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Design of duct cross sectional areas in bass-trapping resonators for
control rooms

Octávio Inácio,a� Luís Henrique,b� and José Antunesc�
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Small rooms, such as the ones specifically designed for listening to amplified
music, like control rooms in recording studios, face the problem of low-
frequency over-enhancement by acoustic resonances. Several devices have been
developed to tackle this problem, such as Helmoltz resonators. The number of
controlled acoustic modes depends on several factors among which are the
central frequency chosen, the modal density in that frequency range, and the
coupling between the resonator and the room. In this paper we suggest that the
efficiency of such resonators may be significantly improved if, instead of using
basic Helmholtz or devices with uniform cross-section, more complex shape-
optimized resonators are used, in order to cope with a larger number of
undesirable acoustic modes. We apply optimization techniques to the uncoupled
resonator, developed in our previous work, in order to obtain the optimal shapes
for devices that resonate at a design set of acoustic eigenvalues, within imposed
physical and/or geometrical constraints. One-dimensional and three-
dimensional finite element models were implemented. The one-dimensional
model was coupled to optimization techniques in order to achieve the design
goal.We illustrate the proposed approach with two examples of resonator shapes
and different design sets of absorption frequencies. © 2007 Institute of Noise
Control Engineering.

Primary subject classification: 34.3; Secondary subject classification: 76.1.2

1 INTRODUCTION

The acoustical design of small rooms for high fidel-
ity sound reproduction requires particular attention to
the control low-frequency resonances. The imbalance
between over-enhancement of sound at these modal
frequencies and the absence of room response at
anti-resonances produces a detrimental lack of unifor-
mity of the room acoustic response. This effect is more
pronounced for the frequency range where modal
density and modal bandwidth �or modal damping� are
low. Additionally, the room dimensions may be such
that packs of modes occur in certain frequency ranges,

not only maximizing the resonance effect but also
creating separation between different peaks in the room
frequency response.

These and other related problems have been tackled,
with more or less efficiency, by the use of Helmholtz
resonators, membrane panels or tube-traps, among
many others. The uncoupled resonance behaviour of
these bass control devices is typically focused on a
central frequency of maximum sound absorption which
spreads over a determined bandwidth. The number of
controlled acoustic modes depends on several factors
among which are the central resonance frequency
chosen, the modal density in the controlled frequency
range, damping, and the ratio of the resonator to room
volumes �see Ref. 1 for further discussion�. The degree
of attenuation of the resonance effect is dependent not
only on the number of such devices used, but also on
their location in the room, ideally close to pressure
antinodes of the controlled mode. Helmholtz resona-
tors have been particularly used in many different
applications where an accurate control of a single
frequency is desired. These resonators have been
thoroughly studied since the 19th century beginning
with the work of Helmholtz.2 More recently, several
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researchers became interested in the optimization of
the design and physical behaviour of such systems,3 on
the effect of basic geometry on changing on the
resonant frequency,4,5 and on the acoustical coupling
between the resonator and the room,1,6 to mention a
few.

In this paper we suggest that the efficiency of such
resonators may be significantly improved if, instead of
using basic Helmholtz resonators or devices with
uniform cross-section, more complex shape-optimized
resonators be used, in order to cope with a larger
number of undesirable acoustic modes. We apply
optimization techniques recently developed in our
previous work,7,8 in order to obtain optimal shapes for
such devices so that they resonate at a design set of
acoustic eigenvalues, within imposed physical and/or
geometrical constraints. A simple 1D finite element
acoustic model was implemented and coupled with
optimization techniques in order to achieve this goal
with fast computations. We illustrate the proposed
approach with several examples of resonator shapes
and different design sets of absorption frequencies.
Then we discuss the validity of the simple 1D acoustic
model in the context of the present application, by
performing more involved 3D finite element model
acoustic computations on a few optimized resonators.

For this preliminary analysis we will focus only on
the modal behaviour of the resonator isolated from the
room. However, the complete analysis of this problem
has to consider the frequency shifts and room mode
shape distortion arising from the acoustical coupling
between the room and the resonator. Additionally,
viscous boundary layer absorption effects which
account for the damping at the neck of the resonators
were not addressed in this model. These aspects will be
addressed elsewhere.

