
Transactions, SMiRT 21, 6-11 November, 2011, New Delhi, India Div-I: Paper ID# 881 

 1

EXPERIMENTS AND COMPUTATIONS OF A LOOSELY SUPPORTED 

TUBE UNDER TWO-PHASE BUFFETING AND FLUID-ELASTIC 

COUPLING FORCES 
 
X.Delaune1, J.Antunes2, P.Piteau1, L.Borsoi1 
1Commissariat à l’Energie Atomique et aux Energies Alternatives, Laboratoire d’Études de Dynamique, 
CEA,DEN,DM2S,SEMT,DYN, Saclay, France 
2Instituto Tecnologico e Nuclear, Applied Dynamics Laboratory, ITN,ADL, Sacavem, Portugal 
E-mail of corresponding author:  xavier.delaune@cea.fr 
 
ABSTRACT 

 
In a recent paper we addressed the problem of predicting the nonlinear vibro-impact responses of loosely 

supported heat-exchanger tubes subjected to single-phase turbulence and fluid-elastic coupling forces from 
transverse flows. Here, we extend that previous work to two-phase flows, by presenting nonlinear time-domain 
predictive computations, as well as validation experiments, of the vibro-impacting dynamical tube responses, when 
subjected to the combined action of two-phase random buffeting excitation and fluid-elastic coupling forces. 
Emphasis is on the fluid-elastic modeling within a time-domain nonlinear framework, as well as on the stabilizing 
effect of impacts on the fluid-elastic coupling forces. Computations of the vibro-impacting regimes of a flow-excited 
cantilever test tube, within a rigid 3x5 square bundle, are based on the experimentally identified two-phase fluid-
elastic coupling force coefficients and random excitation spectra, as a function of the homogeneous flow velocity, 
for a void fraction of 85 %. Computations are then compared with the experimental vibratory responses, enabling a 
satisfying preliminary validation of the modeling approach for two-phase flows. 
 
INTRODUCTION 

 
  Heat-exchanger tube bundles are subjected to fluid-elastic coupling forces, which depend on the bundle 

geometry, fluid nature – single-phase or two-phase – and on the fluid velocity. Reliable modeling of such coupling 
forces is very difficult, therefore several authors since the pioneering work of Tanaka & Takahara [1] have 
attempted to measure the fluid-elastic linearized stiffness and damping coefficients as a function of the flow reduced 
velocity (or reduced frequency), for specific fluid mixtures and bundle geometries, in order to link the dynamical 
behavior of the flow-coupled tube bundle with simpler stability criteria such as provided by Connors [2] and many 
others since. When looking at the gap-supported tubes of real-life components, time-domain nonlinear computing 
methods have been developed by several research groups for the predictive analysis of vibro-impacting flow-excited 
tubes. As far as fluid-elastic forces are concerned, the first attempt to include them in the computations – along with 
the ever-present turbulent excitation – was achieved by Axisa et al. [3], who used a flow velocity-dependent 
negative damping coefficient on the linearly unstable mode, deduced from Connors formulation. This pioneering 
approach was followed by others, along similar lines – see Fricker [4], for instance, who additionally corrected the 
computation of the fluid-elastic coupling effect by using an estimate of the actual response frequency instead of the 
modal frequency of the unstable mode. Since then, others have tackled this problem in a more sophisticated manner, 
by directly incorporating in their computer programs models of the fluid-elastic coupling forces [5-8].  

Nevertheless, it is still debatable how realistic are the strongly nonlinear and unsteady vibro-impact regimes 
produced by computations which stem from fluid-elastic coefficients obtained under linear and steady conditions. 
Furthermore, it is well known that, when gap-supported tubes become linearly unstable, impacting produces an 
increase of the actual tube response frequencies, which somehow tend to re-stabilize the system. Because of these 
difficulties, there is urgency in validating. We believe that carefully controlled experiments of gap supported tubes 
subjected to fluid-elastic coupling forces are needed, in view of validating the current computational approaches for 
such systems, as well as to increase our physical understanding of the stabilizing mechanisms provided by the 
impact dynamics. 

