mTc Administration  1000 

(5 patients per 

day, 

10 months) 

500 0% 28% 

99mTc Preparation  500 8% 47% 

18F Administration  400 23% 66% 

18F Preparation  500 40% 87% 

 

According to the results, the annual dose limit for the extremities would be surpassed for all 

procedures except for administration of 99mTc. In addition, the fraction of workers surpassing the 

limit is significant for 18F (from 20 to 40%). The percentage of workers exceeding 3/10th of the limit 

is also very considerable and ranges from 30 to 90% depending on the procedure. Other authors 

have also reported cases of workers who could surpass the annual dose limit (Chruscielewski et al., 

2002; Wrzesién et al., 2008). 

 

The second method to estimate the annual skin dose considered the actual annual workload for 

each worker together with the measured normalized maximum dose for each radionuclide. Similar 

results were found as for the previous estimation, with 20% of the workers exceeding the annual 

dose limit and 51% exceeding 3/10th of the annual dose limit. 

 

It has to be noticed that the real situation is more complex since usually a given worker will not 

perform only one but several differentprocedures, the workload being shared among different 

operators.  

4.3.4 Parameters of influence 
Table 4.shows the results of the Mann Whitney-U test (SPSS v.17.0) applied to analyse the influence 

on the measured maximum doses of the vial shield, syringe shield and the experience of the 

worker in the monitored diagnostic procedures. Workers with less than one year experience are 

considered as “low experienced". Other parameters, such as time or use of automatic devices, 

could not be analysed because of a lack of data. For therapy, the number of data was also 

insufficient for a complete inference statistics analysis. In Table 4.8, Table 4.9andTable 4.10, the 

parameter of interest, the different categories and the number of cases in each category are 
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indicated together with the result of the test. The mean maximum normalized dose Hp(0.07) of the 

different categories is statistically significant when the p-value is below 0.05. Whenever a 

difference was found to be significant for a certain parameter, the test applied on the next 

parameter was performed separately to the categories of the former significant parameter, in order 

to eliminate the influence of that parameter. The order of the parameters was chosen such that the 

potentially most important parameters were analysed first and those withless importance at the 

end. The following order was considered: influence of vial shield, influence of syringe shield and 

experience.  

The tests were applied both for preparation (Table 4.8) and administration (Table 4.9), for the two 

radionuclides separately and together. Finally the test was applied again to all diagnostic 

procedures together (Table 4.10). 
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Table 4.8. Results of the Mann Whitney-Utest for preparation in diagnostic procedures 

  
  

Parameter Category N Differences? p-value 

P
re

p
a

ra
ti
o

n
 

 99mTc 

Vial shield 
Yes 32 

Yes 0.004 
No 4 

Syringe shield 

Shielded vial 

Yes 14 
No 0.649 

No 18 

Experience 
Low 7 

No 0.480 
High 25 

 18F 

Vial shield 
Yes 30 

Not enough data 
No 0 

Syringe shield 
Yes 18 

Yes 0.010 
No 12 

Experience 

Unshielded 
syringe 

Low 4 
No 0.394 

High 7 

Shielded 
syringe 

Low 3 
No 0.450 

High 14 

99mTcand 
18F 

Vial shield 
Yes 62 

Yes 0.039 
No 4 

Syringe shield 

Unshielded vial 
Yes 1 

No 0.180 
No 3 

Shielded vial 
Yes 32 

No 0.398 
No 30 

Experience 

Unshielded vial 
Low 0 

Not enough data 
High 4 

Shielded vial 
Low 14 

No 0.416 
High 46 

 

Table 4.9 Results of the Mann Whitney-Utest for administration in diagnostic procedures 

  
  

Parameter Category N Differences? p-value 

A
d

m
in

is
tr

a
ti
o
n
 

99mTc 

Syringe shield 
Yes 24 

Yes 0.001 
No 8 

Experience 

Unshielded 
syringe 

Low 2 
No 0.355 

High 4 

Shielded 
syringe 

Low 4 
No 0.215 

High 20 

18F 

Syringe shield 
Yes 29 

No 0.094 
No 1 

Experience 
Low 6 

No 0.195 
High 24 

99mTc and 
18F 

Syringe shield 
Yes 53 

No 0.150 
No 9 

Experience 

Unshielded 
syringe 

Low 2 
No 0.699 

High 5 

Shielded 
syringe 

Low 10 
No 0.633 

High 43 
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Table 4.10. Results of the Mann Whitney-U test for all diagnostic procedures 

  
  

Parameter Category   N Differences? p-value 

All diagnostic 
procedures 

Vial shield 
Yes 62 

Yes 0.039 
No 4 

Syringe shield 

Unshielded vial 
for preparation 

Yes 54 
Yes 0.019 

No 12 

Shielded vial 
for preparation 

Yes 85 
Yes 0.048 

No 39 

Experience 

Unshielded vial 
for preparation 

Low 12 
No 0.667 

High 52 

Shielded vial 
for preparation 

Low 26 
No 0.262 

High 94 

Based on these results, the influence of the different parameters is discussed on the following 

pages. 

4.3.4.1 Experience 

Although in general experienced workers received lower doses, as demonstrated in some studies 

(Hildith et al., 1990), it was observed that some very experienced workers had deeply rooted 

inappropriate habits whereas some beginners worked with extra carefulness. The results of the 

Mann Whitney-U test did not show statistically significant differences between the doses received 

by experienced workers and beginners. For therapy procedures when feedback was given to 

workers after a measurement series and when they were informed on their exposures with a 

discussion of possible bad practices, a decreased dose was observed in the subsequent 

measurements, in general. Obviously, the outcome of this is an improvement of the individual 

operational procedures, resulting in an optimisation of the radiation protection standard, e.g. by 

using shielding and tools to avoid any direct contact of the fingers to the source. The results are 

illustrated in Figure 4.12, which shows the dose history of staff with three or more sets of 

measurements performing 90Y-Zevalin procedures. 

