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ABSTRACT 
Squeeze film dynamical effects are relevant in many 

industrial components, bearings and seals being the most 

conspicuous applications. But they also arise in other industrial 

contexts, for instance when dealing with the seismic excitation 

of spent fuel racks. The significant nonlinearity of the squeeze-

film forces prevents the use of linearised flow models, therefore 

a fully nonlinear formulation must be used for adequate 

computational predictions. Because it can accommodate 

laminar and turbulence flow effects, a simplified bulk-flow 

model – based on gap-averaged Navier-Stokes equations and 

incorporating all relevant inertial and dissipative terms – was 

previously developed by the authors (Antunes & Piteau, 2010), 

assuming a constant skin-friction coefficient. In this paper we 

introduce an improved theoretical formulation, fully developed 

elsewhere (Piteau & Antunes, 2010), such that the dependence 

of the friction coefficient on the local flow velocity is explicitly 

accounted for, so that it can be applied to laminar, turbulent and 

mixed flows. The main part of the paper is then devoted to the 

presentation and discussion of the results from an extensive 

series of experiments performed at CEA/Saclay. The test rig 

consisted on a long gravity-driven instrumented plate of 

rectangular shape colliding with a planar surface. Theoretical 

results stemming from both analytical flow models are 

confronted with the experimental measurements, in order to 

assert the strengths and drawbacks of the simpler original 

model, as well as the improvements brought by the new but 

more involved flow formulation. 

INTRODUCTION 
Many systems of practical interest are subjected to intense 

fluid/structure interaction forces when a thin layer of fluid is 

interposed between two vibrating structures. A typical example 

is provided by immersed structural components, which may 

impact if an external excitation is imposed. Nonlinear effects 

can then become dominant and should not be neglected. 

Significant work in this field has been performed at CEA/Saclay 

during the last two decades, in connection with nuclear facilities 

– see Esmonde et al. (1990a,b) and Antunes & Piteau 

(2001,2010). 

The extensive literature on the fluid/structure dynamics of 

industrial squeeze-film problems is mostly concerned with 

linearised analysis, the vibratory motions being such that, at 

each location r , the fluctuating part ( , )h tr  of the local fluid 

gap ( , ) ( ) ( , )h t h h t r r r  is small compared to the mean 

gap value ( )h r  – see, for instance, works by Fritz (1970), 

Hobson (1982), Mulcahy (1980,1988) and Moreira et al. 

(2000a), as well as the review books by Païdoussis (1998) and 

Kaneko et al. (2008). One of the most thorough analysis along 

these lines was achieved by Inada & Hayama (1990a,b), under 

steady flow, who evaluated the fluidelastic force under steady 

flow, including added mass, damping and stiffness flow terms 

for a one-dimensional tapered leakage channel. More recently, 

Porcher & DeLangre (1997) evaluated the dynamical effects of 

changing the loss coefficients at the channel inlet and outlet 

boundary conditions. 

The linearised approach is obviously unable to provide 

answers at larger vibratory amplitudes, when the fluctuating gap 

( , )h tr  is of the same order of magnitude as ( )h r . Finding a 

suitable analytical formulation for the fully nonlinear problem is 

the main subject of the present paper. Here we will address the 

case of squeeze-film dynamics under no permanent flow, which 

in a sense restricts our previous efforts in this field, see Antunes 

& Piteau (2001,2010). However, our previous dynamical 

solution will be now extended in order to encapsulate, in the 
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analytical formulation of the nonlinear fluid coupling force, the 

flow velocity dependence of the dissipative terms. Overall, the 

analytical formulation developed here may be connected with 

our approach in work focused on immersed rotor dynamics – 

see Axisa & Antunes (1992), Grunenwald (1994), Antunes et al. 

(1996), Antunes et al. (1999), Moreira et al. (2000a,b). 

Actually, the successful “bulk-flow” approach started by Fritz 

(1970) and Hirs (1973), and later used by many authors – see 

Childs (1993) – appears also well suited to deal with small-to-

moderate fluctuating gaps, such as found in the configuration of 

the problems addressed here. 

