
 
 

 

 
Twelfth International Congress 

on Sound and Vibration 
 

1 

APPLICATION OF OPTIMIZATION TECHNIQUES FOR 
ACOUSTICAL RESONATORS 

Luís Henrique1, José Antunes2, Octávio Inácio1, José Paulino2 

(1) Musical Acoustics Laboratory 
Escola Superior de Música e das Artes do Espectáculo do Instituto Politécnico do Porto 

Rua da Alegria, 503, 4000-045 Porto, Portugal 
LuisHenrique@esmae-ipp.pt 

 
(2) Applied Dynamics Laboratory 
Instituto Tecnológico e Nuclear 
2686 Sacavém codex, Portugal 

Abstract 
Following our preceding work on the optimization of structural vibrating components of 
musical instruments, we now have extended those techniques to acoustical resonators for 
marimba-type instruments or other applications. In this paper we suggest that acoustical 
resonators may be tuned to multiple modes of the vibrating bars, in order to enrich or simply 
modify the timbre of the instrument. 

After a short review of our modelling and optimization techniques, we illustrate the 
approach with several examples. A detailed study of the acoustical properties of three 
optimized resonators with various relationships of the optimized acoustic modal frequencies 
is presented, based on finite-element acoustic computations. The shapes of such multi-modal 
optimized resonators are completely different from the typical cylindrical resonators. Finally, 
we present experimental results which validate the theoretical approach. 

INTRODUCTION 
In a previous paper Henrique et al. [1] developed a method for the optimal design of 
percussion instrument bars, such as found in xylophones, marimbas and vibraphones. 
The aim was to compute optimal bar shapes, in order to comply with a pre-defined 
target set of modal frequencies, shaping the spectral content of the instrument 
response, for a given number of geometrical constraints. 
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Traditionally, these percussion musical instruments have individual acoustical 
resonators coupled to each bar in order to reinforce the sound level. This effect is 
obtained by resonance of the air cavity inside a (usually cylindrical) tube whose first 
acoustical modal frequency is chosen to coincide with the first vibratory modal 
frequency of the respective bar. 

Typically, the bar modal frequencies of interest will display harmonic 
relationships. For instance, usual values of the first and second modal frequencies for 
xylophones and marimbas attempt integer relationships of 1:3 and 1:4, respectively, 
with some variations on the third flexural modal frequency, most usually between 1:9 
and 1:10. It is well known that common closed-open instrument resonators will only 
reinforce modes with odd frequency relationships. Therefore, in order to enhance the 
effectiveness of the resonance phenomenon and enrich or simply modify the timbre of 
the instrument, it may prove extremely interesting to devise new resonator shapes 
which are capable to reinforce all the tuned modes in a given instrument. 

In this paper we extend the techniques developed in [1-3] to acoustical 
resonators of marimba-type instruments, however other applications may also be 
addressed. After a short review of our modelling and optimization techniques, we 
illustrate the approach with three resonators with various relationships of the 
optimized acoustic modal frequencies. The shapes of such multi-modal optimized 
resonators are completely different from the typical cylindrical resonators. A detailed 
study of the acoustical properties of the optimized resonators is presented, based on 
finite-element acoustical computations. Finally, we present experimental results 
which validate the theoretical approach. 

ACOUSTICAL MODELLING OF THE RESONATORS 
The sound propagation model used in this paper is based on the mono-dimensional 
wave equation, for tubes of variable cross-section ( )S x  along their axis. The 
numerical computation of these continuous systems can be obtained by discretization 
of the geometry in N finite conical elements of shape ( )eS x  characterized by a 
transverse section 1S  at the start of the element and 2S  for the section in the other 
extremity. For each conical finite element the sound propagation can be described by 
the Webster equation [4]: 
 
 

2 2

2 ( ) 0
( ) e

e

p c pS x
t S x x x

∂ ∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (1) 

 
The change of pressure inside the element can be described as a linear 

polynomial of the first order 0 1( , )p x t a a x= + , where the coordinate x  is understood 
as local (respectively 0x =  and ex L=  in the two nodes of each element). We can 
derive an approximate solution for ( , )p x t , which satisfies equation (1) in terms of a 
residual term ( , )R x t  to be minimized. Using the Galerkin method we obtain: 
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where ( )nN x  is the weighting function of the spatial approximation and { ( )}N x  is the 
corresponding weighting vector derived from the polynomial coefficients. After the 
necessary integrations, we obtain: 
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where { }( )P t  is the vector describing the pressure at each node of the element. The 
elementary matrices of mass and rigidity are obtained as 
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For the global system, these elementary matrices are assembled as usual. The 

procedure described in this section allows the computation of the modal frequencies 
which will be used in the optimization iterations to find the desired shape of the 
resonator. 