 

Figure 4.12. Dose history for staff with more than three subsequent measurements in 
90Y-Zevalin RIT. 
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To contribute to the risk awareness of the staff in NM a dose estimation tool (Figure 4.13) has been 

developed. This dose estimation tool provides values for the expected doses at 11 different points 

in each hand when preparing or administering one of the radionuclides studied within the 

ORAMED project (99mTc, 18F or 90Y Zevalin®), for a given activity.  

 

Figure 4.13 illustrates the output of the programme associated to the preparation of 1 GBq of 99mTc. 

The values given are based on the ORAMED results. Nevertheless outliers, workers who did not use 

shielding and data coming from contamination have not been considered. The tool is available via 

the ORAMED web site (http://www.oramed-fp7.eu/).  

 

 

Figure 4.13 Dose estimation tool. 

4.3.4.2 Shielding 

According to the results of the statistical analysis, the shielding of the vial is, for preparation of 
99mTc, the most important parameter of influence. Although for 18F it could not be analysed (all 

workers handled shielded vials), the result is likely to be the same for this radionuclide. The 

shielding of the syringe was also found to be an important parameter of influence: the differences 

whether or not syringe shielding is used arefound statistically significant for preparation of 18F and 

for administration of99mTc. Considering all procedures together, the tests showed a significant 

influence of shielding on the maximum skin doses, both for the vial and the syringe shields.  

 

The identification of the shield as one of the most important parameters for dose reduction is in 

agreement with the conclusions of the ICRP review (ICRP, 2008) and other authors (Montgomery et 

al., 1999; Tsopelas et al., 2003; Smart, 2004; Whitby and Martin, 2004). The use of adequate shields 

reduces significantly the exposure to the hands thus should be used whenever it is possible. The 

study demonstrated that 89% of the workers use shielded vials when manipulating 
99mTcradiopharmaceuticals and all of the workers use shielded vials when manipulating 18F. 

http://www.oramed-fp7.eu/
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Concerning the use of syringe shields, 73% of the workers employed the shield during 
99mTcadministration. For18F procedures only 57% of the workers utilized a proper shielding during 

the preparation phase. 

 

MC simulations also provided very valuable information in the study of the influence of shielding. 

The simulations were used to determine what type of material and which thickness represented 

the best skin dose reduction. Figure 4.14, illustrating the case of 99mTc administration, represented 

by scenario I1, shows that a 2 mm oftungsten (W) syringe shield provides more than 2 orders of 

magnitude in dose reduction to the hand. Moreover, little differences are observed between Pb 

and W, even if W is better performing because of its density of 19.3 g/cm3 compared to that of lead 

(11.35g/cm3). 

 

 
 

Figure 4.14. Administration scenario for a 99mTc source (model I1). Ratios between 

Hp(0.07) for an unshielded syringe and for four different shields. 

 

The effectiveness of the shielding is only valuable for those parts of the hand really protected by 

the shielding. As shown in Figure 4.15, the doses to the thumb and the wrist are not reduced 

significantly when shielding is used. These positions are not adequately protected by the shielding. 

However it should be mentioned that the simulations represent a “static scenario”, which means a 

fixed geometry where the hand of the operator is like “frozen” in space, therefore the lateral 

shielding simulated may not correctly represent the real protection offered to these parts of the 

hand during the manipulation of the syringe. 
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Figure 4.15 Preparation scenario for99mTc (PSM1 model).Ratios between calculated 

Hp(0.07) for the unshielded syringe and for a  2mm and 3mm W shielding. 

 

Working with a different radionuclide implies different shielding to be used (Figure 4.15-4.17).  As 

shown in Figure 4.16, thicker shielding is needed when manipulating a18F source. In this case, 8 mm 

of W for a syringe is very effective in reducing doses during the administration phase (scenario I1) 

but already 5mm of W can reduce doses up to a factor of 10 for the same scenario. Taking also 

other considerations into account, such as the weight and cost of the shielding, 5mm of tungsten is 

considered a more convenient solution.  

 

 

Figure 4.16 Injection scenario for 18F (I1 model)-Ratios between Hp(0.07) for an 

unshielded syringe and for three increasing W shielding thicknesses. 
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Figure 4.17 shows the influence of shielding when manipulating 90Y sources. For 90Y, 5 mm W is 

slightly better than 10 mm PMMA providing more than 3 orders of magnitudes of attenuation as 

illustrated in Figure 4.18. 

 

 

Figure 4.17 Injection scenario for 90Y (I1 model)- calculated Hp(0.07) for an unshielded 

syringe and for  5 mm W and 10 mm PMMA shielding. 

 

 

Figure 4.18. Injection scenario for 90Y (I1 model)- ratios between Hp(0.07) for an 

unshielded syringe and for several W and PMMAshielding conditions. 
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The influence of the vial shielding was also studied. When manipulating a vial containing 99mTc, 3 

mm Pb provides more than 3 orders of magnitude in dose reduction, for the scenario PTR, as 

shown in Figure 4.19. 

 

 

Figure 4.19. Preparation scenario for 99mTc(PTR model)-Ratios between calculated 

Hp(0.07) for an unshielded syringe and for different shielding thicknesses. 

