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ABSTRACT 

The vibrations of multi-supported tubes subjected to flow 

excitation have been the subject of active research for many 

years, in particular connected with the critical design of heat 

exchangers and fuel bundles of nuclear power facilities. 

Because tubes are often loosely supported, their nonlinear 

dynamics are conveniently addressed through time-domain 

numerical simulations. Turbulence is one of the main excitation 

mechanisms which drive tube vibrations. Recently, we revisited 

the problem of random excitation generation in the time 

domain, by properly emulating the spectral and spatial features 

of the turbulence force field due to transverse flows. A new 

simplified an efficient technique was developed, which we 

successfully compared with a generation method based on the 

classical work by Shinozuka. 

In the present paper, we pursue such work by modeling 

flows which display a significant axial velocity component, 

leading to the convection of turbulence fluctuations. This 

problem has been addressed by many authors in the past, mainly 

focusing on the frequency-based vibratory analysis of flow-

excited plates, pipes and tubes. Here, we focus on several 

techniques for generating time-domain turbulence excitations 

which properly account for the axial turbulence transport term 

of convective flows. More specifically, we start by applying two 

random force generation methods to emulate axial turbulent 

flows and evaluate the practical significance of the cross-

spectral convection delay term. We discuss the use of forces 

applied at fixed locations, the use of travelling forces being also 

investigated. Finally, we discuss the correlation of random 

forces along two orthogonal directions, when simulating two-

dimensional turbulence fields. 

 

NOMENCLATURE 

pC    Amplitude coefficients of the uncorrelated 

random forces which simulate turbulence  

D    Tube diameter  

f   Frequency 

nf   Modal frequencies 

R
f   Reduced frequency 

( )sF t   Contact/friction force at support 
sx  

( )nF t   Modal force  

( , )Af x t   Distributed force field from the axial 

turbulence 

( , )Tf x t   Distributed force field from the transverse 

turbulence 

{ }( )
p

f t  Set of random point forces which simulates 

the continuous turbulence force field 

( )
n

H ω  Modal complex amplitude response of the 

system transfer functions 

k  Index of the spectra frequencies 
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K  Number of positive and negative frequencies 

where spectral components are defined 

l  Index of the POD eigenvalues/eigenvectors 

L    Tube length; number of POD components  

( )An fL    Joint-acceptance correlation integral for axial 

turbulence (mode n ) 

( )Tn fL    Joint-acceptance correlation integral for 

transverse turbulence (mode n ) 

nm   Modal mass 

[ ]( )M f  Frequency dependent signal mixing matrix 

1, 2, ...,n N=  Modal index 

tN   Number of time samples 

P   Number of random point forces used to 

simulate the turbulence excitation 

( )nq t   Modal response 

{ }( )
s
tr   Statistically independent random functions 

{ }( )
s

R f   Fourier transform of the statistically 

independent random functions 

( ), ,
pp i j

S x x f  Cross-spectra between correlated point forces 

( )1 2
, ,

A
S x x ω  Cross-spectrum of the axial turbulence 

( , )Af x t  

( )1 2
, ,

T
S x x ω  Cross-spectrum of the transverse turbulence 

( , )Tf x t  

( )
pp

S f    Cross-spectrum matrix of the correlated point 

forces 

( )
n n

q q
S ω  Auto-spectrum of the modal response ( )

n
q t  

( )
n m

q q
S ω  Cross-spectrum of the modal responses ( )

n
q t  

and ( )
m

q t  

( , )
yy

S x ω  Auto-spectra of the response ( , )Y x t  

( , )
zz

S x ω  Auto-spectra of the response ( , )Z x t  

t    Time  

C
V   Convection velocity of the turbulence eddies 

in axial flows  

AV   Flow axial velocity (assumed constant)  

TV   Flow transverse velocity (assumed constant)  

x    Axial location along the tube 

p
x    Axial location of the random point forces 

which simulate the turbulence excitations 

,y z   Orthogonal motion directions  

( , ), ( , )Y x t Z x t  Flexural responses  

δ ∗
  Displacement thickness of the boundary layer 

f∆   Step between discretized spectral frequencies 

px∆   Distance between two neighbor point forces 

used to simulate the turbulence excitation 

( )
1 2
, ,

A
x xγ ω  Space coherence function of the turbulence 

excitation from an axial flow 

( )
1 2
, ,

T
x xγ ω  Space coherence function of the turbulence 

excitation from a transverse flow 

( )i j
fγ  Coherence functions between the correlated 

point forces 

{ }, ( )( )
ll

ff ψλ   Eigenvalues and eigenvectors from the POD 

decomposition of [ ]( )
pp

S f  

[ ] [ ]( ) , ( )f fΛ Ψ  Matrices of the eigenvalues and eigenvectors 

from the POD decomposition of [ ]( )
pp

S f  

( )A
ωλ  Axial correlation length of the turbulence 

excitation from an axial flow  

( )T
ωλ  Axial correlation length of the turbulence 

excitation from a transverse flow  

k
ϕ   Random spectral phase angle 

( )
P
ωΦ  Local auto-spectrum of the pressure field 

( )RfΦ  Dimensionless spectrum of the local 

turbulence excitation 

( ),
A

x ωΦ  Local auto-spectrum of the turbulence 

excitation from an axial flow 

( ),
T

x ωΦ  Local auto-spectrum of the turbulence 

excitation from a transverse flow 

( )
exc

fΦ  Auto-spectrum of the uncorrelated point 

forces which simulate turbulence 

( ),
p p

x fΦ  Auto-spectrum of the uncorrelated point 

forces which simulate turbulence 

( )yy θχ λ  Azimuthal coefficient for the auto-spectrum of 

the random force ( )
y

A
F t   

( )zz θχ λ  Azimuthal coefficient for the auto-spectrum of 

the random force ( )
z

A
F t   

( )yz θχ λ  Azimuthal coefficient for the cross-spectra of 

the random forces ( )
y

A
F t  and ( )

z

A
F t   

ρ   Flow density (assumed constant)  