Therefore, based on the active vibration control method proposed by Caillaud et al. [9], new experiments 
were recently performed at CEA-Saclay on the same experimental rig, consisting on a flexible tube (vibrating along 
the lift direction) inserted in a rigid square bundle [10]. First, the linearized fluid-elastic coupling coefficients, as 
well as the turbulence excitation from single-phase flow, were identified for a significant range of reduced velocity, 
in water cross-flow. Then, nonlinear experiments were performed under the same conditions after installing an 
instrumented loose support in the rig, from which both the tube responses and the impact forces were measured. 



Transactions, SMiRT 21, 6-11 November, 2011, New Delhi, India Div-I: Paper ID# 881 

 2

These experimental results were compared with the linear and vibro-impact numerically simulated responses 
obtained from a time-domain computer program, where the experimentally identified linear fluid-elastic coupling 
coefficients were implemented. A delicate aspect of such implementation is the real-time estimation of a 
representative instantaneous response frequency of the vibro-impacting tube, which is needed because the coupling 
coefficients depend on the “instantaneous” reduced frequency. For single-phase flows the results obtained using the 
developed methodology were quite satisfactory [10].  

In this paper we now present the first results obtained by extending our previous work to two-phase flows. 
Theoretical computations of the vibro-impacting regimes of a flow-excited cantilever test tube, within a rigid 3x5 
square bundle, are based on the experimentally identified two-phase fluid-elastic coupling force coefficients and 
random excitation spectra, as a function of the homogeneous flow velocity, for a void fraction of 85 %, which is a 
typical value in the upper region of steam generators. Details on the following aspects are reported in the paper: (1) 
Numerical modeling of the buffeting and fluid-elastic coupling forces for performing the time-domain computations; 
(2) Experimental identification of the fluid-elastic coupling coefficients and random excitation spectrum; (3) 
Computations and experiments of vibro-impacting responses under the combined action of the buffeting excitation 
and fluid-elastic coupling; and (4) Energy aspects of the vibro-impacting fluid-elastically coupled tube responses, 
which highlight the nonlinear stabilization of fluid-elastically unstable tubes. 

 
NUMERICAL MODELING OF THE FLOW-EXCITED GAP-SUPPORTED TUBE 

 
Time-Domain Computation of the Nonlinear Dynamics 

As discussed in [3], the simple Bernoulli–Euler theory for flexural vibrations proved to be adequate for 
impact identification. Therefore, assuming a viscous damping model, the small-amplitude flexural response of a tube 
with constant cross-sectional properties is described by the differential equation: 

 
2 4

2 4
( , ) ( , ) ( , ) ( , )F T C

Y Y Y
A EI f x t f x t f x t f x t

tt x
ρ η

∂ ∂ ∂
+ + = = + +

∂∂ ∂
 (1) 

where ( , )f x t  is the total external excitation field and ( , )Y x t  is the tube transverse flexural response, E  is Young’s 

modulus and ρ  is the mass density of the tube, A  is the area and I  is the moment of inertia of the cross-section, 

while η  is a viscous dissipation coefficient. The total excitation field in equation (1) stems from the fluid-elastic 

coupling forces ( , )Ff x t , the turbulence forces ( , )Tf x t  and the contact/impact forces ( , ) ( ) ( )C C C

C

f x t F t x xδ= −∑  

located at the loose supports 
Cx . As amply discussed by Axisa et al. [3] and Antunes et al. [11], the vibro-impact 

nonlinear computations under flow excitation may be performed in an effective manner by projecting equation (1) 
on the tube unconstrained modes ( )n xϕ . Then, the following discretized modal equations are obtained [10]: 

 { } { } { } { } { } { }( ) ( ) ( )F T C

S S SQ Q Q t t t+ + = + +          
ɺɺ ɺM D K F F F  (2) 

in terms of the vector of modal amplitudes ( )nq t  and its derivatives. The modal matrices of the left hand side of 

equation (2) are built from the modal masses nm , frequencies nω  and damping values nζ , with  1, 2, ...,n N= .  

The total modal forces ( )nF t  in the vectors of right hand side of equation (2) are computed from the modal 

projections of the fluid-elastic, turbulence and contact/impact terms : 
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= = = − =  
 
∑ ∑∫ ∫ ∫  (3) 

where L  is the tube length. The physical motions may be computed from the modal responses at any time and 
location, by modal superposition. The computational truncation index N  of the modal basis is chosen accounting 
for the frequency ranges excited by the various sources of excitation. 
 