 

For a vial containing 18F, thicker shielding is needed. Typically, as shown in Figure 20 for PTR 

scenario, 3cm Pb provides 2 orders of magnitude in dose reduction. 
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Figure 4.20. Preparation scenario for18F (PTR model)-ratios between doses evaluated 

with different shielding thickness and unshielded case doses. 

 
For 90Y sources, it has been shown that 10 and 15mm of PMMA provide almost the same 

attenuation, 5mm being less effective as shown in Figure 4.21. In order to absorb the 

Bremstrahlung contribution and to further reduce the doses, it is recommended to add some mm 

of Pb to the PMMA shielding. 

 

 

Figure 4.21. Dose distribution for different shielding thickness and material for an 90Y 

source in the geometry corresponding to the scenario PVM. 
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Moreover, additional strategies can be used to optimize the protection. Figure 4.22 illustrates an 

additional dose reduction if the distance between the hand and the source is increased by using 

tools, for example forceps. For a vial containing a 18F source and shielded by 8 mm W, an additional 

reduction of the doses, of approximately a factor of 10, is obtained when the distance is increased 

by 5 cm. 

 

 

 

Figure 4.22. Preparation scenario for18F (PVM model) doses evaluated with 8 mm W 

shielding at two different distances from the hand. 

 

The MC results on the recommended shielding for the different scenarios, with the limitations of 

the study above mentioned (static scenario), can be summarized as follows: 

 

1. For the injection (concerning the syringe shielding): 

- 2 mm W (or Pb) for 99mTc give a dose reduction of at least 2 order of magnitudes; 

- 5 mm W provides up to a factor of 10 in dose reduction for 18F (8 mm W up to a factor 

40). 

- For 90Y 10mm PMMA completely shield beta radiation, nevertheless 5mm shielding of 

W provides a slightly better shielding cutting down bremsstrahlung radiation too.  

 

2. For the preparation (concerning the vial shielding): 

- For 18F, 3cm of Pb provides 2 orders of magnitude on dose reduction. The same 

attenuation for 99mTc is obtained with 2 mm Pb.  

- For 90Y an acceptable shielding is obtained with 10 mm PMMA with an external layer of 

a few mm of lead or alternatively 5 mm of W. 
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4.3.4.3 Source displacement 

Concerning the position of the syringe in the hand, a small change could imply a large variation in 

the skin doses. Figure 4.23 shows the effect caused by a syringe displacement of 1.4 cm and 2.7 cm 

along its axis, towards the centre of the palm, for the model I1 employed for the injection of18F. The 

results show that the smaller is the displacement towards the palm side the smaller is the increase 

of the doses; but the effect is different depending on the position of the scoring cells. In the case of 

the index and middle tips a factor of about 3 was found for a 2.7 cm shift. On the contrary for the 

wrist a sort of “shielding” effect (ratio lower than 1) was produced for 1.35 cm. This is probably due 

to the position of the thumb providing a “natural shield”, with respect to the shifted source, for the 

detector placed at wrist position. It is worth to emphasize that this effect is generated by the 

particular form of the hand phantom and has to be taken with care in the analysis. 

 

 

Figure 4.23. Administration scenario for 18F (I1 model)- ratios between Hp(0.07) 

evaluated with the source shifted for 1.35 and 2.7 cm towards the centre of the palm, 

and Hp(0.07) estimated at the original position (P0) estimated doses. 

 

One of the possible causes of the variability of the measured data can be attributed to the variation 

in distance between the source and the measurement positions which is obviously intrinsically 

different for different operators. This is particularly important when using unshielded syringes or 

vials. Such variations are intrinsic to the scenario and have been studied in the case of the injection 

of 99mTc with an unshielded syringe. Eight workers performed 99mTc administration with an 

unshielded syringe. Table 4.11 shows the minimum, maximum and mean value of the 

corresponding mean normalised dose, for the dosemeters placed at the base of the index and the 

middle fingers for the non-dominant hand. Figure 4.24 compares the ratio between minimum and 

maximum to the mean in Table 4.11 with the effect of a shifting of +/- 1 cm of the source for the 

voxel model I2, representing the hand supporting the syringe during injection. The spread in the 

measurements and the variation in the simulation are comparable.  
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Table 4.11. Minimum, maximum and mean value of the mean normalised skin doseHp(0.07) at 

the base of the index and the middle fingers for the non-dominant hand for the 8 workers 

performing 99mTc administration with an unshielded syringe. 

 Index base Middle base 

Min 
(µSv/GBq) 

24 11 

Max 
(µSv/GBq) 

92 77 

Mean 
(µSv/GBq) 

44 32 

Min/Mean 0.56 0.34 

Max/Mean 2.08 2.37 

 

 
Figure 4.24. Comparison between selected measurements for injection of 99mTc without 

shielding, non-dominant hand data, and the sensitivity analysis for a shifting of the source along 

its axis of +/-1 cm in Model I2. 

 

4.3.4.4 Volume of the source 

Changing the volume of the source for the same absolute activity can increase or decrease the 

dose depending on the positions where the dosemeters are placed with respect to the source. For 

the injecting scenario, as illustrated in Figure 4.25, increasing the active volume solution for the 

same activity means approaching the source to the monitoring positions. Therefore when 

increasing the volume, the doses increase at all positions. Nevertheless these changes remain 

relatively small for 99mTc and 18F, with a maximum of a factor of 2, but it can be much larger for 90Y. 

For the case illustrated in Figure 4.25, a maximum factor around 1.9 is found when manipulating a 

4ml syringe for 99mTc and 18F instead of a 1ml syringe. This factor is much higher for certain 
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positions when the source is 90Y, going up to 170 (in case of using a 10ml syringe instead of a 1ml 

syringe). 