ω   Circular frequency 

nω   Modal circular frequency 

nζ    Modal damping 

( )n xϕ   Mode shape 

k
σ   Spectral amplitude coefficients 
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INTRODUCTION 
Predictive computations of the dynamical responses of 

multi-supported tubes subjected to flow excitation have been 

the subject of active research for many years, in particular 

connected with the critical design of heat exchangers and fuel 

bundles of nuclear power facilities. The need to assert the 

suitability and expected life of these components triggered the 

development of computational methods for predictive vibratory 

analysis under realistic conditions. Because tubes are often 

loosely supported, their nonlinear dynamics are conveniently 

addressed through time-domain numerical simulations. 

Turbulence is one of the main excitation mechanisms which 

drive tube vibrations and a component life controlling factor, in 

the long range. Recently, we revisited the problem of random 

excitation generation, in order to properly emulate the spectral 

and spatial features of the turbulence force field due to 

transverse flows, see Axisa et al. [1] for a general overview of 

the problem. A new simplified an efficient technique for 

generating random force fields with suitable spectral and space 

correlation properties was developed, see Antunes et al. [2], 

which we later successfully compared with a more involved 

POD (Proper Orthogonal Decomposition) force generation 

method [3] based on the classical work by Shinozuka et al. [4]. 

In the present paper, we pursue our previous work by 

addressing the time-domain generation of turbulent force fields 

stemming from flows which display a significant axial velocity 

component. 

The phenomenological characterization of the turbulence 

excitation by axial flows has been addressed by many authors in 

the past, since the pioneering work of Corcos [5], Clinch [6], 

Willmarth & Wooldridge [7], Bull [8], Bakewell [9] and 

Gorman [10], among others, but also in more recent times, see 

Au-Yang [11]. These authors mainly focused on the frequency 

domain vibratory analysis of flow-excited plates, pipes and 

tubes, through the corresponding correlation integrals, the so-

called joint and cross-acceptances. Although the main bulk of 

their findings is well established, important points are still open 

to debate, such as the behavior of the turbulence correlation 

lengths as a function of frequency and of the flow velocity, see 

for instance Durant et al. [12] and Leclercq & Bohineust [13]. 
 

 
 

Figure 1: Boundary layer turbulence generated by axial flow on a 

wall at Re 4000=  based on the momentum thickness [14] 

 

As illustrated in Figure 1, borrowed from [14], the 

boundary layer turbulence structures generated by axial flows 

are quite distinct from those displayed by the turbulence of 

separated transverse flows. In particular, the turbulence 

generation mechanism in axial flows is intrinsically connected 

with the convection of the turbulence fluctuations. Therefore, 

although the formulations used to model the fluctuations cross-

spectra from transverse and axial flows present a number of 

similarities, it is important to keep in mind that the physical 

phenomena involved are quite distinct. 

Here, we focus on several techniques for extending our 

previous work in order to deal with convective flows. More 

specifically, we start by applying the force generation methods 

[2,3] to axial turbulent flows and evaluate the practical 

significance of the cross-spectral convection delay term. Then, 

focusing on our implementation of Shinozuka's technique [3], 

which generates a set of partially correlated random forces, we 

discuss the use of excitations applied at fixed locations along 

the tube, as well as the use of forces travelling at the convection 

velocity, for emulating different types of turbulence excitation. 

Finally, we provide some comments on two-dimensional force 

fields, concerning the possible correlation of the random 

excitations along the two orthogonal directions. 

 

EXCITATION FROM TRANSVERSE FLOWS 

We start by recalling well known results concerning the 

linear vibratory responses of tubes subjected to the turbulence 

excitation of cross-flows. Consider a tubular structure with 

length L , external diameter D  and modal properties 
n

m , 
n
ω , 

n
ζ  and ( )

n
xφ , which for the sake of simplicity will be assumed 

identical for the two orthogonal mode sets related to the y  and 

z  motions. The tube is subjected to random force fields 

( , )
y

Tf x t  and ( , )
z

Tf x t  due to the turbulence excitation from a 

transverse flow described by its density ( )xρ  and transverse 

velocity ( )TV x  profiles along the tube. For compactness of this 

presentation, both profiles will be assumed uniform, ( )xρ ρ≡  

and ( ) ,T TV x V x≡ ∀ , however full details on the general 

formulation for non-uniform flows are provided in the papers by 

Axisa et al. [1] and Antunes et al. [2]. 