We start by recalling our nonlinear flow model obtained by 

assuming constant (velocity independent) flow friction 

coefficients, see Antunes & Piteau (2001,2010). Apart from the 

specific dissipative terms connected with our quadratic-in-

velocity pressure drop formulation, we obtain fluid forces which 

are similar to those previously presented by Esmonde et al. 

(1990a). Then we refine our formulation in order to incorporate 

the dependence on flow velocity of the loss coefficients, which 

are conveniently expressed in terms of a single formulation, 

suitable for laminar or turbulent conditions, as well as mixed 

flows. We thus produce a unique analytical solution for the 

coupling fluid force applied to the plates, irrespectively of the 

nature of the flow inside the gap. Such improved model is only 

briefly sketched here, as it is thoroughly reported by Piteau and 

Antunes (2010) elsewhere.  

The second and main part of this paper relates to 

experimental results performed at CEA/Saclay, on the motion of 

a gravity-driven plate colliding with a rigid plane surface. This 

example is motivated by impact problems which may arise 

between immersed nuclear components, such as fuel racks. The 

colliding plate has dimensions such that the width W  is much 

larger than the length L , therefore the flow may be assumed 

approximately one-dimensional, along the shorter dimension 

L . Extensive experiments have been performed, in particular 

by changing the fluid temperature, hence its viscosity. These 

experimental results are reported and compared with both the 

basic and refined models of the fluid force, with general 

satisfying agreement. Furthermore, the strengths and drawbacks 

of the older model are discussed, and the improvements brought 

by the new but more involved flow formulation are highlighted.  

 

THEORETICAL FLOW MODEL 
The bulk-flow continuity and momentum equations for 1D 

incompressible flows within small-to-moderate fluctuating gaps 

are well established – see, for instance, Childs (1993), Antunes 

et al. (1996) or Antunes & Piteau (2010): 
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Furthermore, we will assume in this paper that the plate 

surfaces are parallel – see Figure 1 – so that  ( , ) ( )h x t Y t , 

x , where for simplicity it will be assumed that the lower plate 

is fixed and the fluid gap ( )Y t  is given by the displacement of 

the upper plate.  

 

 
Figure 1: Geometry of the fluid-structure system analysed, with 

moving parallel plates coupled to an incompressible fluid. 

 

The dynamic force exerted by the fluid per unit width of 

the plate – e.g., the total force is ( )fW F t  – is given by: 

/ 2 / 2

/ 2 0

( ) ( , ) 2 ( , )

L L

f
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F t p x t dx p x t dx



                   (3) 

where the last form is justified by the problem symmetry, which 

enables working on the positive half-space region only.  

Following the bulk-flow approach, the tangential stresses 

1

x  and 
2

x  will be formulated using a loss-of-head model: 

1,2 1,2

1

2

x
u u f                                  (4) 

where the friction coefficients at the walls 
1f  and 

2f  are 

established based on empirical correlations – see Idel'Cik 

(1960) and Blevins (1984). Typically, f  changes with the flow 

Reynolds number as (Hirs, 1973): 

 
2 ( , ) ( , )

Re with Re( , )
m h x t u x t

f n x t


          (5) 

where parameters m  and n  depend on the flow. For turbulent 

flows between plane smooth surfaces, Hirs suggest the 

following values: 
3 4

10  Re  3 10         0.25   ,    0.055
T T

m n            (6) 

On the other hand, for laminar flows, the friction coefficient 

decreases very fast for increasing flow velocities. In rectangular 

channel it can be easily shown that: 
3

Re  4 10         1  ,    12
L L

m n                      (7) 

Beyond these distributed stresses, other singular dissipative 

effects arise in the boundaries  2/Lx    of the moving 

plate. Very complex phenomena arise here and, in the absence 

of reliable and extensive loss data obtained from unsteady flow 

configurations, we will adopt – as in many other investigations 

– a classic quasi-static Bernoulli formulation with a loss term at 

the channel/reservoir interfaces. Hence, at 2x L  : 
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where 
extP  is a static reference pressure in an external 

reservoir, far from the singularity, and the loss coefficients 

in, out
K   depend on the local geometry and Reynolds number. 