2 EXPERIMENTAL ANALYSIS OF TWO
CONTROL ROOMS

In order to obtain realistic examples of problematic
acoustical resonance effects, two different control
rooms were experimentally analysed. These control
rooms belong to the College of Music and Performing
Arts of the Polytechnic Institute of Porto, and are aimed
to support the work of students of the Production and
Music Technologies Degree, as well as the develop-
ment of professional work by the Institute Audio
Services. Both rooms have received acoustical treat-
ment for the medium and high frequency range but
have considerable problems in the reverberation time
below 200 Hz. Figure 1 presents the results of rever-
beration time measurements carried out in both rooms
using the monitor loudspeakers located on the mixing
table and a microphone at the listener/mixing position.

To investigate these low-frequency problems, swept-
sine measurements were made in both rooms, using
one of the monitoring loudspeakers in its usual position
and a microphone at the listening/mixing position.
Other measurements using different loudspeaker/
microphone positions were also realized, to study the
spatial variation of the acoustical response and room
modes excitation. Figs. 2 and 3 represent the acoustical
response of room 1 �6.47 m33.75 m34.65 m� and
room 2 �7.5 m33 m34.56 m�, at the listening position,
to a frequency sweep between 50 Hz and 400 Hz.
Room 1 shows wide resonance spacing, mainly below
100 Hz, with several mode packets which results from
different modes occurring in that frequency range.
Indeed, a simple theoretical analysis, for an empty
rectangular room with rigid walls and similar dimen-
sions, shows modes �2,0,0� and �1,1,0� occurring at
approximately 53 Hz, modes �2,0,1� and �1,1,1� at
64 Hz, modes �2,1,1� and �3,0,0� at 79 Hz and modes
�3,1,0� and �0,2,0� at 91 Hz. Room 2 has a more regular
modal distribution, which may account for the lower
reverberation times shown in Fig. 1 for room 2. These

Fig. 1—Reverberation time of room 1 �—� and
room 2 �—� measured at the listening po-
sition.

Fig. 2—Acoustical response of room 1 at the lis-
tening position.

Fig. 3—Acoustical response of room 2 at the lis-
tening position.
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two examples are paradigmatic of two possible differ-
ent approaches that can be used for the design of
bass-control devices: either selecting damped resona-
tors tuned to the problematic modal frequencies; or
tuning them to different frequencies evenly distributed
over a given frequency range.

3 ACOUSTICAL MODELLING OF THE
RESONATORS

In order to allow for very fast computations, the
sound propagation model used for the optimization
procedure in this paper is based on the one-dimensional
wave equation approximation, for tubes of variable
cross-section S�x� along their axis. The numerical
computation of these continuous systems can be
obtained by discretization of the geometry in N finite
conical elements of section Se�x� characterized by a
transverse section S1 at the start of the element and S2

for the section in the other extremity. For each conical
finite element the sound propagation can be described
by the Webster equation:

�2p

�t2 −
c2

Se�x�
�

�x
�Se�x�

�p

�x
� = 0 �1�

The change of pressure inside the element can be
described as a linear first order polynomial p�x , t�=a0

+a1x, where the coordinate x is understood as local
�respectively x=0 and x=Le at the two nodes of each
element�. We can derive an approximate solution for
p�x , t�, which satisfies Eqn. �1� in terms of a residual
term R�x , t� to be minimized, using the Galerkin
method:

�
0

L

R�x,t�Nn�x�dx

= 0 ⇒ �
0

Le

�N�x��� �2p

�t2 −
c2

Se�x�
�

�x
�Se�x�

�p

�x
�	dx

= 0 �2�

where Nn�x� is the weighting function of the spatial
approximation and �N�x�� is the corresponding weight-
ing vector derived from the polynomial coefficients.
After the necessary integrations, we obtain:


Me��P̈�t�� + 
Ke��P�t�� = 0 �3�

where �P�t�� is the vector describing the pressure at
each node of the element. The elementary matrices of

Me� for mass and 
Ke� for rigidity are obtained as:


Me� =
�S1Le

12
�3 1

1 1
	 +

�S2Le

12
�1 1

1 3
	; �4�


Ke� =
�c2�S1 + S2�

2Le
� 1 − 1

− 1 1
	 �5�

For the global system, these elementary matrices are
assembled as usual. The procedure described in this
section allows the computation of the system modal
frequencies, which will be used in the optimization
iterations to find the desired shape of the resonator.

The use of 1D modelling of sound propagation for
resonator design may be justified or debatable, depend-
ing on the relative magnitude of the gradient compo-
nent along the radial direction of the real pressure field
�p�r ,x , t� /�r. For frequencies sufficiently high, such is
the case when wavelengths become of the order of
magnitude or smaller than the resonator diameter. At
lower frequencies, it is well known that the Webster
equation–and hence 1D finite element modelling–can
be safely adopted, provided that the cross-section S�x�
changes smoothly along the resonator axis. However,
simple 1D modelling may be ill suited, if the axial
change of the cross-section �S�x� /�x is not smooth.
This issue will be further expanded on later in the
paper.