The linear tube responses are formulated in terms of the 

modal equations ( 1, 2,..., )n N= : 

 
2

2 ( )
y y y y

n n n n n n n n n nm q m q m q F tω ζ ω+ + =ɺɺ ɺ  (1) 

 
2

2 ( )
z z z z

n n n n n n n n n nm q m q m q F tω ζ ω+ + =ɺɺ ɺ  (2) 

with the physical responses ( , )Y x t  and modal forces ( )
y

n
F t  

computed as: 

1 0

( , ) ( ) ( ) ; ( ) ( ) ( , )

LN
y y y

n n n n T

n

Y x t x q t F t x f x t dxφ φ
=

= =∑ ∫  (3) 

and similarly for the orthogonal motion and modal forces:  
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1 0

( , ) ( ) ( ) ; ( ) ( ) ( , )

LN
z z z

n n n n T

n

Z x t x q t F t x f x t dxφ φ
=

= =∑ ∫  (4) 

The dynamics along both directions are dealt similarly, 

therefore we will drop in the following the superscripts ,y z . In 

actual nonlinear tube analysis, when computing the modal 

forces ( )
n

F t , the turbulence force terms in equations (3) and (4) 

will be supplemented by contact/friction forces ( )
s

F t  at the 

1, 2, ..., Ss =  clearance supports, see [1]: 

 

10

( ) ( ) ( , ) ( ) ( )

L S

n n T n s s

s

F t x f x t dx x F tφ φ
=

= +∑∫  (5) 

and other flow terms may be included in (5) if the fluid-elastic 

forces are accounted for, as thoroughly discussed by Piteau et 

al. [15]. However, such aspects are out of the scope of the 

present paper. 

Then, from well established results in the theory of 

random vibrations, the cross-spectra of the modal responses are 

obtained as ( 1, 2,..., ; 1, 2,..., )m N n N= = : 

( )*

1 2 1 2 1 2

0 0

( ) ( ) ( ) ( ) ( ) , ,
n m

L L

q q n m n m TS H H x x S x x dx dxω ω ω φ φ ω= ∫ ∫  (6) 

where ( ) 1
2 2

( ) 2
n n n n n

H m iω ω ω ωω ζ
−

= − +    and the excitation 

field ( , )
T
f x t  is entirely described in terms of its cross-spectrum 

( )1 2
, ,

T
S x x ω . The tube response is given by: 

 

1 1

( , ) ( ) ( ) ( )
n m

N N

yy n m q q

n m

S x x x Sω φ φ ω
= =

=∑∑  (7) 

Often cross-terms are much smaller than the diagonal 

terms in (7), which then simplifies to: 

 [ ]2
1

( , ) ( ) ( )
n n

N

yy n q q

n

S x x Sω φ ω
=

≈∑  (8) 

where: 

( )2

1 2 1 2 1 2

0 0

( ) ( ) ( ) ( ) , ,
n n

L L

q q n n n TS H x x S x x dx dxω ω φ φ ω= ∫ ∫  (9) 

The excitation ( )1 2
, ,

T
S x x ω  from the transverse flow 

turbulence may be conveniently modeled in terms of a local 

auto-spectrum ( ),
T

x ωΦ  and a spatial correlation function 

( )1 2
, ,

T
x xγ ω . For uniform flows we have 

( ) ( ), ,
T T

x xω ωΦ Φ≡ ∀ : 

 ( ) [ ] ( )
( )

1/ 2

1 2 1 2 1 2

1 2

, , ( , ) ( , ) , ,

, ,( )

T T T T

T T

S x x x x x x

x x

ω ω ω γ ω

γ ωω

= Φ Φ

= Φ
 (10) 

where, for cross-flow excitations, the coherence function 

( )1 2, , 1T x xγ ω ≤  which describes the spatial correlation of the 

turbulence eddies is real and may, for homogeneous flows, be 

described using the simple form [1]: 

 ( ) 2 1

1 2
, , exp

( )
T

T

x x
x xγ ω

λ ω

−
= −

 
 
 

 (11) 

where ( )
T
λ ω  is the correlation length of transverse flow 

turbulence fluctuations, which for tube bundles is of the order 

of the tube diameter, see Inada et al. [16]. 

For obvious reasons it is convenient to express the 

turbulence spectra in dimensionless form. For single-phase 

flows, collapsing of experimental data is achieved by scaling 

T
Φ  in terms of the flow pressure head and using the reduced 

frequency /
R T
f fD V= , so that the following dimensionless 

spectrum 
T

Φ  is obtained: 

 
2

21
( ) ( ) ;

2

T

T R T T R

T

V fD
f V D f f

D V
ρ

−

Φ = Φ = 
 
 

 (12) 

and using (9) to (12), the modal tube responses are obtained: 

( )

( )

2 2

2

22 2

( ) ( )

1
( ) ( )

2

n n
q q T n Tn

T T R n Tn

T

S f f H f L

D
V D f H f L f

V
ρ

= Φ

= Φ 
 
 

 (13) 

where 2
( )Tn fL  is the so-called  joint-acceptance integral, which 

encapsulates the combined effects of the spatial correlation of 

the fluctuations 
Tλ  and the structural mode shapes ( )n xφ . This 

is the particular case when m n=  of the general cross-

acceptance integrals: 

 2 2 1

1 2 1 2

0 0

( ) ( ) ( ) exp
( )

Tmn m n

T

L L

x x
L f x x dx dx

f
φ φ

λ

−
= −

 
 
 ∫ ∫  (14) 

where in general ( ) / 1
T

f Lλ ≪ , which allows for interesting 

simplifications in (14), as discussed by Axisa et al. [1]. 

Following the information supplied, we now present the 

simple method introduced by Antunes et al. [2] to simulate the 

time-domain turbulence random field, which uses a set of 

uncorrelated random forces, as well as a general technique 

which generates a set of partially correlated random forces, 

following Shinozuka et al. [3,4]. 