Idel'Cik (1960) and Blevins (1984) give extensive values for the 

singular loss coefficient  , Rein outK , as a function of the flow 

direction (entering or leaving the channel), of the Reynolds 

number and of the channel/reservoir interface geometry. For 

turbulent flows and an abrupt gap change, typical values are 

0.5inK   (when ( ) 0Y t  ) and 1outK   (when ( ) 0Y t  ). 

In general, smooth (rounded) corners of the plates at 

2/Lx   will lead to lower values of 
inK . On the other 

hand, low velocity flows will lead to increased values of the 

loss coefficient. 

Concerning distributed losses, notice that the dichotomy of 

the formulation for the friction coefficients – equation (5) with 

either parameters (6) or (7) – creates a difficulty with using the 

bulk-flow formulation: Turbulent regimes lead to tangential 

stresses which depend almost quadratically on the average flow 

velocity, through a friction coefficient 
Tf  which is almost 

independent of the flow velocity. On the other hand, because the 

laminar tangential stresses increase proportionally to the flow 

velocity, then for consistence the quadratic formulation (4) 

implies a laminar friction coefficient decreasing in 

 1Lf uO . In general terms, from equations (4) to (7), we 

may write for turbulent flows: 
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and for laminar flows: 
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where 
0Re  is the Reynolds number separating the laminar and 

turbulent flow ranges. 

For any realistic values of the constants 
Ln , 

Lm , 
Tn  and 

Tm , it is clear that ( ) ( )

1,2 1,2

T L   is negligible in the range 

0Re Re , while ( ) ( )

1,2 1,2

L T   can be neglected in the range 

0Re Re . Then, a very simple and natural choice for a 

continuous function emulating the behavior of (6) and (7) in the 

full range of laminar and turbulent flows is: 
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with constants: 
1 1

;2 2
L T

L L T Tm m m m

L T
C Cn n 

 
                  (12) 

Figure 2 displays the result of approximating the Hirs 

friction model using formulation (11), which highlights the 

adequacy of the approach adopted. 

 
Figure 2: Comparison between the Hirs friction model (5)-(7) with 

the continuous analytical approximation (11)-(12). 

 

We now turn to the singular loss coefficients at the channel 

boundaries, which change in a more drastic manner according 

to the direction of the flow (either entering or being ejected 

from the channel), on the boundary geometry (abrupt or smooth 

change of fluid gap), on the nature of the flow (laminar or 

turbulent), as well as on the Reynolds number. Idel'Cik (1960) 

and Blevins (1984) provide guidelines for a number of standard 

geometries, as a function of the Reynolds number, following 

given assumptions on the flow velocity profiles. For any actual 

nonlinear time-domain computation, it is easy to compute 

 , Re 2,in outK L t  
 by interpolating through the published 

experimental values. Unfortunately, our tested geometry does 

not conform exactly to any of the cases detailed in these 

references. Therefore, we decided to use in our numerical 

simulations a constant value for the singular loss coefficient, 

which both fits our experimental data and is generally consistent 

with these references. 

 

DYNAMICAL FLOW FORCE 
Here, the external static pressure on reservoir at the left 

side of the plate is equal to the static pressure on the right side, 

extP . For our basic formulation, we postulate that the skin-

friction coefficients are independent of the flow velocity and 

that the plate surfaces are similar, so that 

 1 2 Ref f f   . From equations (1) to (4), we obtain 

the following explicit form for the total dynamic force of the 

fluid on the plates, per unit width: 

  
3 3 2 4 3

,2 3 2
( ) Re 2 ,

12 24 32 8
f ext in out

Y Y Y YL Y L Y L L
F t P L f K L t

Y Y Y Y

   
     (13) 

where one can recognize, beyond the trivial constant force term 

stemming from 
extP , four vibration-induced nonlinear 

dynamical terms which are related to: (a) the local fluid inertia, 

(b) the convective inertia, (c) the distributed wall interface 

stresses, and (d) the singular losses at the boundaries. Notice 
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that the magnitude of all these force terms increase dramatically 

as the fluid gap closes, because of the various powers of ( )Y t  

in the denominators of (13) – hence the squeeze-film effect. 

