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Abstract

Most theoretical studies of bowed-string instruments deal with isolated strings, pinned on fixed supports. In others, the

instrument body dynamics have been accounted by using extremely simplified models of the string–body interaction

through the instrument bridge. Such models have, nevertheless, been instrumental to the understanding of a very common

and musically undesirable phenomenon known as the wolf note—a strong beating interplay between string and body

vibrations. Cellos, bad and good, are particularly prone to this problem.

In previous work, a computational method that allows efficient time-domain modelling of bowed strings based on a

modal approach has been introduced. This has been extended to incorporate the complex dynamics of real-life instrument

bodies, and their coupling to the string motions, using experimental dynamical body data. The string is modelled using its

unconstrained modes, assuming pinned–pinned boundary conditions at the tailpiece and the nut. At the intermediary

bridge location, the string–body coupling is enforced using the body impulse-response or modal data, as measured at the

instrument bridge.

In the present paper, this computational approach is applied to a specific cello, which provided experimental wolf-

behaviour data under several bowing conditions, as well as laboratory measurements of the bridge impulse responses on

which the numerical simulations were based. Interesting aspects of the string–body dynamical responses are highlighted by

numerical simulations and the corresponding sounds and animations produced. Finally, a qualitative (and, when possible,

quantitative) comparison of the experimental and numerical results is presented.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Raman’s seminal paper [1] was a landmark study of the dynamics of bowed strings. Since then, a plethora of
research papers has been published on bowed-string instruments, including enlightening work by Friedlander
[2], Schelleng [3], McIntyre et al. [4], to name just a few (see Cremer’s book [5], for an extensive account
of the field).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Variables

a number of bow hairs assumed in contact
with the string

A cross-sectional area of a bow hair
b number of modelled bow hairs
B inharmonicity parameter
c wave speed in string
C modal damping matrix
C friction decay parameter
Ca lumped adherence damping of the total

modelled bow hairs
C̄a adherence damping of a single bow hair
Cbs bridge–string damping coupling coeffi-

cient
E Young’s modulus
F force
F modal force matrix
InðtÞ modal force
h bridge impulse response
H length of the bow hair
i time step index
Ji product of contact point velocities at

successive time steps
K modal stiffness matrix
KB body parameter
Kbs bridge–string stiffness coupling coeffi-

cient
Ka lumped adherence stiffness of the total

modelled bow hairs
K̄a adherence stiffness of a single bow hair
L length of string
ma

B body parameter
mn modal mass

M modal mass matrix
n mode number
N maximum n

qn modal response
Q modal response matrix
S cross-sectional area of string
t time
T tension
x axial position
y transverse displacement
zn modal damping
Z dissipation coefficient
m friction coefficient
r density
jn modeshape
on circular eigenfrequency

Subscripts

A, a adherence
a1 related to the left side of the bow hair in

relation to the contact point
a2 related to the right side of the bow hair in

relation to the contact point
b bridge
B body
bow bow
bs bridge–string
c contact point
d dynamic
D asymptotic dynamic
f frictional
N normal
s slip
S static

O. Inácio et al. / Journal of Sound and Vibration 310 (2008) 260–286 261
Although modal methods have been extensively used in more general and specific industry-related problems
[6,7], its use in simulation of musical instruments behaviour is far from widespread. In previous work, a modal
method was developed to deal with plucked and bowed strings [8–11], enabling an effective simulation of such
systems, even when dispersive effects are significant. As in much other published work, those simulations
assumed a string pinned at the bridge and the nut, and therefore decoupled from the instrument body. This
approach proved adequate to obtain the typical motion patterns displayed by bowed strings. However,
because the bridge is assumed motionless, such computations are obviously unable to cope with more subtle
phenomena related to the coupling of string and body motions.

A crude approach to incorporate body effects, when simulating string sounds, is to start by computing the
vibratory response of an ‘‘isolated’’ (bowed or plucked) string, and then use the resulting string–bridge
interaction force to drive a given body vibro-acoustic transfer function. However, this simple approach is quite
limited and cannot account for any energy feedback from the body into the string—such as is found in wolf
notes—because the full string–body coupling is not modelled.
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Apparently, only a few authors have attempted to address this string–body coupling problem. McIntyre et
al. [4] incorporated in their wave-propagation computational algorithm a bridge-reflection function which
encapsulates the dynamical behaviour of a given body resonance, enabling them to simulate the coupled
dynamics between the string and the chosen body resonance. Similarly, Puaud et al. [12] used (in connection
with a so-called ‘‘numerical bow’’) a mass-stiffness bridge resonator, therefore also emulate a chosen body-
resonance coupled to the string dynamics. Recently, a different approach has been pursued by several authors
to simulate instrument bodies and cavities (see Huang et al. [13], for instance) by using 2D or 3D waveguides
to compute simplified multi-degree-of-freedom resonating systems. However, until now, this modelling
technique has only been used to simulate the body-filtering effects on string–bridge dynamical forces, with no
feedback coupling. In relation to other stringed instruments, Derveaux et al. [14] achieved fully coupled string/
soundboard computations for a modelled guitar.