 

Generation method using uncorrelated point forces 

This approach uses uncorrelated point forces located along 

the tube, which are generated with spectral properties and 

amplitudes such that they induce the same linear modal 

responses as the original continuous formulation expressed by 

(13). For a set of P  random uncorrelated point forces spaced 

along the tube, { }( ) ( , )
p p
f t f x t≡  with 1, 2,...,p P= , the 

resulting modal responses read: 

 ( )22

1

( ) ( ) ( ) ,
n n

P

q q n n p p p

p

S f H f x x fφ
=

= Φ∑  (15) 
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where ( ),
p p

x fΦ  is the auto-spectrum of the point force to be 

applied at location 
p

x . 

We now enforce the condition that modal responses (13) 

and (15) be the same for all modes of interest 1, 2,...,n N= : 

 ( ) 2

2
2 2

1

1
( ) , ( )

2
T T

T T

P

n p p p Tn

p

D fD
x x f V D L f

V V
φ ρ

=

Φ = Φ
  

   
   

∑  (16) 

Based on the previous simplifying assumptions, we postulate 

the same spectral content ( )exc fΦ  for each one of the 

equivalent point forces, so that we may write for 1,...,p P= : 

 ( ) ( ),p p p excx f C fΦ = Φ  (17) 

where 0pC >  are unknown amplitude coefficients to be 

computed. Then, replacing (17) into (16), we obtain for 
1, 2,...,n N= : 

( ) 2

2
2 2

1

1
( ) ( )

2
T T

T T

P

exc p n p Tn

p

D fD
f C x V D L f

V V
φ ρ

=

Φ = Φ
  

   
   

∑  (18) 

Identification of the frequency-dependent terms in (18), when 

the joint-acceptance integrals are computed using the 

correlation length values at the corresponding modal 

frequencies, ( )
T nfλ , leads to the excitation spectrum: 

 ( )
2

21

2
exc T T

T T

f
D fD

V D
V V

ρΦ = Φ
  

   
   

 (19) 

and the coefficients 
pC  must fulfill the following N  

conditions: 

 
2 2

1

;( ) ( ) 1, 2, ...,
P

p n p Tn n

p

C x L f n Nφ
=

= =∑  (20) 

whence the corresponding solution: 

2 2 2

1 1 1 2 1

2 2 2

2 2 2 2

2 2 2

2

2
1 1

2
2 2

2

1

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

P

p P

N p N N P

T

T

TN Np

x x x

x x x

x x x

f

f

f

C L

C L

C L

φ φ φ

φ φ φ

φ φ φ

 
    
           

    
         

+

=

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

⋮⋮

 (21) 

which is of the least-squares type, where { }M
+
 is the SVD 

regularized Moore-Penrose pseudo-inverse of { }M . Once the 

parameters of the equivalent force set (17) have been obtained, 

each one of the statistically independent gaussian time-domain 

realizations { }( )
p
f t , at the P  point forces, is generated using 

the standard Inverse Fourier Transform procedure: 

 ( )1
( )

2
; , ...,kt

p

i

k

N
f t FFT e k K K

ϕσ −−= = −  (22) 

using, for each force location 1, 2,...,p P= , sampled random 

phases uniformly distributed in the range [0 2 ]
k
ϕ π∈  and the 

spectral amplitudes: 

 ( )
k exc k

f fσ = Φ ∆  (23) 

A generalization of this procedure can be applied to non-

uniform flows, as explained in [2]. Typically, the procedure 

converges to satisfactory results whenever the number of point 

forces is higher than the number of modes excited.    

 

Generation method using correlated point forces 

The starting point of all spectral-based methods for 

generating a set of P  partially correlated point-forces 

{ }( )
P
f t  is the frequency-dependent excitation cross-spectrum 

(10). In matrix terms, let us write: 

( ) ( )
1/22

, , ( ) ( ) ( ) , 1,2,...,
pp i j i j i j i j

S x x f S f x f f f i j Pγ≡ =∆ Φ Φ =    (24) 

or: 

 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

P

P

pp

P P PP

S f S f S f

S f S f S f
S f

S f S f S f

=

 
 
     
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (25) 

where x L P∆ =  is the flow-subjected tube region connected 

with each point force, within which the turbulence excitation is 

tacitly assumed correlated. For obvious reasons, one should 

expect that ( )
T

x fλ∆ <  within the frequency range of interest, 

for an adequate simulation of the random field. 

Among the techniques developed following Shinozuka’s 

original Cholesky decomposition of [ ]( )
pp

S f , we exploit here 

the elegant approach based on the Proper Orthogonal 

Decomposition (POD) of (24), also known as Karhunen-Loeve 

expansion. We wish to create partially correlated random 

signals { }( )
p
f t  such that their Fourier transform { }( )

p
F f  cope 

with (24). These signals are generated by mixing statistically 

independent signals { }( )
s
r t , with Fourier transforms { }( )

s
R f , 

so that : 

 { } [ ]{ }( ) ( ) ( )p sF f M f R f=  (26) 

where [ ]( )M f  are frequency dependent mixing matrices. Then, 

from (26), we obtain: 

{ }{ } [ ]{ }{ } [ ]

[ ][ ][ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H H H

p p s s

H

pp ss

F f F f M f R f R f M f

S f M f S f M f

=

 ⇒ = 

 (27) 