As can be seen, no damping term is included in the
previous formulation. Although the damping term is
very important when considering the absorption
efficiency of these devices, its effect in the calculated
resonance frequencies is only marginal, and is there-
fore neglected for the scope of this work.

4 OPTIMIZATION PROCEDURES

Many parameters are involved in a geometry optimi-
zation problem, with two unwanted consequences.
Firstly, the optimization becomes computationally
intensive, and this is further true as the number of
parameters to optimize Pp �p=1,2 , . . . � increases.
Secondly, the error hyper-surface ��Pp� where the
global minimum is searched will display in general
many local minima. In Ref. 9 we avoided converging to
sub-optimal local minima by using a robust �but
greedy� global optimization technique, namely
simulated annealing.10 In order to improve the compu-
tational efficiency, the global optimization algorithm
was coupled with a deterministic local optimization
technique,10 to accelerate the final stage of the conver-
gence procedure. Very encouraging results have been
obtained, demonstrating the feasibility and robustness
of this approach, as well as its potential to address some
aspects of musical instrument design. However, a
negative side effect was the need for significant compu-
tation times, which seem ill-suited for the optimization
of large-scale systems such as, for instance, carillon
bells. More recently, we alleviated this problem by
significantly reducing the dimension of the search
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space where optimization is performed.7 This can be
achieved in several ways, by describing the geometrical
profiles of the vibrating components in terms of a
limited number of parameters. Here, we chose to
develop S�x� in terms of a set of orthogonal character-
istic functions �s�x�, such as Tchebyshev polynomials
or trigonometric functions, and then optimizing their
amplitude coefficients. For complex systems, described
by finite-element meshes with hundreds or thousands
of elements, this approach reduces the size of the
optimization problem by several orders of magnitude.
Then, we have found that, most often, acceptable
solutions can be obtained using efficient local optimi-
zation algorithms, leading to a further reduction in
computation times. The examples presented in this
paper have been obtained using such approach, as
described in Ref. 7.

In an optimization problem the objective is generally
to find the values of a set of variables describing a
system that maximizes or minimizes a chosen error
function, usually satisfying a set of imposed restric-
tions. In the present case, we wish to find the optimal
shape of the resonator, described by its variable cross
section S�x� and length L which minimizes deviations
between the computed modal frequencies �m
Se�x� ,L�

and the reference target set �m
ref. This error function will

be formulated as:

�
Se�x�,L� = �
m=1

M

Wm1 −
�m
Se�x�,L�

�m
ref �2

�6�

where Wm are weighting factors for the relative modal
errors and M is the number of modes to optimize.

5 OPTIMIZATION RESULTS

In this section we present some examples of resona-
tors of circular section, optimized using the previously
described technique of geometric description in terms
of characteristic functions coupled with a deterministic
optimization algorithm with constraints. The optimiza-
tions were carried for two sets of modal frequencies.
The first set consisted of 5 frequencies corresponding
to the first 5 acoustic modes of Room 1 appearing in
Fig. 2 �between 50 Hz and 100 Hz�. The second set
consisted of 10 frequencies distributed logarithmically
over the entire frequency range analysed �50 Hz to
400 Hz�. The frequencies chosen are described in Table
1.

Figure 4 shows the results of the optimization proce-
dure for Set 1 of modal frequencies using either Cosine
functions �a� or Tchebyshev polynomials �b�. Although

Table 1—Sets of target modal frequencies.

Set 1 Mode 1 2 3 4 5 - - - - -
fm 
Hz� 53.00 63.07 78.97 91.16 100.17 - - - - -
fm / f1 1.00 1.19 1.49 1.72 1.89 - - - - -

Set 2 Mode 1 2 3 4 5 6 7 8 9 10
fm 
Hz� 50.00 63.00 79.37 100.00 125.99 158.74 200.00 251.98 317.48 400.00
fm / f1 1.00 1.26 1.59 2.00 2.52 3.17 4.00 5.04 6.35 8.00

Fig. 4—Resonators optimized to Set 1 using �a� Cosine functions or �b� Tchebyshev polynomials.
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the target modal frequencies are the same, optimization
is achieved with somewhat different open-open resona-
tor shapes. From the various geometrical constraints
used in these calculations, a maximum and minimum
diameter Dmax=50 cm and Dmin=10 cm, as well as a
maximum resonator length Lmax �varying from 1 m to
3.5 m� were imposed.