Note that, as discussed before, in the previous integration 

the friction coefficient f  was assumed constant, which is not 

actually true. For turbulent flows the exponent m  is quite small, 

so that the change of the friction coefficient with flow velocity 

becomes second order and the preceding simplification is 

justified. However, if the flow velocity is low enough, laminar 

flows will arise and the convenient simplification leading to 

solution (13) will entrain some error. Such is the case for the 

geometry of Figure 1, as symmetry imposes that near the middle 

of the plate (0, ) 0u t  , therefore a (smaller or larger) region 

of the channel will always display laminar flow, whatever the 

values of ( )Y t  and ( )Y t  which may well lead to turbulent 

flows in the outer regions of the channel. 

Most terms in solution (13) are analogous to those 

published by Esmonde et al. (1990a). However, our quadratic 

dissipative term related to flow/wall stresses is different from 

theirs, due to the distinct assumptions involved. Both 

coefficients 
inK  and  

outK   can be used when performing a 

numerical simulation, the first one during aspiration 

( ( ) 0Y t  ) and the other during ejection ( ( ) 0Y t  ). 

The new and more general solution, which applies to mixed 

laminar/turbulent flows, is obtained from (1)-(3) with the 

Reynolds-dependent skin-friction stresses modeled according to 

(11)-(12). We obtain the following dynamic force of the fluid on 

the plates, per unit width – see Piteau & Antunes (2010): 
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(14) 

Finally, for the single degree of freedom system shown in 

Figure 1, we have the equation for coupled flow/structure 

dynamics: 

   ( ) ( ) ( ) ( ), ( ), ( ) ( )
s s s f e

M Y t C Y t K Y t H W F Y t Y t Y t F t       (15) 

with the fluid force given by either (13) or (14) and ( )eF t  is 

any given externally applied force. On the other hand, H  is the 

reference value of the fluid gap, for the non-excited system. 

This is time-step integrated using any adequate algorithm. We 

used an explicit Runge-Kutta method, with variable time-step 

controlled by an estimate of the local integration error. For the 

experimental system tested, we have 0
s

K   and ( )
e s

F t M g . 

 

EXPERIMENTAL VALIDATION 
The experimental set-up, shown in Figure 3, consists on an 

immersed rectangular plate with dimension 

55 214 mmL W   , which is dropped from an height 

0
15 mmY  . The plate is free to move along the vertical 

direction, when subjected to gravity, so that 0
s

K  , the total 

mass of the mobile fixture being 36.6 Kg
s

M  . However, 

there is some damping 200 Ns/m
s

C   in a plate-guiding 

device. The fluid is water, with volumic mass 
3

1000 Kg/m   

and kinematic viscosity 
6 2

10 m /s


  at normal temperature. 

However, several tests were also performed at other 

temperatures, in order to change the viscosity (and hence the 

Reynolds number), as discussed in the following.  

The fluid force was measured using two force piezo-

transducers Kistler 9117AB (with charge amplifiers Kistler 

5011), mounted symmetrically between the plate and the 

sustaining fixture, at locations 95 mmx   . The plate motion 

was sensed using a non-contact displacement transducer Kaman 

KD2300-6C, mounted along the vertical direction, providing a 

linear response in the range 0 ~ 6 mmY  . Furthermore, two 

acceleration transducers Endevco 224C (with charge amplifiers 

B&K 2635) where used, one of them being processed with an 

analogue integrator, in order to obtain the velocity response of 

the plate. 

 

    
 

Figure 3: General view of the experimental rig and detail of the 

rigid instrumented plate. 