On the other hand, for each frequency f  one may 

perform an eigen-decomposition of ( )
pp

S f   : 

[ ] [ ][ ] [ ] [ ] [ ]( ) ( ) ( ) ( ) with ( ) ( )
H

ppS f f f f f f I  Ψ = Λ Ψ Ψ Ψ =   (28) 

where matrix [ ] [ ]
1 2

( ) ( ), ( ), ..., ( )
L

f Diag f f fλ λ λΛ =  contains the 

L P=  eigenvalues of ( )
pp

S f   , while the columns of 

[ ] { } { } { }[ ]
1 2

( ) ( ) , ( ) ,..., ( )
L

f f f fψ ψ ψΨ ≡  contain the corresponding 

eigenvectors. Because matrices ( )
pp

S f    are Hermitian 

positive-definite, their eigenvalues ( )l fλ  are always real and 
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positive, while the eigenvectors { }( )
l
fψ  are in general 

complex. From (28) one can state the following relations: 

 

[ ] [ ][ ] [ ]

[ ] [ ][ ][ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H

pp

H

pp

f S f f f

S f f f f

Ψ Ψ = Λ

⇒ = Ψ Λ Ψ
 (29) 

If we now build the mixing matrices [ ]( )M f  in (26) using 

the eigenvectors of ( )
pp

S f   , we have: 

 [ ] [ ] { } [ ]{ }( ) ( ) ( ) ( ) ( )p sM f f F f f R f≡ Ψ ⇒ = Ψ  (30) 

or, from (29) and (30):  

 
[ ][ ][ ]

[ ] { }{ } [ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

H

pp ss

H

ss s s

S f f S f f

S f R f R f f

= Ψ Ψ

⇒ = = Λ

    (31) 

Hence, [ ]( )fΛ  stands as cross-correlation matrices of the 

statistically independent signals { }( )sR f , and are thus naturally 

diagonal. The preceding formulation supplies a convenient 

method for the generation of the partially correlated random 

forces { }( )
p
f t . Using the Inverse Fourier Transform technique 

(with the number of time and frequency samples related as 

2 1N K= + ), the correlated forces arise as the sum of L  

independent principal component (POD) force terms: 

 

{ } { }

{ }( )
1

1

1

, ...,

( ) ( )

;
2

l

k

L

l

p p

l

L

il

pk

l

t
k K K

f t f t

N
FFT e

ϕσ

=

−−

=

= −

=

=

∑

∑
(32) 

with, for each force location 1, 2,...,p P=  and each component 

1, 2,...,l L= , the spectral amplitudes: 

 { } { }{ }( ) ( )
l

pk l k l k
f f fσ ψ λ= ∆  (33) 

and using sampled random phases uniformly distributed in the 

range [0 2 ]
l

k
ϕ π∈ , for each orthogonal component 1, 2,...,l L= . 

Partial correlation of the forces { }( )
p
f t  then stems from the 

superposition of the L  terms { }( )
l

p
f t . When all principal 

components are used, the number of independent signals 

generated equals the number of correlated point forces, L P= . 

This general procedure for generating a random force field 

is more versatile than the simplified method previously 

described. However, it asks for much higher computer 

resources, so that the time-domain excitation generation often 

becomes as computer intensive as the nonlinear numerical 

simulation which follows. 

 

EXCITATION FROM AXIAL FLOWS 
Generalization of the previous techniques to deal with 

turbulent axial flows excitations is quite straightforward. The 

main difference stems from the cross-spectrum of axial flow 

turbulence, which now includes a convection term: 

 ( ) ( )1 2 1 2
, , , ,( )

A A AS x x x xω γ ωω= Φ  (34) 

where the spatial correlation function ( )1 2
, ,

A
x xγ ω  is 

formulated following the phenomenological model attributed to 

Corcos [5] for the cross-correlation of the pressure field at the 

wall surface, whose main features have been firmly established 

through a large number of experiments, see [6-10]. With respect 

to a fixed reference frame, the complex coherence in (34) reads: 

 ( ) 2 1 2 1

1 2
, , exp exp

( ) ( )
A

A C

x x x x
x x

V
iγ ω

λ ω ω ω

− −
= −

  
  

   
 (35) 

where ( )
A
λ ω  is a correlation length of the axial flow turbulence 

fluctuations, while ( )
C

V ω  is the downstream convection 

velocity of the turbulence eddies. The second term of  (35) 

points to the phase difference between the excitations at 
1
x  and 

2
x , which corresponds to a time delay 

2 1
( ) ( ) ( )

C
x x Vτ ω ω= − . 

This phase term represents the typical excitation from a rough 

road with random surface, as "seen" by a vehicle with relative 

velocity ( )
C

V ω , see Figure 2. This is the limit case for which 

Taylor's "frozen turbulence" hypothesis p t p x∂ ∂ = −∂ ∂  

strictly applies. However, turbulence structures (e.g. the road 

profile) statistically change more or less as the flow progresses, 

as governed by the correlation length ( )
A
λ ω  in the decreasing 

exponential term of (35). Notice that this form of turbulence is 

physically non dissociable from the axial flow velocity and 

therefore simply cannot exist if 0
A

V = . It would be wrong to 

see formulation (35) as representing a kind of transverse flow 

turbulence (11) axially convected at velocity 
C

V , which is a 

different thing. And, indeed, when replacing 0
C

V →  in 

formulation (35), we certainly do not obtain (11). 