 

 
Figure  4.25. Voxel model representation, when increasing the volume of the active solution, 1ml, 

2ml, 3ml and 4ml. 

4.3.5 Dose distribution 
The dose distribution across the hands was also studied for all diagnostic procedures and for 90Y 
Zevalin® therapeutic procedures. For each monitored position the range of measured normalised 
doses for all workers are shown inFigure 4.26, for each radionuclide and separately for the 
preparation phase (top) and administration phase (below). For all these procedures it was observed 
that the non-dominant hand usually receives higher doses than the dominant hand. 

 
 

Figure 4.26. Dose distribution across the hands for the three radionuclides, the upper row 

concerns the preparation and lower row the administration procedures. For each monitoring 

position the mean and median of normalized doses is shown (the monitored position is 

identified by the notation indicated in Figure 4.3). 

 
For diagnostic procedures, the difference between the dominant and the non-dominant hand was 

evaluated. The quantity to be analysed was the relative difference between the mean maximum 

normalized Hp(0.07) of the non-dominant hand and of the dominant hand (i.e., the quantity 

<Hp(0.07)/A>max ND - <Hp(0.07)/A>max D, in %).  
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For each type of procedure, this difference was calculated and the Kruscall-Wallis test was applied 

to find out whether this difference is statistically the same for the different procedures (Tabel 4.12). 

 

Table 4.12. Results of the Kruscall-Wallis test to investigate if the difference between 

the mean maximum dose to the non-dominant hand and dominant hand is the same 

for all type of procedures. 

 

 Parameter Category N 
Kruscal-Wallis test 

Differences? p-value 

All data Procedure 

Preparation of 99mTc 36 

No 0.259 
Administration of 99mTc 32 

Preparation of 18F 30 

Administration of 18F 30 

 
Because the test showed no differences between dominant hand and non-dominant hand among 

the procedures, all data was treated together in one group in following analyses. In a second step, 

the Mann Whitney-U test was applied to see if the distributions were significantly different or not 

because of the use of shield (Table 4.13). For the syringe shield no differences were found, but for 

the vial shield differences between the distributions were found (p-value of 0.004). The 4 cases of 

unshielded vial were removed from the rest of data and the test was applied again to see if, 

without these data, the influence of the syringe shielding was highlighted. 

 

Table 4.13. Mann-Whitney test. 

 

Data Parameter Category N 
Mann-Whitney 

Differences? p-value 

All data 

Vial shield 
Yes 34 

Yes 0.004 
No 4 

Syringe 
shield 

Yes 47 
No 0.426 

No 24 

Shielded 
vial 

Syringe 
shield 

Yes 85 
No 0.761 

No 39 

 
Since no differences were found, the last step was to apply the Wilcoxon test, to all data except the 

4 cases of the unshielded vial, to the differences between the maximum dose at each hand. The 

result is given in Figure 4.27. 
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Figure 4.27. Wilcoxon test 

 

The p-value for the Wilcoxon test is 0.06, close to the proposed p-value of 0.05. Figure 

4.27illustrates the tendency to receive higher doses on the non-dominant hand. 

 

The frequency of the position where the maximum dose was received was also calculated for each 

procedure, considering the 22 positions of both hands. The results are shown in Figure 4.28 and 

Figure 4.29. 

 

Figure 4.28. Frequency of the position where the maximum dose was received for 

each diagnostic procedure when using vial and syringe shielding. 
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Figure 4.29.Frequency of the position where the maximum dose was received for 90Y 

Zevalin® procedures. 

 

For all procedures and when manipulating with shields, the index finger tip of the non-dominant 

hand is the position where the maximum dose is most frequently received (from 22% to more than 

60% over all procedure types), followed by the thumb of the same hand for almost all procedures 

(from 7% to 20%) (Sans-Merce et al., 2011; Carnicer, Sans-Merce et al. 2011). Less frequently, the 

same positions of the dominant hand received the maximum dose (up to 10% for most 

procedures).  

 

There is a general agreement that the fingertips are the most exposed part of the hands (Jankowski 

et al., 2003; Vanhavere et al, 2006; Covens et al., 2010). However, there is no consensus on which 

hand and which particular positions. When looking at specific cases in this study it was observed 

that the higher exposure of one of the hands is something strongly linked to the individual 

working habits, as reported in other works (Vanhavere et al., 2006, Brasik et al. 2007). Nevertheless, 

this study, based on a large measurement campaign, showed that the fingertips of the non-

dominant hand are the most exposed positions, whereas ICRP, based on a thorough literature 

review, reports that the same fingers of the dominant hand are the most exposed (ICRP, 2008). 

4.3.6 Routine monitoring 
Wrist or ring dosemeters are typically used for routine monitoring. Although there is not a 

harmonized criterion for the position of the ring dosemeter, in practice it is usually placed at the 

base of the index, middle or ring fingers since these positions do not hamper work. This fact will 

cause the maximum dose to be largely underestimated. The order of underestimation was 

assessed, in a first step, by calculating the correlations (linear correlation coefficients) between the 

dose at all measuring positions and the maximum dose independent of the location where it was 

measured. The skin dose was found to be well correlated to the maximum dose at all the positions 

(R² >0.6). The tips of the fingers, especially those of the non-dominant hand, present the highest 

correlations (R² >0.8), whereas the least correlated positions are the two wrists (R² around 0.6). In 
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between, the ring positions present correlation coefficients of the order of 0.7 and 0.8 for the 

dominant and non-dominant hands, respectively. Thus, although the routine monitoring positions 

do not correspond to the position of the maximum skin dose, they can be used to estimate this 

quantity. 

