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Room acoustical response and
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For the usual small volumes of control rooms, standing waves
arise at audible frequencies well below the Schroeder frequency

Extended modal decay times
Non-uniformity of the frequency response

Sound Coloration



CURRENT TECHNIQUES FOR LOW-FREQUENCY DESIGN

- Choice of room shape and dimensions

- Choice of loudspeaker and listener locations
- Panel absorbers

- Helmholtz bass-trapping resonators

WHY NOT USE OPTIMIZED MULTI-MODAL BASS-
TRAPPING RESONATORS ?

Design of duct cross sectional areas in bass-trapping
resonators for control rooms

Inacio, Henrigue & Antunes
Noise Control Engineering Journal 55 (2007) 172-182.




OPTIMAL SHAPES TO PRODUCE A GIVEN TARGET SET OF MODAL
FREQUENCIES FOR THE ACOUSTICAL RESONATOR

30 Cosinus terms used Quadratic Error: 0.00097031
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However, modal frequencies are only part of the problem:
(Morse & Ingard, 1968 ; Fahy & Schofield, 1980)
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Damping phenomena
Acoustical room & resonator modeshapes
Resonator locations

4

Room/resonator(s) coupling efficiency




THE RESONATOR OPTIMIZATION PROBLEM SHOULD BE SOLVED
FOR THE ROOM/RESONATOR(S) COUPLED SYSTEM

In 2007 (ISRA 2007 Sevilla) a sub-structure computational approach to the
coupled problem was presented:

Antunes & Inacio (2007) - A Theoretical Analysis of Multi-Modal
Bass-Trapping Resonators Coupled to Control-Room Acoustics.

Computer-intensive methods (FEM, BEM) , with thousands of
DOFs, are not ideally suited for the coupled room/resonator
computations needed during the optimization procedure.

Sub-structure / component-mode-synthesis techniques are much
more economical, but they have been used more for structural than
acoustical problems.

Furthermore, if the modal basis are well chosen, only the sub-system
modes of component(s) to be shape-optimized are recomputed at
each optimization iteration, while those of the room are computed only
once.




Establish error function € to optimize
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Room pressure field

5.(5.,0)— c2Vp. (5.1) = c2p, {ané;(t)a(sz _5M)+0,(0)56, —éf)}

Resonator(s) pressure field
0, (5,,1) = CoV7p,(5,.1) = =528, (1) (S, =S}) 5 n=12,...N
Momentum balance at the interface(s)
poS, & () =S, [p.(s..0)=p,(8"1)] + n=12..N



EQUIVALENT PENALTY FORMULATION
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MODAL FORMULATION

The sub-system modal basis are those of the
room and resonator(s) closed at the interfaces

M, Mp
pr (§r’t): Z¢r(nr)(§r)Pr$1r)(t) and pn(§n’t): Z¢r(nn)(§n)Pn(1n)(t) ’ n= l2’
m=1 m=1

I

AS)Fi(”(t)+BS’Pk(”(t)=c§po{i8nEn(t)cbé”(ér”)+Qe(t)¢é”(§f)} kK

ATBO) - BORT() = ~620,8, EMAVE)  k=12..M, ; n

én(t)=ih[&m“)@;)Rﬁ”)(t)]—&#p@:)%f’a)ﬂ - n-

,00 m=1 m=




DISSIPATIVE PROBLEM

(a) Damping coefficients ¢ and <" inthe modal equations :

Aéf)ﬁf>(t)+zs>p¢”(t)+BS>P;”<t>=c§p{isn fn(tmf)@:‘)+Qe(t>¢§”(§f)}  k=12..M,

APRP(M)+2 P (O+BIR (M) =—C3pS, LOAE) ¢ k=12...M, ; n=12..N

(b) At the room/resonator interface(s) (viscous phenomena, use of
damping porous materials) with “acoustic resistance” /.

pohS, & (1) + RS £ (1) =S, [ p,(S5.t)-p, (5", )| © n=12..N

ﬂ LEADS TO AN
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A SIMPLE EXAMPLE OF THE SUB-STRUCTURE METHOD
“SHOE-BOX” ROOM & 2 CYLNDRICAL RESONATORS

Room modal basis:

( ) , V2
w5
x y :(0,j,k=0,12,..)

; i X
7 (0.y.2) ~cos”

X

Resonator modal basis:

() _ oM
" 2L
{LX=5m,Ly=9m,LZ=4m mzs

4" (s) = cos——
L=3&45m,D=05¢&1m L
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COMPARISON BETWEEN PRESENT METHOD AND FEM COMPUTATIONS

Modal frequencies of the isolated closed sub-systems (L=3 m, D=0.5 m)

Mode

1 2 3 4 5 6 7 8 9 10 11 12 13

Room

0.0 19.06 34.30 38.11 39.24 42.88 46.92 51.27 5491 57.17 57.36 58.12 66.67

Resonators

0.0 57.17 114.3

Modal frequencies of the coupled system (L=3 m, D=0.5 m)

About 200 modes used

Mode

1 2 3 4 5 6 7 8 9 10

Present
approach

0.0 18.87 [/ 29.26 X 29.72 \ 3450 38.34 3944 4292 46.97 5131

FEM

00 18.83 \26.62)(27.07/34.43 3828 39.39 42.92 46.97 51.31
N——— N———

- A few hundred modes against 10> FEM dofs
- Good precision results using 300 modes

- Three orders of magnitude faster than FEM
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FORCED RESPONSES TO A VOLUME VELOCITY SOURCE
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EFFECT OF THE ROOM/RESONATOR(S) INTERFACE DAMPING

Modal damping of the coupled room & resonators
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OPTIMIZATION PROCEDURE CALCULATIONS

Objective:

Using two resonators applied at the S, surface

find the shape, location and interface resistivity to minimize
Max(TF) — Min (TF) between 15 Hz to 150 Hz.
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OPTIMIZATION PROCEDURE CALCULATIONS

Optimal resonator shapes found

Cosine functions Chebyshev polynomials

L =60627 , X =069189 , Y =9 2Z =28246 , R_ =10000 L =64859 , X =1.1568 , ¥ =9 ,6 2 =24571 , R_ =10000
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OPTIMIZATION PROCEDURE CALCULATIONS

Optimal transfer functions found

Chebyshev polynomials

ERRORS : Initial =58.5461 & Optimal = 31.3166 , SHAPE FUNCTIONS : Chebyshev & Nr =20
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OPTIMIZATION PROCEDURE CALCULATIONS

Optimal transfer functions found

Cosine functions

ERRORS : Initial =58.5461 & Optimal =26.3911 , SHAPE FUNCTIONS : Trigonometric & Nr =20
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CONCLUSIONS

1) We have addressed the problem of optimizing the shape,
locations and interface damping of bass-trapping resonators
coupled to the acoustical response of a room.

2) The acoustical component mode synthesis method (developed

in previous work) was implemented with a Simulated
Annealing global optimization procedure.

3) Different solutions were found using different geometrical
function that determine the resonator shape.

4) Results show that using two optimized multi-mode resonators
at one of the room surfaces, the difference between maximum
and minimum of the source to listener transfer function can be

reduced by 30 dB.

19