Although the two resonator shapes are similar, the
corresponding acoustic mode shapes can take slightly
different forms, as seen in Figs. 5 and 6.

Figure 7 shows the convergence of the optimization
procedure for Set 1 of modal frequencies as the number
of characteristic functions �cosines� for the shape
description is increased �in odd number of terms�. For

each iteration, the left-hand graph represents the shape
of the resonator, while the right-hand graph displays
the target modal frequencies �light dotted line� and the
current modal frequencies �black full line�. In this
example, convergence is obtained after 11 characteris-
tic functions are used.

From Figs. 4 and 7 one may notice that, quite often,
convergence of the results is not gradual but increases
by “steps”, as the number of characteristic functions is
increased. Fig. 8 shows the results of the optimization
procedure for Set 2 of modal frequencies using either
Cosine functions �a� or Tchebyshev polynomials �b�.

Although the maximum length might seem high, it is

Fig. 5—First 5 pressure modes shapes of resona-
tor �a� in Figure 4.

Fig. 6—First 5 pressure mode shapes of resonator
�b� in Figure 4.
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Fig. 7—Optimized resonator for the frequency Set 1 �1:1.19:1.49:1.72:1.49�. Convergence of the optimi-
zation process with the increase of the number of characteristic functions used.

Fig. 8—Resonators optimized to Set 2 using �a� Cosine functions or �b� Tchebyshev polynomials.
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within the adequate dimensions for a regular control
room, depending on the position chosen to install the
resonator. Understandably, the target modal frequen-
cies chosen for Set 1 and particularly Set 2, required
the use of the full dimensions allowed. However, while
for Set 1 a length of 2 m was enough to obtain a negli-
gible error, it took a length of 3 m for a similar satis-
factory result for Set 2. The modal errors obtained are
presented in Table 2. In all the computations performed
for the examples presented here and for other explor-
atory calculations performed, the optimization made
use of the whole resonator length, and both maximum
and minimum diameter values. The number of charac-
teristic functions needed for the optimization process is
also proportional to the difficulty of the problem, i.e., if
the goal comprises a great number of modal frequen-
cies such as in Set 2, the number of characteristic
functions used to obtain a negligible error is also
higher. For example, the result of Fig. 4�a� was
obtained after using only 11 Cosine functions, while
for Fig. 8�a� it took 21 Cosine functions to reach a
similar error. Notice that, for higher frequency modes,
the acoustic activity tends to become localized, with
each subsystem behaving more independently �see
Figs. 9 and 10�. Also notice that for the optimized
resonators of Set 2 identical frequencies are related to
quite different modeshapes. It is well known that
finding the system shape leading to a given set of
eigenvalues is a problem which in general presents
multiple solutions.

As can also be deducted from inspection of the
previous figures, the optimization procedure results in
resonator shapes that comprise large volumes
connected by short and thin tubes �necks�, resembling

Helmholtz resonators coupled in series. Interestingly,
the number of volumes equals the number of target
modal frequencies. However, each mode of the resona-
tor is not coupled to just one of the volumes and necks
as occurs in Helmholtz resonance. On the contrary,
each mode shape involves pressure fluctuations over
more than one volume and usually extends over the
entire resonator. This fact shows that the attempt to
design coupled Helmholtz resonators, in order to
achieve broader frequency absorption, based solely on
the individual resonances of each component is likely
to fail, although in the simpler case of a double resona-
tor �i.e. two modal frequencies� the use of these devices
has been reported as used in the construction of the
BBC studio.11 More recently, these double resonators
and their coupling to an enclosure have been
thoroughly studied by Doria.12

All the cases presented so far comprise resonators
with both extremities opened. For closed-open resona-
tors and the target-set modal frequencies of the two
examples in this paper, we found it is more difficult to
achieve the right shape for the target frequencies within
acceptable geometrical limits and negligible global
errors. Fig. 11 shows two examples of a closed-open
resonator optimized for Set 1 and Set 2 of target modal
frequencies, but with less-than-satisfactory errors
between the calculated modal frequencies and the
target values.

6 REFINED ACOUSTICAL MODELLING

As discussed earlier, the simple and fast 1D acous-
tical model should be limited to lower frequency modes
and resonator geometries with relatively smooth
changes in cross-section. In this section we will briefly

Table 2—Target, calculated modal frequencies and modal errors for the
resonators in Figures 4 and 8.