 

To quantify the impact of placing the routine dosemeter at a specific position different than that 

corresponding to the maximum hand dose, the ratios between the maximum dose and the dose at 

relevant monitoring positions and at the index tip were calculated. The calculation was made for 

each single measurement and then averaged over the set of measurements of each worker. The 

mean values for all workers and for each procedure are given in Table 4.14.  

 

 

Table 4.14. Mean values of the ratios between the maximum dose and the dose at 

the base of the index, base of the ring and tip of the index fingers for each 

procedure. “Prep” stands for preparation and “Adm” for administration. 

 
 Non-dominant hand Dominant hand 

Procedure 
Max

/ 
wrist 

Max/base 
index 

Max/base 
ring 

Max/inde
x tip 

Max/ 
wrist 

Max/base 
index 

Max/base 
ring 

Max/inde
x tip 

99mTc Prep 21 5 8 2 19 6 8 3 
99mTc Adm 26 9 15 3 23 8 13 4 
18F Prep 15 4 6 2 12 5 7 2 
18F Adm 21 5 9 2 19 6 10 3 
90Y Prep 15 6 12 4 15 24 34 16 
90Y Adm 27 7 19 3 26 21 27 10 

 

 
NM workers are usually involved in more than one diagnostic procedure. The ratios were also 

calculated by including all data from all diagnostic procedures together and separately for all 

therapy procedures. There is a large spread on the values obtained for the ratios as shown in Figure 

4.30 and Figure 4.31 for diagnostic and therapy procedures respectively. 
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Figure 4.30. Ratios between maximum dose and dose at some specific positionsfor 

all diagnostic procedures. "ND hand" stands for non-dominant hand and "D hand" for 

dominant hand. 

 

Figure 4.31.Ratios between maximum dose and dose at some specific positionsfor all therapy 

procedures. "nd hand" stands for non-dominant hand and "D hand" for dominant hand. 

 
The mean values of the ratios presented in Figure 4.30 and Figure 4.31 are summarized in Figure 
4.32.  
 

 



ORAMED : Optimization of Radiation Protection of Medical Staff 

 

 

EURADOS Report 2012-02 167  

 

  

Figure 4.32. Mean ratios between maximum dose and dose at some specific positionsfor 

diagnostic procedures (left) and therapy procedures (right). 

 
The mean ratios are significantly higher for the wrist positions (around 20). This value is in good 

agreement with that reported by Jankowsky for the wrist, which is also near 20 (Jankowsky et al., 

2003). The lowest mean ratios were found for the index tip position of the non-dominant hand, 

usually around 2. The ratios are also lower for the base of the index finger than for the base of the 

ring finger, and lower for the non-dominant hand than for the dominant one. At the base of the 

middle finger ratios are in between. Thus, according to these results, the use of wrist dosemeters 

should be avoided because of a very high underestimation and a lower correlation to the 

maximum dose (R² = 0.6). Ring dosemeters are recommended instead. Since for practical reasons, 

the dosemeter cannot be placed at the finger tip, the most appropriate position is the base of the 

index finger of the non-dominant hand. In this position the mean underestimation is around a 

factor of 6. The same value was reported by Jankowsky for the index nail and the base of the ring 

finger (Jankowsky et al., 2003), and also close to the value of 5 reported by Wrzesién, considering 

the fingertips and the base of the middle finger of the right hand (Wrzesién et al., 2008). The TLD 

must always be arranged on the palm side of the hand. Other authors (Stuardo, 1990, Koback and 

Plato, 1985,Covens et al., 2007) show much lower ratios, typically from more than 1 to 4. Of course 

these values are strongly operator and procedure-dependent, as revealed by the large range of 

ratios observed in Figure 4.30 and Figure 4.31. This was also highlighted by other authors: Mebhah 

reported ratios ranging from 5 to 56 (Mehbah et al., 1993). ICRP recommends for the estimation of 

Hp(0.07) a dosemeter placed on the base of the middle finger with the detector positioned on the 

palm side, whenever monitoring the dose to the most exposed fingertip is not possible. For this 

position ICRP recommends a factor of 3 to derive an estimate of the dose to the tip, and of 6 if the 

dosemeter faces the back of the hand (ICRP, 2008). The results of ORAMED highlight that this 

correction is too low. 

 

4.3.7 Dose mapping 
The dose mapping was performed for the injection scenario (model I1). This scenario provides an 

easier comparison with the measurements for the administration procedures, since the steps 

involved are much less and much more simple than in the case of preparation. Dose maps were 

made for the 3 radionuclides included in the sensitivity study (18F, 99mTc and 90Y) using MCNPX and 

their results were visualized using Voxler, a 3D Data Visualization software. Figure 4.33 shows the 

dose maps obtained for the administering scenario when manipulating an unshielded source.  
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Figure 4.33. Dose maps (dose rates in µSv/GBq.s) obtained for scenario I1 (injection) 

for 99mTc, 18F and 90Y sources with unshielded syringes. For 99mTc and 18F, syringes of 

5ml are filled with 2ml solution and for 90Y a 1ml syringe is filled with 1ml solution. 

 

Similar dose maps were made for the case of a shielded source as shown in Figure 4.34. 
 

 

 

Figure 4.34. Dose maps (dose rates in µSv/GBq.s) obtained for scenario I1 (injection) 

for 99mTc, 18F and 90Y sources with shielded syringes with 5mm W. For 99mTc and 18F, 

syringes of 5ml are filled with 2ml solution and for 90Y a 1ml syringe is filled with 1ml 

solution. 