OPTIMIZATION PROCEDURES 
Many parameters are involved in a geometry optimization problem, with two 
unwanted consequences: Firstly, the optimization becomes computationally intensive, 
and this is further true as the number of parameters to optimize pP  ( L,2,1=p ) 
increases. Secondly, the error hyper-surface )( pPε  where the global minimum is 
searched will display in general many local minima. 

In [2] we avoided converging to sub-optimal local minima by using a robust 
(but greedy) global optimization technique − simulated annealing [5]. In order to 
improve the computational efficiency, the global optimization algorithm was coupled 
with a deterministic local optimization technique [5], to accelerate the final stage of 
the convergence procedure. Very encouraging results have been obtained, 
demonstrating the feasibility and robustness of this approach, as well as the potential 
to address other aspects of musical instrument design. However, a negative side effect 
was the need for significant computation times, which seem ill-suited to the 
optimization of large-scale systems − such as, for instance, carillon bells.  

More recently, we alleviated this problem by significantly reducing the 
dimension of the search space where optimization is performed [1,3]. This can be 
achieved in several ways, by describing the geometrical profiles of the vibrating 
components in terms of a limited number of parameters. Here, we chose to develop 

( )S x  in terms of a set of orthogonal characteristic functions )(xsΨ , such as 
Tchebyshev polynomials or trigonometric functions, optimizing their amplitude 
coefficients. For complex systems, described by finite-element meshes with hundreds 
or thousands of elements, this approach reduces the size of the optimization problem 
by several orders of magnitude. Then, we have found that, most often, acceptable 
solutions can be obtained using efficient local optimization algorithms, leading to a 
further reduction in computation times. The examples presented in this paper have 
been obtained using such approach, as described in [1]. 

Error Function 
In an optimization problem the objective is generally to find the values of a set of 
variables describing a system that maximizes or minimizes a chosen error function, 
usually satisfying a set of imposed restrictions. In the present case, we wish to find 
the optimal shape of the resonator, described by its variable cross section ( )S x  and 
length L  which minimizes the deviations from the computed modal frequencies 
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[ ( ) , ]m eS x Lω  and the reference target set ref
mω . This error function will be formulated 

as: 
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where mW  are weighting factors for the relative modal errors and M is the number of 
modes to optimize. 

OPTIMIZATION RESULTS 
In this section we present some examples of resonators of circular section, optimized 
using the technique of geometric description in terms of characteristic functions, 
coupled with a deterministic optimization algorithm with constraints.  

All the resonators showed in this section were optimized to a fundamental 
frequency of 220 Hz, with different frequency relations of several modes. Figure 1 
shows the convergence of the optimization procedure as the number of characteristic 
functions for the shape description is increased. In this specific example (tuning 
1:3:5:8), convergence is obtained after 6 Tchebyshev polynomials are used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 – Optimized resonator for the frequency 220 Hz with the partials 1:3:5:8. Convergence of the 
optimization process with the increase of the number of characteristic functions used. 
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The examples of Figures 2(a) and 2(b) show two resonators optimized for 
relations 1:3:5:8, the first computation using Tchebyshev polynomials as 
characteristic functions, and cosinusoidal functions for the second example. 
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Figure 2 – Optimized resonator for the frequency 220 Hz with the partials 1:3:5:8. Optimization 

achieved using (a) Tchebyshev polynomials and (b) Cosines as characteristic functions. 

Notice that, usually, the resonators obtained using different characteristic functions 
present different shapes. This observation highlights the fact that the optimization 
problem does not present a single solution. In other words, several geometries can 
display identical modal frequencies for the modes that are optimized. However, as it 
is obvious, modeshapes will be different. And, for the other modes not included in the 
objective-function to minimize, the resonators will present different frequencies. The 
computations in Figures 3(a) and 3(b) depict optimized resonators for relations 
1:3:8:12 and 1:4:6:10, leading to different bore profiles. 
 

 

0 0.05 0.1 0.15 0.2 0.25

-0.04

-0.02

0

0.02

0.04

Length [m]   0 0.05 0.1 0.15 0.2 0.25 0.3
-0.05

0

0.05

Length [m]  
Figure 3 – Optimized resonators for the frequency 220 Hz obtained using Tchebyshev polynomials, 

with partials (a) 1:3:8:12 and (b) 1:4:6:10. 