 

 

 
 

 

 
Figure 2: Analogy between Taylor's frozen turbulence and a 

travelling vehicle on a rough road 

 

A large body of work has been produced for quantifying 

the various parameters in formulation (34)-(35), for internal 

pipe flows [5,6] or external flows over plates [7,8] and 

cylinders [9,10]. Typically, the frequency dependent axial 

correlation length is given by [17]: 

 ( )( ) ( ) with 0.1A CVλ ω ω αω α= ≈  (36) 

CV  

2x  1x  
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which closely follows the results [6-8], while the convection 

velocity is expressed through the empirical relation, in 

agreement with [9]: 

 ( )0.6 0.4 exp 2.2( )
C A A

V V Vωδω ∗= + −    (37) 

where δ ∗
 is the displacement thickness of the boundary layer, 

see [11] for details. 

Corcos model has been criticized for unrealistic behavior at 

low frequencies, in particular leading to unity coherence 

everywhere as 0ω → , see [13]. Bull [8] suggested that, at low 

frequencies, the coherence (35) becomes independent of 

frequency, whereas at higher frequencies it depends on the 

Strouhal number. He found this qualitative change to occur at 

about ( ) 0.36
C

Vωδ ω∗ ≈ . 

 

Generation method using uncorrelated point forces 

Our simplified excitation generation method previously 

presented can be easily extended to deal with axial flow 

turbulence, by replacing the joint-acceptance integrals 
2

Tn
L  in 

equation (21) with the corresponding values in axial flow, 

computed from the corresponding integrals (with m n= ) 

obtained from the coherence function (35): 

( )
2 2 1 2 1

1 2 1 2

0 0

( ) ( ) ( )exp exp
( ) ( ) 2

Amn m n

A C

L L

x x x x
L f x x i dxdx

f V f f
φ φ

λ π

− −
= −

  
  

   ∫∫  (38) 

Notice that, contrary to the real values of 2
( )

Tmn
fL  in (14), 

the cross-acceptance integrals of axial flow turbulence 2
( )Amn fL  

are in general complex, with: 

( )
2 2 1 2 1

1 2 1 2

0 0

( ) 2
Re ( ) ( ) ( )exp cos

( )
C

Amn m n

A

L L

V f f

x x x x
L f x x dxdx

f π
φ φ

λ

− −
= −

  
     

   ∫∫  (39) 

( )
2 2 1 2 1

1 2 1 2

0 0

( ) 2
( ) ( ) ( )exp sin

( )
Im

C

Amn m n

A

L L

V f f

x x x x
L f x x dxdx

f π
φ φ

λ

− −
= −

  
     

   ∫∫  (40) 

However, as shown by Bolotin [18], if one neglects cross-

modal interactions and only the joint-acceptances are of 

interest, then sole the real part of (38) is relevant. To illustrate 

the practical effect of the convective term, let us compute (39) 

for the simple case of a pinned-pinned beam, as a function of 

axial correlation length and convection velocity. In 

dimensionless form, the joint-acceptance from (39) reads:  

2 2 1 2 1

1 2 1 2

1 1

0 0

( ) ( )
( ) ( ) ( )exp cos

A C

An n n
f X f

x x x x
L f x x dx dx

λ
φ φ

− −
= −

  
  

   ∫∫  (41) 

where /x x L= , ( ) ( )
A A

f f Lλ λ= , ( )( ) 2( ) /
C C

X f V fLf π=  

and 
2 2 2

( ) ( )
An An

L f L f L= . 

Notice that, in this formulation, the phase-lag convection 

term is ignored when assuming ( )
C

X f → ∞ . The integral (41) 

was computed analytically for all mode shapes of the form 

( ) sin( )
n
x n xφ π= , but the result is too involved to be usefully 

reported here. Instead, we plot in Figure 3 the values of 
2

( )
An

L f , for the first two modes of the beam, as a function of  

( )
A

fλ  and ( )
C

X f . These plots have been computed over a 

very large range of values ( )
A

fλ , however only those such that 

( ) 1
A

fλ ≪  are typically of physical interest. One can notice 

that for the first mode, which is symmetrical, accounting for the 

phase convection term ( )
C

X f  always leads to lower values of 

the beam vibratory amplitude. Such difference increases very 

significantly as the axial correlation increases and the 

convection velocity decreases. Results for the second mode, 

which is anti-symmetrical, are less obvious. However, in the 

lower range ( ) 1
A

fλ ≪  of interest, the same scenario applies. 

 

 
Figure 3: Normalized joint acceptances for the first two modes of a 

pinned-pinned beam as a function of ( )
A

fλ  and ( )
C

X f : 

Mode 1, upper plots; Mode 2, lower plots 

 

One may conclude from these plots that ignoring the 

convection term usually overestimates the tube vibration 

amplitude predictions, an overestimation which can be very 

significant at low values of the convection velocity. A more 

specific representation of the global effects from the axial 

turbulence excitation is obtained by replacing the general 

parameter ( )
A
λ ω  in (41) by the axial correlation length model 
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(36), hence ( ) 10 ( ) 10 ( )
A C C

V L X fλ ω ω ω= = . The results then 

obtained are plotted in Figure 4, for the first five beam modes. 

The lower plots were computed including the phase convection 

term in equation (41), while the upper plots were computed by 

neglecting the convection term. These plots further highlight 

our previous conclusion on the serious overestimation of the 

predicted vibratory levels at low convection velocities, if the 

convection term in (41) is ignored.  