 
The dose distribution (unshielded syringe cases) is very similar for 18F and 99mTc. The distribution 

obtained for 90Y is much more inhomogeneous. The most exposed positions to the unshielded 

syringe are the back of the index and middle fingers, and the maximum dose is found in the latter 

position in all cases. When the syringe is shielded, the thumb is not protected because it is located 

on the axis of the syringe, and thus the maximum dose is received at this position, as it was also 

observed in the sensitivity study.  
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The maximum dose obtained from the dose mapping was compared to the highest dose among 

the dosemeters used for the sensitivity study. It must be taken into account, though, that the shape 

and the mass of the voxel and of the simulated dosemeter are very different. The voxel mass is 

about 20 times higher than the mass of the tally cell in the dosemeter. For scenario I1 and the 

shielded 99mTc syringe the maximum dose is found at the same position, with the dose from the 

dose mapping a 35% higher than the one obtained in the sensitivity study. For the unshielded 
99mTc syringe, though, it can be observed how the sensitivity study fails from finding the real 

maximum dose because it was located on the side of the tip of the middle finger rather than on the 

nail, where the dosemeter was located. In this case the differences between the maximum doses 

are not high (20%) because for a source like 99mTc the dose is distributed quite uniformly in the 

most exposed area if the source is not very close to the hand. For 18F and especially for 99mTc 

sources, the fact that the maximum dose is not located in one of the pre-defined measuring 

positions is only critical if that measuring position is far from the place where the maximum dose is 

really located, and if the source is very close to the hand. If this is not the case, differences will not 

be high because the dose is uniformly distributed in this area. For 90Y the situation is more delicate 

because the dose distribution is highly inhomogeneous even if the source is not very close and 

even if the measuring position is not far from the location of the maximum dose. Thus, the 

difference between the maximum doses could be higher.  

 

4.4 Recommendations 

The results of the WP4 measurements campaign highlight large variations of doses among 

procedures and workers. To some extent, the spread of the doses, even within the same procedure, 

has been partially verified by the Monte Carlo sensitivity analysis, as being due to the influencing 

parameters. Nevertheless some general trends have been observed: 

 There is a wide range of individual exposures (min/max) for similar procedures due to the 

fact that different equipment is used, radiation protection means and tools; 

 The annual skin dose limit (500 mSv averaged over 1 cm2) can be exceeded by numerous 

workers in  hospitals where radiation protection standard is low; 

 There is potential to further improve radiation protection and decrease exposures; 

 Adequate skin dose monitoring is urgently needed in nuclear medicine.  

 

The interpretation of the analysis of the data and the simulations lead to the following points: 

 The choice of the dosemeter type and the wearing position is important for an accurate 

dose assessment; 

 Shielding of vials and syringes are essential and a precondition but not a guarantee for low 

exposures; 

 Other RP tools and measures (e.g. pincers, forceps, time etc.) can significantly reduce the 

exposure; 

 Subjective factors e.g. risk awareness and training affect exposures. Especially in therapy, 

participants have reduced extremity dose during the  project due to the feedback of the 

measurement results on the radiation protection standard; 

 Working fast is useful but not sufficient. 
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From the observations done and the analysis and interpretation of the data obtained from the 

measurement campaign as well as from the simulations, recommendations have been derived: 

 Extremity monitoring is essential in nuclear medicine. 

 To determine the position for routine monitoring, the most exposed position on the hand 

for each worker should be found by individual measurements. If these measurements are 

not possible, the base of the index finger of the non-dominant hand with the sensitive part 

of the dosemeter placed towards the inside of the hand is the recommended position for 

routine extremity monitoring in nuclear medicine. 

 To estimate the maximum dose, the reading of the dosemeter worn at the base of the 

index finger of the non-dominant hand should be corrected by a factor of 6.   

 Shielding of vials and syringes is essential. This is a precondition but not a guarantee for 

low exposure. 

 The minimum acceptable thickness of shielding for a syringe is 2 mm of tungsten for 99mTc 

and 5 mm of tungsten for 18F. For 90Y, 10 mm of PMMA completely shields beta radiation, 

but a shielding of 5 mm of tungsten provides better protection, as it additionally cuts down 

bremsstrahlung.  

 The minimum acceptable shielding required for a vial is 3 mm of lead for 99mTc and 3cm of 

lead for 18F. For 90Y, acceptable shielding is obtained with 10 mm of PMMA with an external 

layer of a few mm of lead. 

 Any tool increasing the distance (e.g. forceps, automatic injector) between the 

hands/fingers and the source is very effective for dose reduction. 

 Training and education in good practices (e.g. procedure planning, repeating procedures 

using non-radioactive sources, estimation of doses) are more relevant parameters than the 

worker's experience level. 

 Working fast is not sufficient, the use of shields and tools for increasing the distance are 

more effective than working quickly.  

 

The ORAMED recommendations agree with most of the ICRP (ICRP, 2008) recommendations for 

nuclear medicine. Two main differences have been found concerning the routine monitoring. ICRP 

recommends placing the routine dosemeter on the base of the middle finger of the dominant 

hand with the detector positioned on the palm side when the tip can’t be used, whereas ORAMED 

results show that the base of the index finger of the non-dominant hand with the palmar 

positioned detector is a more appropriate position. A second difference is related to the correction 

factor proposed to estimate the maximum dose. ICRP recommends to apply a correction factor of 3 

(6 if the dosemeter faces the back) whereas ORAMED suggests a factor of 6. 
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4.6 Guidelines elaborated in the framework the ORAMED project to reduce hand 

exposure for standard nuclear medicine procedures. 
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5 ORAMED training and knowledge dissemination 

1.1 5.1 Introduction 

Previous chapters describe the main methodologies that have been developed within the 

framework of the ORAMED project for better assessing and reducing exposure to medical staff in 

interventional radiology and nuclear medicine. 