Fluid-elastic Coupling Forces 

In their recent work, Hassan & Hayder [8] developed a direct implementation of the Lever and Weaver [12] 
model to compute the fluid-elastic coupling forces, which does not require the knowledge of the instantaneous tube 
response frequency. However, the most common approach – and the only available if one wishes to use 
experimentally identified force data – is to express the linearized fluid-elastic forces ( , )Ff x t  in terms of coupling 

coefficients FM , FD  and FK , which in general depend on RV . Then, the fluid-elastic force reads: 
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 ( ) ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )F F F R F Rf x t M Y x t D V x t Y x t K V x t Y x t= − − −ɺɺ ɺ  (4) 

where only the fluid inertia coupling coefficient does not depend on the reduced flow velocity 

( , ) ( ) ( , )R rV x t V x f x t D =   . Here, ( , )rf x t  is an estimate of the “instantaneous” local response frequency of the 

nonlinearly vibrating tube, when performing time-domain numerical simulations. Several methods have been used 
by researchers in this field, including straight time-domain evaluations of the zero-crossing frequency or a time-
window adaptation of Rice’s formula [13]: 

 
( , ; )1

( , )
2 ( , ; )

Y
r

Y

x t
f x t

x t

σ τ

π σ τ
=

ɺ

 (5) 

or our own technique, which is thoroughly explained in [10]. It is convenient to define dimensionless coupling 
coefficients in terms of the reduced velocity, which may be presented in the following form [1,14]:  

 
( ) ( ) ( )2 2

( ) ( )
; ( ) ; ( )

1 21 2 1 2
F F R F R

m d R k R

M D V K V
C C V C V

DVLD L V Lρρ ρ
= = =  (6) 

Then, after modal projections, the fluid-elastic force field (4) leads to the following modal forces: 

 { } [ ]{ } [ ]{ } [ ]{ }( ) ( ) ( )F

F F Ft Q t Q t Q= − − −ɺɺ ɺF M D K  (7) 

where the terms of the modal fluid-elastic coupling matrices are computed as: 

 ( ) ( )
0 0 0

( ) ( ) ; ( ) ( , ) ( ) ( ) ; ( ) ( , ) ( ) ( )
L L L

F F F

nm F n m nm F R n m nm F R n mm M x x dx d t D V x t x x dx k t K V x t x x dxϕ ϕ ϕ ϕ ϕ ϕ= = =∫ ∫ ∫  (8) 

From (2) and (7) one can obtain the changes in the system modal properties, due to the fluid-elastic 
coupling, as a function of the flow velocity. In the frequency domain: 

 [ ]( ) [ ]( ) [ ]( ) { } { }2 ( ) ( )S F S F R S F RV V Qλ λ + + + + + =            0M M D D K K  (9) 

where  ( ) ( ) ( )
n R n R n R
V V i Vλ σ ν= ±  are the complex eigenvalues of the flow-coupled system, which are related to the 

modal properties as 2 2( ) ( ) ( )
R R Rn n nV V Vω σ ν= +  and ( ) ( ) ( )

R R Rn n nV V Vζ σ ω= − . Notice that, because the modal 

coupling coefficients depend on the response frequencies encapsulated in 
R

V , the eigen-computation (9) should be 

performed in iterative manner. 
 
Random buffeting Forces 

Modeling of the turbulence excitation ( , )Tf x t  by the transverse flow is based on the general theory 

developed by Axisa et al. [15]. Then, generation of time-domain realizations of the turbulence forces is achieved 
using the efficient method recently proposed by Antunes et al. [16]. Accordingly, we start from the measured 

equivalent reference spectrum [ ] ( )Re
fΦ  of the random forces per unit tube length. Then, a set of uncorrelated 

random point forces is applied along the tube, using a computation technique which preserves the spectral content as 
well as the space correlation of the original turbulence force field, accounting for the flow velocity profile. See the 
aforementioned references for details. 