 

 
Figure 4: Normalized joint acceptances for the first five modes of a 

pinned-pinned beam as a function of ( )
C

X f  for ( )( ) 10
CA

X ffλ = : 

Neglecting the convection term, upper plots; Including the 

convection term, lower plots 

 

Time-domain numerical simulations using the proposed 

simplified excitation generation method are not shown here for 

lack of space. Nevertheless, the validation computations 

performed for a linear tube confirmed that this technique 

produces correct results and is effective for simulating the 

random excitation by axial turbulent flows. 

 

Generation method using correlated point forces 
The general excitation generation method described for 

transverse flows also applies readily to axial flows. If the 

complex cross-spectra (34)-(35) are used for building the 

spectral matrix (25) of the random point forces, then one 

obtains directly the time-lagged partially correlated excitations 

with the adequate spectral and spatial features. 

If the convection velocity 
C

V  is the same for all frequencies 

of interest, a more restricted but equivalent method is to 

generate the point forces using real cross-spectra of the form 

(11), e.g. "neglecting" the convection term in (35) for 

generating a set of provisional time-domain forces 
0
( )

p
F t , 

which are then lagged in the following manner: 

 
0

0
( ) ( ) with ( )

p Cp p p pF t F t x x Vτ τ= − = −  (42) 

where 
0
x  is any reference location. 

To illustrate the actual generation results for a set of 

correlated point forces using the general method, we show in 

Figure 6 the time-histories of five of these, which were 

computed from a complex cross-spectral matrix of which a few 

neighbor terms are shown in Figure 5 (in the form of amplitude 

and phase spectra, as a function of frequency). For these 

simulations, a tube with 1 mL =  and 0.02 mD =  was used, 

acted by a total of 51P =  random point forces, with 

0.02 m
p

x∆ = . The flow excitation was assumed uniform, with 

an axial velocity m/s5
A

V = . 

 

 

 

Figure 5: Some of the neighbor terms of the frequency dependent 

cross-spectral matrix for the point forces which simulate the 

turbulence excitation by an axial flow: Amplitude cross-spectra, 

upper plots; Phase cross-spectra, lower plots 
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The computations of Figures 5 and 6 were performed 

assuming a low value of the space correlation m0.02
A

Dλ = =  

and the convection velocity m/s5
C A

V V= = . On can notice the 

lag effects on the phase spectra shown in Figure 5. The partially 

correlated resulting point forces illustrated in Figure 6 also 

encapsulate the convection time lag, an effect which is not well 

perceived because of the small axial correlation length used for 

this computation, m0.02
A

Dλ = = , which leads to a low 

"memory" of the generated signals, as the turbulence convects. 

The signals in this example depart somewhat from the frozen 

turbulence scenario. On the contrary, a significant "memory" 

effect on the convected turbulence become evident for the 

simulation results shown in Figure 7 using a higher correlation 

length, m10 0.2
A

Dλ = = . These results clearly illustrate the 

convection time lags between the well correlated point forces. 

 

 
Time [s] 

Figure 6: Samples of the generated neighbor correlated time-

domain random point forces, simulated using parameters 

postulated frequency independent: 

 m0.02
A

Dλ = =  and m/s5
C A

V V= =  

 

 
Time [s] 

Figure 7: Samples of the generated neighbor correlated time-

domain random point forces, simulated using parameters 

postulated frequency independent: 

 m10 0.2
A

Dλ = =  and m/s5
C A

V V= =  

Again, the time-domain vibratory responses computed for 

validation under linear conditions, using excitations generated 

with this general method, led to satisfactory results. 

 

Axial convection of transverse turbulence 

At this point, the reader may wonder about the dynamical 

effects of the turbulence excitation from a transverse flow if the 

corresponding random force field is also subjected to an axial 

transport at velocity 
C

V . This hypothetical case, which was 

mentioned before in the paper, may be seen as being purely 

speculative, or else considered as a real physical possibility. We 

will not debate here on which should be the most physically 

plausible manner of tackling the problem of oblique flows, but 

will be simply interested in using the computational tool 

developed to investigate this case. 

Therefore, using the force generation technique based on 

correlated point forces, we generated a set based on the real 

cross-correlation (11) for transverse turbulence. These random 

forces were then convected axially with velocity 
C

V  and 

projected on the tube modes at the corresponding mobile 

locations { } { }
0

( ) ( )
p p C

x t x t V t= + ∆ . Illustrative results are 

shown in Figure 8, which shows the root-mean-square 

amplitude responses of the first 3 tube modes, for a given 

transverse flow velocity 
T

V , as a function of the convection 

velocity 
C

V . These results pertain to a correlation length 

/ 0.1
T

Lλ = , but a similar scenario was obtain for other values 

of the correlation. 

 
Figure 8: Vibratory responses of a tube subjected to the random 

excitation of a transverse flow, which is axially convected at 

velocity 
C

V  

 

From this data it can be concluded that the vibratory 

responses to a transverse turbulence excitation which is axially 

convected are totally insensitive to the convection velocity 
C

V , 
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irrespective of the turbulence correlation length. This behavior 

is in clear contrast to the behavior of axial turbulence 

excitations, as displayed in Figure 4. 