An additional concern of ORAMED was to ensure correct dissemination of the main milestones and 

conclusions of the study and to guarantee a practical impact on medical staff of the findings. These 

actions have been coordinated through a specific workpackage, WP5, whose main objective was to 

develop a teaching and knowledge dissemination program to make sure that the conclusions and 

recommendations of the project are communicated to stake-holders, mainly medical staff, 

radiation protection officers, dosimetry services and authorities in the field.  

One of the main tools to make the developed knowledge both accessible and usable to 

stakeholders has been the project website, www.oramed-fp7.eu.  

The website includes an open part which provides the description of the research objectives and 

main results, abstracts or transparencies of the given presentations at international meetings, in 

particular at the ORAMED 2011 workshop, training material and the proposed guidelines. Also all 

the deliverables from the project are available at the website.  

The main activities of WP5 can be divided into two categories: i) training, ii) dissemination of results 

through participation at scientific conferences. 

 

1.2 5.2 Training 

Education and training is a key factor in establishing effective radiation protection programmes. 

The use of ionizing radiation in medical applications constitutes the major field of non-natural 

exposure to the worldwide population, mainly as patients, while about 50% of radiation-monitored 

workers belong to the medical field (UNSCEAR, 2000). Thus, any training initiatives can result in 

important improvements in radiation protection practice. In addition, new developments in 

medical technology and the increasing complexity of medical radiation techniques require new 

skills and continuous up-dated training of personnel.  

The training proposal that has been developed within ORAMED has a much more specific scope 

and intends to provide practical skills as well as disseminating knowledge developed within the 

project.  

First of all, stakeholders for chosen topics were identified. For these stakeholders the best channels 

and type of material to be prepared were selected in order to achieve the expected radiation 

protection education objective. 

Three main stakeholders were considered: the occupationally-exposed medical staff, the medical 

staff trainers and calibration laboratories together with dosimetry services. Different approaches 

http://www.oramed-fp7.eu/
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were proposed depending on the targeted user. A short summary of the contents and 

methodology of each category is presented. 

5.2.1 Medical staff modules: 

For medical staff, two specific modules on occupational radiation protection for interventional 

radiology and nuclear medicine, respectively, were prepared. The main emphasis was to provide 

practical understanding on how to improve radiation protection practices in medical applications 

where, at present, ORAMED results showed that doses are sometimes high, and can even exceed 

dose limits.  

Some of the problems which are presented are usually not included in other available radiation 

protection training courses.  

The two modules have a similar outline, structured in five chapters. Chapter One is a general 

introduction on occupational radiation protection in the field. Chapter Two reviews the main 

critical procedures from the radiation protection point of view and the corresponding organs at 

risk. Chapter Three describes the main dosimetric devices available in order to monitor medical 

staff. Technical characteristics, advantages and limitations, together with new developments are 

provided. Chapter Four is devoted to radiation protection means. Their effectiveness is illustrated 

with practical examples obtained from ORAMED measurement campaigns or calculations. Chapter 

Five provides a conclusion and summary of the main recommendations and lessons learned from 

the ORAMED project.  

In preparing the material, special attention has been given to the type of audience that was 

targeted. The content of the course has been carefully studied to meet the needs and interests of 

the participants. As mentioned above, one of the main features is the use of information obtained 

directly from both practical and realistic situations. 

After the training participants should be able to know: 

 the physical characteristics of the different sources of exposure in nuclear medicine and 

interventional radiology,  

 the limits of exposure,  

 how to identify the organs at risk for the different diagnostic/ therapy procedures,  

 how to apply radiation protection means to ensure an adequate protection of staff,  

 how to select the best dosimetric system and how to implement the best monitoring 

procedure (type of dosemeter, position of use, interpretation of dosemeter reading) and, 

 how to identify good and bad practices, in order to improve, if needed, their daily practice. 

In addition, the training modules have been prepared to be used with new interactive tools 

(www.powervote.com/uk/; www.educlick.com/portal/), which allow questions to be answered 

online. Several companies have provided the software and key-pads to register audience voting 

and most of the programs can be easily integrated in PowerPoint presentations. These new 

interactive systems have been used in innovative education programmes and are recognised as 

favouring student participation and ensuring immediate knowledge feedback both for trainers and 

trainees. The systems encourage active attitudes and promote discussions, in particular on topics 

which need further explanation. 

http://www.powervote.com/uk/
http://www.educlick.com/portal/
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The training modules are available on the project website as a PowerPoint 97-2003 slide show: 

www.oramed-fp7.eu/en/Training%20material: Module 1: Interventional radiology (prepared by E. 

Carinou (GAEC) and L. Struelens (SCK)), Module 2: Nuclear medicine (prepared by M. Sans-Merce 

(CHUV) and M. Ginjaume (UPC)). 

Examples of transparencies of the two modules are shown below. Questions on the main topics are 

proposed and collectively answered using interactive systems. After reviewing the participants' 

answers, solutions based on the ORAMED project results are shown. In addition, some short videos 

are included to illustrate both practical and realistic situations. 