As is well known, the random excitation data from single-phase flows collapse well when plotted in terms 

of the reduced frequency 
R
f  and the force spectra are reduced using the square of the pressure head, see [15]. 

Unfortunately, the scenario is much more complex when working with two-phase flows, and finding satisfactory 
dimensionless parameters for two-phase buffeting excitation spectra still remains an open issue, because of the flow 
complexity and the complex manner in which the flow structure and buffeting forces depend on the flow velocity 
and on the void fraction, as discussed by Axisa et al. [15] and de Langre & Villard [17]. However, such problem is 
slightly alleviated in the present work, as shown in the following, because we are dealing here with a single value of 

the void fraction ( ) 0.85air air liqQ Q Qα = + = , where airQ  and liqQ  are the volume flow rates of air and water, 

respectively. 
 

Contact Forces at Loose Supports 

A single nonlinear loose support is assumed in this paper, in accordance with the experimental rig. The 
contact force ( )CF t  is computed in an explicit manner from the system response, at each time-step, using the 

following penalty formulation: 
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δ
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where CK  is a suitable value for the contact stiffness at the support, which is pragmatically adjusted such that the 

numerical simulations reproduce the elementary contact duration of the experimental impacts. Because the tube 
motions studied in this paper are planar and the corresponding impacts only display a radial component, there is no 
need to implement a friction contact model [11]. 
 
EXPERIMENTAL RIG AND TEST PROCEDURES 

 
The test rig, shown in Fig. 1, is essentially the one used in [9] in their tests, however a new instrumented 

tube with quite different modal frequency was used in the present experiments. Furthermore, the present 
experiments were designed for flow-excited vibro-impacting on an instrumented loose support. The flexible steel 
tube, with the previously stated length 

fL  and diameter D , has a thin wall 0.5 mme = , being relatively light when 

compared with the added mass from the external fluid. The tube is clamped through a flat bar of length 100 mm, in 
order to constrain the vibrations to be planar. This tube is the central one of a 3 5×  square bundle of rigid tubes with 
reduced pitch / 1.5P D =  (plus two columns of 5 half-tubes at the boundaries). The first modal frequency of the 
rigid tubes lay beyond 1 kHz, two orders of magnitude higher than the first modal frequency of the flexible tube. For 
illustration, the modeshapes of the first four modes of the flexible tube, based on a finite element computation, are 
shown in Fig. 2. 

Two-phase air/water flows with void fraction 0.85α =  were imposed along the vertical direction, with 

inter-tubes velocity in the range 3 ~ 20 m/shV = , based on the homogeneous flow model. Measurement of the tube 

dynamical displacement, along the lift (horizontal) direction, was provided by a Zimmer camera OHG-100A, 
pointed toward the end of the tube. As shown in Fig. 1, for the nonlinear tests, two instrumented gap-stops were 
located symmetrically at the tube half-length. The impact force measurements were performed by two piezoelectric 
force transducers Kistler 9132A. 

     
 

Fig.1: Experimental rig and electromagnetic shaker for feedback control of the tube damping and stabilization 
 

The first tests, performed under linear conditions (no loose support), were intended for the experimental 
identification of the fluid-elastic coupling coefficients ( )d RC V  and ( )k RC V , the added mass 

mC  being assumed 

independent of the flow velocity. In order to explore the full range of experimental reduced velocity – beyond the 
fluid-elastic stability boundary of the “normal” system – the analog feedback stabilization technique [9] has been 
adopted. It is, essentially, the one used earlier by Antunes et al. [18] in their feedback controlled instability tests, but 
with reversed polarity. As implemented in the present experiments at CEA, the flexible tube was fitted with an 
accelerometer Endevco 2222C, located near the node of the tube second mode, whose response signal was 
electronically time-integrated and amplified, being then fed to the electromechanical shaker shown in Fig. 1. 

A negative feedback loop was thus created, enabling a higher value of the tube first mode damping, which 
was controlled through the gain of the power amplifier. Note that, due to the filtering used in the feedback loop to 
avoid undue modal spillover, the control force was not exactly in phase with the tube velocity. As a result, some 
residual feedback also affected the stiffness term, resulting in a change of the controlled tube modal frequency. This 
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effect was carefully corrected when extracting the flow-coupling coefficients from the identified modal parameters. 
This control system enabled us to identify the fluid-elastic coefficients under linear conditions in the range 

3 ~ 20 m/shV = , corresponding to the reduced velocity 3.5 ~ 17.5RV = . 
 