 

As a preliminary verification of the plate/base parallelism, 

we show in Figure 4 a sample response of the left and right 

force transducers, stemming from a typical drop test. It can be 

seen that the traces are almost indistinguishable, confirming a 

near-perfect symmetrical distribution of the dynamical fluid 

pressure, hence a satisfying parallel geometry of the 

experimental fluid gap. Notice however that, after the large 

force spike related to the fluid force ( )
f

F t , some other complex 

phenomenon arises. This secondary feature in the experimental 

responses is not related to fluid forces, but to a solid contact 

between the plate ant the base arising at the very end of the drop 

motion, which leads to a plate rebound. Such behavior, which 

was consistently observed, is a direct and unavoidable 

consequence of any residual lack of planarity of the plate and 
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base surfaces, which ultimately becomes dominant as 

( ) 0Y t  . Our theoretical model obviously does not apply to 

such phenomenon, which we did not try to emulate. 

 
Figure 4: Sample measured forces by the two plate transducers, 

demonstrating the parallelism of the plate/base assembling. 

 

The width-to-length ratio 3.9W L   of the tested plate is 

quite significant. Nevertheless, it may not be sufficient to rule-

out an experimental “error” connected with the 2D flow 

component under the plate squeezing, which is not addressed in 

our theoretical formulations. Even so, the 1D flow models 

addressed here will be confronted with these experimental 

results, on the reasonable ground that such 2D effect should be 

of second order magnitude. 

In Figure 5 we compare the experimental results of a plate 

drop at temperature 20ºC with the theoretical predictions 

stemming from our general model (14) for mixed 

laminar/turbulent flow. Here, the theoretical results were 

obtained using parameters (6), pertaining to Hirs empirical 

correlation for distributed skin-friction stresses. On the other 

hand, as mentioned earlier, our experimental geometry does not 

conform exactly to any of the geometries for which the 

inlet/outlet singular loss coefficients are tabulated in reference 

works – see Idel'Cik (1960) and Blevins (1984). Therefore 

some incertitude exists concerning the value(s) of 
outK  which 

apply to our experiments – note that in these tests the fluid is 

always ejected (at least before rebounding occurs), so only the 

outlet coefficient is relevant. After some numerical testing, we 

tentatively opted for a straightforward engineering approach, 

which proves effective. Actually, we use in our numerical 

simulations a constant value for 
outK  which both fits well our 

experimental data and is generally consistent with the 

referenced values. For all tests, the value 0.85
out

K   fulfilled 

both conditions. 

Notice that the experimental displacement signal in Figure 

5 is saturated when ( ) 6 mmY t  , because the beginning of the 

motion lays beyond the transducer range. Also notice the 

complex motion which arises at the end of the motion, because 

of spurious solid contact, as discussed before. In general, the 

motion of the dropping plate and the dynamical fluid force  are 

well predicted by the theoretical model, except for the 

acceleration at near-contact. 

 

 

 
Figure 5: Comparison of the experimental plate motion 

(displacement, velocity and acceleration) and dynamical fluid force 

with the theoretical solution from the general formulation with 

Hirs empirical correlation encapsulated, using a singular loss 

coefficient 0.85
out

K   (drop test at temperature 20ºC). 

 

For future comparison, it will prove interesting to plot 

illustrative time-histories of the Reynolds number (5) and of the 

corresponding variable friction coefficient, as computed from 

Hirs formulation. These are plotted in Figure 6, at two locations 

along the channel ( 0.25 2x L  and 0.75 2x L ), for the 

computation results shown in Figure 5. Notice that, as expected 

from the velocity field computed from (1), ( , ) /u x t xY Y  , 

the Reynolds number increases when approaching the plate 

boundary. Also note that, during most of the time, the friction 
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coefficient approaches 0.01f  , although a two-decade 

increase is experienced at the beginning and near the end of the 

motion. 

  

 
Figure 6: Time-histories of the Reynolds number and of the 

corresponding friction coefficient, computed from the general 

formulation with Hirs correlation (Re)f , at two different 

locations along the channel (all parameters as in Figure 5). 