Figure 4 illustrates the pressure modeshapes of the optimized modes for the geometry 
shown in Figure 2(a). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Pressure modeshapes of the first four modes of the optimized resonator for the frequency 
220 Hz with the partial 1:3:5:8 pertaining to Figure 2(a). 
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EXPERIMENTAL VALIDATION 
In this work, the experimental validation was performed by building three closed-
open resonator-prototypes of Plexiglas, tuned for different combinations of partials. 
The partials were chosen to coincide with the tuning of three bars that were 
previously constructed (1:4:10; 1:1.67:4:10 and 1:4:6.67:10). Besides these optimized 
resonators, a traditional cylindrical resonator was also built, for preliminary tests of 
the measuring setup and for comparison with the optimized resonators. The prototype 
resonators were build by piling up Plexiglas boards with 7.74 mm thickness (the same 
of the finite elements used in computations), in which conical holes were machined 
with dimensions stemming from the optimization computations. 

 

 
Figure 5 – Experimental setup used for the modal identification of the optimized resonators. 

Experimental Setup 
For the acoustical tests and identification of the modal properties of the resonators we 
used the experimental setup shown in Figure 5. The resonators were excited using an 
external speaker, emitting a white noise signal supplied by a generator and then 
amplified. The acoustic pressure at the end of the resonators, sensed by the 
microphone, together with the driving signal of the speaker, allowed us to obtain 
transfer functions of acceptable quality. The three prototype resonators tested can be 
observed in Figure 6. 

It will be interesting to notice that, for a same fundamental frequency, the 
optimized resonator 1:4:10 is quite smaller (approximately 180 mm) than the 
traditional cylindrical resonator (approximately 290 mm). This fact constitutes a 
significant additional advantage of many optimized resonators. 
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Figure 6 – Optimized resonators. From left to right: 1:4:10; 1:1.67:4:10 and 1:4:6.67:10. 

Discussion of Results 
Optimization of the experimental resonators was performed for a frequency tuning of 
285 Hz. Table 1 summarizes the values of the computed and identified frequencies, 
from the measured transfer functions shown in Figure 7. This table reveals that the 
frequency ratios of the optimized modes were, for all the resonators, extremely 
satisfying, validating the methodology developed in this paper.  

On the other hand, concerning the absolute frequencies, small deviations were 
observed in resonators 1:4:10 and 1:1.67:4:10, which sound about 3% below the 
target frequencies. These measurements were performed at temperature 20ºC, the 
same postulated in the computations ( 343c = m/s), so that the ascertained differences 
cannot be justified from the temperature effect. Indeed, three dimensional finite 
element computations performed on the optimized geometries have showed that the 
small errors obtained are mostly due to a slight inadequacy of the mono-dimensional 
wave model when dealing with complex geometries. On the other hand, the geometry 
of the test models was such that the open end of the resonators behaves somewhat 
between a flanged and a non-flanged termination. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Measured transfer functions, respectively for the (a) cylindrical resonator (1:3:5:7:…) and 
for the optimized resonators: (b) 1:4:10; (c) 1:1.67:4:10 and (d) 1:4:6.67:10. 
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Table 1 – Computed and experimental values of the frequencies of the first modes 
 and corresponding frequency ratios of the optimized open-closed resonators. 

Tuning Mode Computed Modal 
Frequencies (Hz) 1

if
f

 Measured Modal 
Frequencies (Hz) 1

if
f

 

1 278.01 1.00 275.4 1.00 
2 1103.0 3.97 1109.8 4.03 1:4:10 
3 2579.9 9.28 2773.6 10.07 
1 280.9 1 277.7 1.00 
2 469.0 1.67 465.2 1.68 
3 1115.9 3.97 1109.8 4.00 1:1.67:4:10 

4 2705.5 9.63 2775.5 9.99 
1 283.7 1.00 284.3 1.00 
2 1159.8 4.09 1136.6 4.00 
3 1882.1 6.63 1875.6 6.60 

1:4:6.67:10 

4 2737.7 9.65 2858.2 10.05 

CONCLUSIONS 
In this paper we presented an effective technique for the shape optimization of resonators 
in order to obtain a target set of modal frequencies. A computational strategy based on a 
mono-dimensional wave propagation model coupled with a classical gradient-based 
optimization approach proved very effective. In particular, smooth shapes and very fast 
optimizations were achieved by using various sets of orthogonal functions for describing 
the geometry. 

Several illustrative examples have been presented, which show the fast 
convergence of the results with just a few characteristic functions. Also, it has been 
shown that different families of characteristic functions may lead to different optimized 
shapes, as solutions are not unique. Overall, when unorthodox tuning frequency ratios are 
targeted, the shapes of the optimized resonators are very different from those typically 
found in musical percussion instruments.  

The theoretical results obtained were confronted to experimental measurements, 
performed for three different resonators, which were built and tested. Accounting for the 
limitations of the mono-dimensional propagation model and incertitude in the boundary 
conditions at the open extremities, the results obtained are very satisfactory; the 
maximum error observed being about 3% with respect to the nominal values. The 
proposed methodology has been therefore validated. Other applications of the proposed 
methodology may be suggested as shown in [6]. 
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