During the ORAMED 2011 Workshop, two 45-min lectures were given using a selection of the two 

training specific modules. The feedback of the participants was very positive and, in general, the 

lectures were very much appreciated. Some of the main lessons learned were related to the 

importance and differences between protection measures, such as syringe shielding, lead apron, 

ring dosemeter. Participants also mentioned they were interested in confirming the importance of 

individual skill to reduce personal doses. It was shown that different practices had direct 

consequences in the doses received. These considerations were useful both for those doing the 

actual work and for those responsible of the service and its radiation protection.    
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5.2.2 Medical staff trainer guidelines: 

There are several available national and international training programmes which aim at ensuring 

appropriate radiation protection both for patients and workers. Among others, we can outline the 

IAEA radiation protection programmes, which provide Member States with training material and 

have a very active website that is frequently up-dated with new information on radiation 

protection of patients, videos and new training material (IAEA, 2011). The European Commission 

has promoted several projects under the topic Education and Training. These projects deal with 

radiation protection in various work sectors (EC, 2003; ENETRAP, 2008). Finally, it is also worth 

mentioning ICRP work in this field and, more specifically, the training material available on 

radiation protection in medicine, which is freely downloadable from the website (ICRP, 2011).  

For trainers, ORAMED material includes some guidelines on the topics that an occupational 

radiation protection course for IR and NM should contain. The proposal has been prepared by I. 

Clairand and L. Donadille from IRSN and provides free internet links of interest for the different 

chapters. It is mainly based on IAEA modules available at: 

http://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/index.

htm.The ORAMED medical staff modules are also recommended. 

 

5.2.3 Videos to complement training: 

In order to complement the training material presented in the previous paragraphs (5.2.1 and 

5.2.2), two videos were produced: 

SMU prepared a video for interventional radiology, showing how ORAMED measurements were 

performed (English version available).  

BfS prepared a video on Y-90 DOTA therapy. It includes good recommendations on radiation 

protection measures (English and German versions available).  

Both videos are available on the ORAMED website (www.oramed-fp7.eu/en/Training%20material) 

and were shown during the ORAMED 2011 workshop in Barcelona in January 2011. 

As mentioned above, the combination of audiovisual and digital systems with traditional 

techniques improves both the concentration and participation of trainees.  

 

5.2.4 Calibration laboratory and Dosimetry service module: 

Many ORAMED participants are involved in metrology and dosimetry. Furthermore, the project has 

studied some topics related with personal dosemeter calibration, which have not yet been 

introduced in the corresponding international standards, namely, the calibration of electronic 

personal dosemeters in pulsed fields and the calibration of eye-lens dosemeters. The proposals and 

recommendations derived from the study have been incorporated in a specific training module 

“Main features for calibrating dosemeters” prepared by J.M. Bordy, CEA, which is mainly addressed 

to calibration laboratories, but can also be useful for personal dosimetry services.  

http://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/index.htm
http://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/index.htm
http://www.oramed-fp7.eu/en/Training%20material
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This module on calibration is also available on the project website as a PowerPoint presentation. 

The main topics presented include: revision of standards applicable to personal dosemeter 

calibration, definitions of interest, recommendations for positioning dosemeters for calibration and 

for the simultaneous irradiation, information about the new Standard ISO DIS 29661 (2011). 

Moreover, advices to help laboratories in performing calibration of active personal dosemeters and 

eye lens dosemeters are provided.  

 

5.3 Dissemination of results 

The International Workshop on Optimization of Radiation Protection of Medical Staff, ORAMED 

2011, was organized from the 20thto 22nd January 2011, in the School of Industrial Engineering of 

Barcelona at UPC (Spain). 

The workshop, chaired by Mercè Ginjaume, was organized by the UPC with the collaboration of the 

ten other ORAMED partners. Together with the ORAMED consortium partners, the Programme 

Committee, chaired by the ORAMED coordinator, Filip Vanhavere from SCK•CEN, had the 

collaboration of the Directorate General of R & D of the European Commission, the International 

Atomic Energy Agency (IAEA), the European Radiation Dosimetry Laboratory Consortium 

(EURADOS), the Spanish Nuclear Safety Council (CSN), the Spanish Radiation Protection Society 

(SEPR) and the School of Industrial Engineering of Barcelona (ETSEIB).  

 

The proposed topics attracted considerable interest internationally. There were 155 participants 

from 31 countries, 18 from Europe, the United States, Canada, Japan, Costa Rica and Sudan. 70 

papers were submitted of which 20 were presented in the form of posters and 25 as invited papers. 

Among the oral and invited presentation papers, 30 papers have been peer-reviewed and 

publishedin a special issue of the Radiation Measurement Journal. Oral presentation slides are 

available at the ORAMED project website.  

 

5.4 Conclusions 

The main objectives of WP5, ensuring a correct dissemination of the main milestones and 

conclusions of ORAMED and developing novel training tools and materials to guarantee a practical 

impact on medical staff of the project findings, have been fully achieved. 

The composition of the consortium with representatives from research institutes, universities, 

hospitals, government bodies and commercial companies, as well as the coupling of experimental 

dose measurements and high accuracy modelling capabilities, have been very useful to reach 

those objectives.  

The radiation protection recommendations and calibration guidelines developed within the 

framework of the project summarize the main findings and have been distributed to medical staff 

but also to regulators and policy makers. In addition, the development of a new eye-lens 

dosemeter should be a useful tool to monitor the eye-lens doses in interventional radiology and 

cardiology.  
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The new training materials will surely improve training on radiation protection for medical staff. 

They should help to enhance the awareness of personnel about the organ at risks and the 

procedures which better guarantee a dose reduction. 

There have been more than 40 oral presentations and lectures in international scientific meetings 

and training courses during the project, and more will be delivered in the following years.  

Last but not least, the ORAMED website, hosted by the SCK•CEN, will be maintained up to 5 years 

after completion of the project. It will, thus, contribute to continue the dissemination of the project 

achievements even beyond the project duration. Training material, guidelines, ORAMED 2011 

presentations and list of publications will be available. 
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