 

We now turn to the theoretical predictions from the 

simplified model (13), with constant friction coefficient. The 

fluid forces predicted are shown by the plots in Figure 7, 

respectively for constant friction values of 0.01 and 0.1f   

(and using, as before, 0.85
out

K  ), which from the results of 

Figure 6 might be reasonable guesses. Actually, the results 

obtained when using 0.01f   are quite usable, however those 

stemming from 0.1f   clearly underestimate the fluid force. 

One can thus conclude that the simplified model (13) may well 

produce good predictions, provided an adequate value of the 

“constant” friction coefficient is supplied. However, by 

incorporating the velocity dependence (Re)f , our new 

improved analytical solution eliminates incertitude and 

guesswork concerning this parameter. At the cost of a modest 

increase in the model complexity, we believe that the gains from 

the refined solution far surpass this slight drawback. 

Figure 8 shows the time-histories of the Reynolds numbers, 

corresponding to the computations of Figure 7. Notice that 

these Reynolds numbers are quite insensitive to the actual value 

of the friction coefficient. Actually, both results are also quite 

similar to the plot connected with the variable friction 

coefficient, shown in Figure 6. This suggests that, for this 

fluid/structure coupled system, the flow pressure field is more 

sensitive to friction effects than the velocity field. 

 

 
Figure 7: Comparison of the experimental dynamical fluid force 

with theoretical solutions from the simplified model with constant 

friction coefficient, for values 0.01f   (upper plot) and 0.1f   

(lower plot), and using the singular loss coefficient 0.85
out

K   

(drop test at temperature 20ºC). 

 

 
Figure 8: Time-histories of the Reynolds number, computed from 

the simplified model with constant friction coefficients 0.01f   

(upper plot) and 0.1f   (lower plot),  at two different locations 

along the channel (all parameters as in Figure 7). 
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In Figures 9 and 10 we have decomposed the total fluid 

force, to highlight the various inertia (local and convective) and 

dissipative (distributed and singular losses) terms, as per 

equations. Figure 9 pertains to the computation results shown in 

Figure 5, with velocity-dependent friction coefficient, from the 

general model (14). The plots in Figure 10 pertain to the 

computations shown in Figure 7, with constant friction 

coefficient, from the simplified model (13).  

 
Figure 9: Decomposition of the dynamical fluid force into inertia 

and dissipative terms, from the improved theoretical model with 

Reynolds-dependent friction coefficient (all parameters as in 

Figure 5). 

 

 

 

 
Figure 10: Decomposition of the dynamical fluid force into inertia 

and dissipative terms, from the simplified model with constant 

friction coefficients, respectively for 0.01f   (upper plot) and 

0.1f   (lower plot) (all parameters as in Figure 7). 

 

In Figure 9 the dissipative terms display similar 

magnitudes, although at different phases of the motion. Both 

have the same order of magnitude of the local inertia term, 

which is for this system the only term with opposite sign. The 

convective inertia term is the least significant of all. In Figure 

10, the terms of the upper plot ( 0.01f  ) follow similar trends, 

although with some quantitative differences. Not unexpectedly, 

the lower plot ( 0.1f  ) is dominated by the skin-friction force 

term. 

Our last results concern the influence of the fluid viscosity 

on the plate dynamics. Experiments were performed at four 

different temperatures, as shown in Table 1. Notice that the 

corresponding changes in viscosity enable a significant range of 

Reynolds numbers. 

 
Table 1: Physical data for the tests at several temperatures 

 

Fluid 

temperature 

[ºC] 

Volumic 

mass 

[Kg/m
2
] 

Kinematic 

viscosity 

[m
2
/s] 

Maximum 

Reynolds 

( 2x L  ) 

2 1000
 

1.6 10
-6   7000 

20 998 1.0 10
-6

  12000 

59.5 983 4.7 10
-7

  25000 

72 977 4.0 10
-7

  30000 

 

Figure 11 presents the experimental results obtained. 