     
 

Fig.2: First modeshapes of the modal basis used for the nonlinear time-domain computations 
 
FLUIDELASTIC AND BUFFETING FORCES FROM THE TRANSVERSE FLOW 

 

Identified Fluid-Elastic Force Coefficients 

Because the added mass 
mC  is assumed independent of the flow velocity, the inertia coupling by the flow is 

trivially obtained by comparing the modal frequencies in air and in “stagnant” fluid, respectively 31.0 Hz  and 

27.6 Hz  for the first mode. Similarly, the viscous fluid damping coefficient (0)dC  at near-zero flow velocity can be 

inferred from the modal damping values in air and in “stagnant” fluid, respectively 0.33 %  and 5.0 % . The 

corresponding values of the modal mass, for the first mode, were found to be 0.066 kg  and 0.071 kg  (with 

modeshapes normalized such that max 0 1[| ( ) |]n Lxϕ ≤ ≤ = , as shown in Fig. 2). 

Application of the general formulation (9) to our system has shown that the incidence of the fluid-elastic 
forces on the tube higher-order modes is negligible. Therefore, under flow conditions, the fluid-elastic coupling 

coefficients ( )k RC V  and ( )d RC V  are also easily inferred from the identified first modal frequency 
1
( )

R
f V  and 

damping value 
1
( )

R
Vζ , accounting for the added damping from the stabilizing feedback loop – see [9] for details. 

The fluid-elastic coefficients, identified from the system response to the flow random excitation, are shown in Fig. 3 
as a function of the reduced flow velocity 

RV . In accordance with equation (7), the sign convention for the fluid-

elastic coefficients plotted in Fig. 3 is such that positive values of ( )k RC V  would increase the modal frequency of 

the flow/structure coupled system. Similarly, positive values of ( )d RC V  are stabilizing. Notice that, for the full range 

of flow velocity explored in the tests, ( )k RC V  is positive, changing with 
R

V  in a capricious manner. More 

importantly, the general trend of ( )d RC V  decreases as 
R

V  increases, clearly becoming negative beyond 14
R

V > , or 

equivalently 13 m/shV = . Then, accounting for the added damping term under “stagnant” conditions, fluid-elastic 

instability by negative damping arises beyond the critical reduced velocity 16
RC

V > , or equivalently 16 m/shCV = . 

Also notice the local increase of 
dC  in the range 10 ~ 12

R
V ≈ , a behavior which might be attributed to a change of 

the flow regime. 
 

Identified Turbulence Excitation 

Using linear theory – see [14,15] for details – we identified the amplitude of the buffeting excitation 
spectrum from the random vibratory response of the tube first mode, as the flow velocity was increased. The 
dimensionless results thus obtained are shown in Fig. 4, as a function of the reduced frequency 

Rf . In the figure are 

shown the data points of the identified excitation at increasing flow velocity, as well as the corresponding 
dimensionless spectrum, fitted as:   

 [ ]
6 3.82

2 1.39

4.3210 ( ) if 0.038
( )

if 0.0381.2810 ( )

R R

Re
RR

f f
f

ff

− −

− −

 <
Φ = 

≥
 (11) 
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As previously discussed, it would hardly be straightforward to infer a relevant dimensionless two-phase 
spectrum if we were addressing a range of void fractions, instead of the single value 0.85

h
α = .  Superimposed in 

the plot is the reference spectrum [ ] ( )Re
fΦ  which was proposed as a design guideline by de Langre & Villard [17]. 

One can notice that, except at higher reduced frequencies, this guideline spectrum seriously overestimates the two-
phase excitation identified for our experimental tube bundle, at this void fraction. 