Figure 4�a� Mode 1 2 3 4 5 - - - - -
fm
c 
Hz� 52.98 63.07 78.98 91.22 100.19 - - - - -
� 
%� −0.03 0.00 0.02 0.07 0.02 - - - - -

Figure 4�b� Mode 1 2 3 4 5 - - - - -
fm
c 
Hz� 52.96 63.06 79.02 91.19 100.2 - - - - -
� 
%� −0.08 −0.01 0.07 0.03 0.03 - - - - -

Figure 8�a� Mode 1 2 3 4 5 6 7 8 9 10
fm
c 
Hz� 49.9 63.07 79.49 100.04 126.12 158.79 200.08 251.95 317.59 399.72
� 
%� −0.19 0.11 0.15 0.04 0.1 0.03 0.04 −0.01 0.03 −0.07

Figure 8�b� Mode 1 2 3 4 5 6 7 8 9 10
fm
c 
Hz� 49.52 62.53 79.67 100.03 126.48 158.76 199.82 251.77 317.68 399.7
� 
%� −0.96 −0.75 0.37 0.03 0.39 0.01 −0.09 −0.09 0.06 −0.07
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illustrate this issue, in connection with the present
problem, by re-computing the acoustical modes of the
optimized resonators shown in Fig. 8, using now a full
3D finite element model for the wave equation:

p̈�r,x,t� − c2�2p�r,x,t� = 0 �7�

Each computed domain was discretized using tetrahe-
dral acoustic elements, applying a boundary condition
�p /�r��R=0 at the resonator wall. Two additional exter-
nal volumes have been included, extending the open
extremities of the resonators, which were able to
emulate realistically the modal sound field at flanged
open extremities, for the first 6 modes computed. At the
external boundaries of the additional volumes, the
boundary condition p��V=0 was used.

As a compact illustration, Fig. 12 displays the
computed acoustical mode shapes of the first six modes
of the optimized resonator geometry shown in Fig.
8�a�. Comparison between these modeshapes and those
shown in Fig. 9 reveals a remarkable consistence,

indicating that the simple 1D computations lead to a
good qualitative agreement. However, quantitative
results are not so flattering and it is important to stress
that the modal frequencies stemming from the 3D
computations were consistently lower than those
produced by the simple model, with differences
ranging from 5% up to about 20% in the frequency
range of interest. It is worth mentioning that, for the
somewhat smoother geometries obtained by the authors
in the context of a different application,8 such errors
were within 3%. However, for resonators with
geometries such as those addressed in this paper, the
over-estimation errors in modal frequencies seems
excessive for most practical designs, pointing the need
for more refined acoustical modelling when dealing
with real applications.

7 CONCLUSIONS

In this paper we presented an effective technique for
the shape optimization of resonators in order to obtain

Fig. 9—First 10 pressure mode shapes or resonator �a� in Figure 8.
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a target set of modal frequencies characteristic of
resonances occurring in control rooms. A computa-
tional strategy based on finite element modal calcula-

tions coupled with a classical gradient-based optimiza-
tion approach proved very effective. In particular,
smooth shapes and very fast optimizations were

Fig. 10—First 10 pressure mode shapes or resonator �b� in Figure 8.

Fig. 11—Resonators optimized to �a� Set 1 and �b� Set 2 using Cosine functions.
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achieved by using various sets of orthogonal functions
for describing the geometry.

In this paper, we used a fast 1D finite element acous-
tical modelling for the optimization procedure.
However, additional computations applying a refined
3D model on a couple of optimized resonators showed
that, for geometries such as those employed in this
paper, the simple 1D model over-estimates modal
frequencies by 5 to 20% in the frequency range of inter-
est. Therefore, the results presented in this paper serve
to illustrate the proposed optimization methodology, as
well as typical resonator shapes which will be obtained.
For design purposes, replacing the 1D eigen-
computations by a more refined model entrains no
further conceptual difficulties, but only a significant
increase in the computational load–which can however
be accommodated by current technology.

Two different approaches have been suggested to
tackle with the problem of undesirable low-frequency
resonances: �1� exact resonator mode-matching and �2�
evenly spaced resonator modes. Optimized designs
have been produced for two different control rooms
following both strategies. The numerical results are
promising and will be followed by further theoretical
analysis of coupled room/resonator systems, as well as
experimental work to be reported elsewhere.
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Fig. 12—Three-dimensional finite element modal computations of the resonator shown in Figure 8�a�:
The normalized modal pressure fields range from maximum depression �blue� to maximum com-
pression �red�.
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