Notice that the plots of the four test results are shown 

superimposed. The near-insensitivity of the system dynamics to 

the fluid temperature is striking. Furthermore, such behavior is 

also displayed by the theoretical results shown in Figure 12, 

where the plots shown were computed from the improved 

model with velocity-dependence of the friction coefficient, 

equation (14). This interesting behavior is better understood by 

looking at the force decompositions for two extreme 

temperatures, as shown in Figure 13. Notice that, in spite of the 

total forces being near-identical, there are significant 

differences in the various force terms – in particular the loss 

terms – which somehow self-compensate, leading to the same 

net result. In other words, if less energy is dissipated through 

the skin-friction term (because of a higher Reynolds number), 

then such “excess” energy leads to enhancing of other terms, 

which tend to compensate the difference. 

 

CONCLUSIONS 
We have proposed in this paper a nonlinear analytical 

solution for the squeeze-film dynamical forces between parallel 

plates. Our approach is based on a 1D classical bulk-flow 

formulation and accommodates any kind of flow conditions 

along the channel gap, either laminar, turbulent or mixed flows. 

The time-domain computations presented show that a simpler 

formulation, using a constant skin-friction coefficient, may be 

able to produce satisfying predictions, provided a “good” 

average value of the friction coefficient is used. Nevertheless, 
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because the improved formulation takes into account the space-

time variation of  Re( , )f x t , it eliminates all guesswork 

concerning the friction stresses along the fluid channel. This 

considerable advantage comes at the modest cost of a slight 

increase in the complexity of the improved flow solution. 

 

 
 

Figure 11: Effect of the fluid temperature: Experimental plate 

motions (displacement, velocity and acceleration) and dynamical 

fluid forces. 

 

Computations performed on an immersed dropping plate 

show that all inertia and dissipative terms in the fluid force 

solution can be of significant magnitude. However the 

maximum amplitude of each term usually occurs at a different 

stage of the motion. For the specific system addressed, the 

distributed and singular friction losses lead to fluid force terms 

of similar magnitude. On the other hand, the least significant 

force term is related to the convective inertia. Analysis of the 

Reynolds number along the fluid channel indicates that, as 

expected, the flow is laminar near the centre of the moving plate 

but most often quite turbulent near the plate boundary. On the 

other hand, for the system studied in this paper, large increases 

in the velocity-dependent friction coefficient are experienced in 

the beginning as well as at the end of the plate drop motion. All 

these features stress the practical usability of the new improved 

flow force solution.  

 

 
 

Figure 12: Effect of the fluid temperature: Theoretical plate 

motions and dynamical fluid forces, computed from the general 

formulation with Hirs correlation (Re)f  and the singular loss 

coefficient 0.85
out

K  . 

 

In the second part of this paper we presented and discussed 

the results of an extensive series of experiments performed at 

CEA/Saclay. These consisted on a long gravity-driven 
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instrumented plate of rectangular shape colliding with a planar 

surface. Among the experimental results obtained, we presented 

a series of tests performed at various fluid temperatures, leading 

to a significant range of the flow Reynolds number. 

Interestingly, we consistently observed in both our experiments 

and computations that – although the various fluid force terms 

display some sensitivity to the actual Reynolds number along 

the squeeze-film channel – a kind of self-compensation actually 

arises between the various force terms, leading to a net fluid 

force which is nearly the same, irrespectively of the fluid 

viscosity. 

 

 
 

Figure 13: Effect of the fluid temperature: Decomposition of the 

dynamical fluid force into inertia and dissipative terms, from the 

improved theoretical model with velocity-dependent friction 

coefficient, respectively for 2 ºT C  (upper plot) and 72 ºT C  

(lower plot) (all parameters as in Figure 12). 

 
In all cases, our theoretical predictions were confronted 

with the experimental measurements with satisfying agreement. 

Nevertheless, one should keep in mind that some incertitude 

exists on the value of the singular loss coefficient which should 

be applied to our system. Here, we pragmatically overcame this 

problem by using a constant value for outK  which both fits well 

our experimental results, while being generally consistent with 

the published data. Even if such approach produced quite 

acceptable results, further effort is needed to refine the manner 

in which this force term should be dealt. In a broader sense, 

modeling of the flow dissipative terms will certainly be 

improved when reliable loss coefficients for unsteady flows 

become available. 
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