 

 
 

Fig.3: Identified dimensionless fluid-elastic coupling 
coefficients, as a function of the flow reduced 

homogeneous velocity, for the void fraction 0.85hα =  

 
Fig.4: Identified excitation data at 0.85hα = , shown 

with the Equivalent Reference Spectrum of buffeting 
forces per unit length by de Langre & Villard [17] 

 
 

COMPUTATIONAL AND EXPERIMENTAL VIBRO-IMPACT RESPONSES 

 

We now address the most important aspect of this work, namely, the unsteady nonlinear dynamics of the 
vibro-impacting flow-excited tube. In Figs. 5 to 7 we present a comparison between the experimental and 
computational results, for the complete range of flow velocity explored, and for the two support gaps tested. 

Figure 5 shows the average of the impact force maxima, a quantifier of the impact force magnitude. For 

0.5 mm
C

δ = ± , impacts are displayed by the system already at 3 m/shV ≈ . However, for the larger gap 1 mm
C

δ = ± , 

impacts only arise beyond 4.5 m/shV ≈ . The impact forces magnitudes increase with the flow velocity in almost 

steady manner. The qualitative features of the experimental results are reproduced by the computations, including 
the velocity boundaries where the tube starts to impact. Quantitatively, the computed impact forces are quite 
satisfactory for the larger support gap, but overestimate (by up to 20 %) the corresponding experimental forces for 
the lower support gap. Notice that, at higher flow velocities, higher impact forces are observed on the larger-gap 
system. This is because the fluid-elastic forces are proportional to the system vibratory amplitude and hence, beyond 

instability, increase almost proportionally with 
C

δ . 

In Fig. 6 we present the experimental and computational response frequencies of the system (both estimated 
according to Rice’s formula) and, again, their comparison is highly satisfactory. The system experiences a steady 

increase of 
Rice
f  with the flow velocity. This result is a direct consequence of an increase in the system effective 

stiffness, connected with increasingly intense vibro-impact dynamical regimes. 
In Fig. 7 the average values of the reduced velocities obtained from the nonlinear experiments and 

computations are plotted as a function of the flow velocity. Recall that 
R

V  only increases proportionally to V  under 

linear conditions. For vibro-impacting systems this relationship is not straightforward, because the actual response 

frequency 
r
f  used in R rV V f D=  is not constant, being dependent on the response regime of the nonlinear system. 

The dynamical behavior of gap-supported tubes subjected to fluid-elastic forces is clarified by Fig. 7, which shows 
the stabilizing effect of impacting on the dynamics of the linearly unstable tube. 
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Fig.5: Comparison between the tube experimental 

and computed impact forces 
 

 
Fig.6: Comparison between the tube experimental 

and computed response frequencies 
 

 
Fig.7: Comparison between the tube experimental 
and computed average reduced velocities as a 

function of the flow velocity 
 

 
Fig.8: Computed power terms, pertaining to the tube 
damping, the flow coupling and turbulence, as a 
function of the flow velocity and support gap 

 
Detailed information concerning the system energy balance is provided by the plots in Fig. 8. These were 

computed from the results of the numerical simulations, and quantify the power “flow-paths”, for increasing values 
of the flow velocity and for the two support gaps addressed. Positive values indicate that energy is supplied to the 
tube, while negative values indicate dissipated energy. As expected, turbulence forces always supply energy and the 
structural damping is always dissipative. The most interesting part in these plots relates to the energy behavior 
stemming from the fluid-elastic coupling terms. Not surprisingly, these lead to unstable forces at higher flow 
velocities and are higher for the larger support gap. 

 
CONCLUSIONS 

 
In this paper we presented preliminary experimental and computational results which constitute an overall 

validation of our approach to deal with gap-supported tubes subjected to two-phase fluid-elastic forces and buffeting 
excitation, at least for the single void fraction of the tests performed. Under nonlinear conditions, extensive 
experiments and computations were performed, for a large range of flow velocity and two values of the tube support 
gap. The agreement between the nonlinear experimental and computational results (demonstrated in Figs. 5 to 7) 
enable us to conclude that it is satisfactory to use the fluid-elastic coefficients ( )k RC V  and ( )d RC V , obtained under 

steady linear conditions, for performing severely nonlinear unsteady computations. On the other hand, the analysis 
of the results provided by the two support gaps tested highlight the interesting scenarios which may arise, with 
respect to the various terms involved in a power balance of the flow-excited tube. 
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