 

TWO-DIMENSIONAL FORCE FIELDS 
An aspect often casually addressed in the literature is the 

correlation between the two orthogonal excitation forces 

,
( , )

y

A T
f x t  and 

,
( , )

z

A T
f x t , which result from the turbulence 

pressure field ( , , )p x tθ . Actually, most often the orthogonal 

forces are simply postulated uncorrelated, without any further 

argument. In fact, for axial flows such assumption is easily 

justified, from the pressure cross-spectrum:  

( ) ( )

( )
1 2 1 2 1 2 1 2

1 2 1 2 1 2

, , , , ( ) , , , ,

( )
( ) ( ) ( )

exp exp cos
A C

P P

P

S x x x x

x x x x

V
θ
λ λ

θ θ ω ω γ θ θ ω

θ θ ω
ω

ω ω ω

= Φ

− − −
= Φ − −

    
    

    

 (43) 

where ( )
θ
λ ω  is the pressure azimuthal correlation angle. When 

used to compute the auto and cross-spectral terms of the 

resulting random forces: 

( ) ( )
2

1 2 1 2 1 2 1 2 1 2
4

, , , , , , cos cos
y yF F p

D
S x x S x x d d

π π

π π

ω θ θ ω θ θ θ θ
− −

= ∫ ∫  (44) 

( ) ( )
2

1 2 1 2 1 2 1 2 1 2
4

, , , , , , sin sin
z zF F p

D
S x x S x x d d

π π

π π

ω θ θ ω θ θ θ θ
− −

= ∫ ∫  (45) 

( ) ( )

( )

2

1 2 1 2 1 2 1 2 1 2

1 2

4
, , , , , , cos sin

, ,

y z

z y

F F p

F F

D
S x x S x x d d

S x x

π π

π π

ω θ θ ω θ θ θ θ

ω
− −

=

=

∫ ∫
 (46) 

we obtain for (44): 

( ) ( ) ( )2 1 2 1 2

1 2
, , ( ) exp cos

( ) ( )y yF F yy

x c

P

x x x x
S x x

V
θ

ω
ω ω χ λ

λ ω ω

− −
Φ −

   
=    

   
 (47) 

with: 

 

( )
2

2

2

2

2 1

2

2

1 2

2

1 2

1 2 1 2

1 1

2 2

1 1

4

exp
( )

4
exp

( )

exp cos cos
( )

cos

cos

cos

yy

D

D

d d

d

d

d

θ

θ

θ

θ

π π

π π

θ

π
θ π

θ π
π

θ

χ λ

θ θ

λ ω

θ θ

λ ω

θ θ
θ θ θ θ

λ ω

θ θ

θ θ

θ θ
+

− −

−

−

−
−

−
+ −

−
−
 

=  
 

  
  
  

=  
  
    

∫

∫

∫ ∫

∫
 (48) 

and similarly for the integrals (45)-(46). One thus obtain: 

 ( ) ( )
[ ]

2

2 2

2

( )
1 exp

2 ( )1 ( )
yy zz

D
θ

θ θ

θθ

λ ω π
χ λ χ λ

λ ωλ ω

π
+ −

+

  
= =   

  
 (49) 

and: 

 ( ) ( )2 2
( )0 ,

yz zyθ θ θ
χ λ χ λ λ ω= = ∀  (50) 

which shows that, for axial homogeneous turbulence, the two 

resulting orthogonal random forces will be uncorrelated, 

irrespective of any value of the azimuthal correlation ( )
θ
λ ω . 

Please note that a result different from (49) has been used by 

several authors, for instance Clinch [6] et Chen & Wambsganss 

[17], which in our view is erroneous. Actually, the manner used 

by these authors for performing the integration (44) ignores the 

correlation overlap which occurs  in circular geometries. As a 

consequence, if they also computed integral (45) using their 

technique, different results would be obtained for ( )
yy θχ λ  and 

( )
zz θχ λ , which is not acceptable. Solution (49) was also 

obtained by other authors, for instance Axisa [19].  

The various coefficients are illustrated in Figure 9, as a 

function of the correlation angle. Notice that, because 

( ) 1/
θ
λ ω π ≪ , coefficients (49) may be linearized in the range of 

interest and one obtains: 

( ) ( ) ( )
2 2

32 2
( ) ( ) ( )

2 2
yy zz

D D
θ θ θ θ θ

χ λ χ λ λ ω λ ω λ ω
π π

− + ≈ = =  ⋯  (51) 

 
Figure 9: Change of the azimuthal spectral coefficients from the 

axial turbulent pressure field 

 

Unfortunately, analysis of the turbulence from transverse 

flows is more difficult. Actually, flow separation generates a 

non-homogenous azimuthal pressure field, which renders the 

computation of the spectral function (44)-(46) more difficult. 

Nevertheless, if suitable measurements of the azimuthal 

correlation are available, one may also compute an objective 

measure of the correlation between the two orthogonal resulting 

forces. This issue certainly deserves to be resolved.  
 

CONCLUSIONS 

In this paper we address the practical topic of generating 

random force sets to simulate the turbulence excitations by 

transverse and axial flows in the time-domain. Computational 

methods previously developed by the authors have been 

extended to deal with the excitation by axial flows. Illustrative 

computations of several excitation cases were presented and the 

dynamical effects of turbulence convection illustrated. 
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Both turbulence emulation techniques presented in this 

paper proved adequate and reliable. They constitute a sound 

excitation basis, on which realistic linear and nonlinear time-

domain numerical simulations of flow-excited multi-supported 

tubes can be achieved. Our simplified force generation method, 

although less physically tangible that Shinozuka's technique, is 

computationally much faster. Therefore we believe that both 

approaches are equally interesting and useful. 
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