The aim of the present work is to simulate the interaction between strings and real-life instrument bodies,
where our computational method is extended to incorporate the multi-modal dynamics of a violin and cello
body, fully coupled to the string motions. A hybrid approach is taken, in the sense that a theoretical model
of the string is coupled with dynamical body data, obtained either from simplified models or real-life
experiments.

The string is modelled using its unconstrained modes assuming in contrast with [8–11], pinned–pinned
boundary conditions at the tailpiece and the nut. Then, at the bridge location, the string–body coupling is
enforced using the body impulse-response or modal data (as measured at the bridge). At each time step, the
system motion is computed by integrating the string-modal equations, excited by the modally projected values
of the frictional bow force and also of the string–bridge contact force. The latter is obtained from the body
motion at each time-step, as computed either (a) using the body impulse response, or (b) from a modal model
of the body. In the first method, the body dynamics are obtained through incremental convolution, a costly
procedure which, however, enables the direct simulation of real bodies without any further modelling
assumptions or simplifications. The second method allows for faster computations, but demands a computed
or identified modal model of the instrument body.

It should be mentioned here that the modal basis unconstrained at the bridge location (coupling point) is
not the only option available to solve this problem. Indeed the interested reader may refer to the recent work
by Woodhouse [15], who deals with body–string coupling in guitars by modelling the string as pinned–pinned
at the nut and the bridge, and then complements such basis with a so-called ‘‘constraint mode’’ which can be
shown to be the static response of the string when the bridge extremity is moved [16]. Similar issues arise when
dealing with sub-structure synthesis where the analyst may choose between several families of the basis
functions used to represent each substructure (refer, for instance to Ref. [6]). The merits of the various
approaches will be reflected on the number of basis terms used to achieve convergence. However, a
comparison of these different methods is beyond the scope of this paper.

After a few demonstrative experiments and a detailed presentation, our computational approaches are
illustrated for both violin and cello typical self-excited string motion regimes. These are compared for
‘‘isolated’’ strings and for the string–body coupled model, based here on synthetic body dynamical data. In
particular, interesting simulations pertaining to the so-called wolf notes are presented.

2. Computational method

2.1. Formulation of the string dynamics

Consider an ideal string of length L and cross-sectional area S, linear density rS and dissipation coefficient
Z, subject to a constant axial tensile force T and a force distribution F(x,t). The small-amplitude transverse
motion y(x,t) of the string is basically described by the wave-equation [6]:

rS
q2y

q2t
¼ T

q2y
qx2
þ F ðx; tÞ, (1)

where the wave speed is given by c2 ¼ T/(rS). In practice, physics imposes that Eq. (1) embeds some kind of
damping effect in order to cope with the actual behaviour of the various dissipative mechanisms acting on the
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string (string radiation, internal damping) [17]. However, we will assume here, for simplicity, that the damping
mechanism leads to proportional damping on the string and, therefore, to real modes.

Any solution of a suitable damped version of Eq. (1) can be formulated in terms of the string’s modal
parameters: for modeshapes normalised at unitary maximum values modal masses are given as mn ¼ rSL/2
(8n). Other modal parameters are the circular frequencies on ¼ npc/L, damping values zn and mode shapes
jnðxÞ ¼ sinðnpx=LÞ, with n ¼ 1, 2, y, N. The order N of modal truncation is problem dependent and must be
asserted by physical reasoning. On the modal space the forced response of the damped string is formulated by
Eq. (2), which follows from Eq. (1) by writing the solution of this partial-differential equation with the
separation approach (4):

½M�f €QðtÞg þ ½C�f _QðtÞg þ ½K�fQðtÞg ¼ fFðtÞg, (2)

where ½M� ¼ diagðm1; . . . ;mNÞ; ½C� ¼ diagð2 m1o1 z1; . . . ; 2 mNoN zN Þ; ½K� ¼ diagðm1o2
1; . . . ;mNo2

N Þ; are the
matrices of modal parameters, fQðtÞg ¼ hq1ðtÞ; . . . ; qN ðtÞi

T and fFðtÞg ¼ hI1ðtÞ; . . . ;IN ðtÞi
T are the vectors of

modal responses and generalised forces, respectively. The damping values zn are usually identified from
experiments. However, they could, where appropriate, be theoretically modelled [17]. The modal forces InðtÞ

are obtained by projecting the external force field on the modal basis:

InðtÞ ¼

Z L

0

F ðx; tÞjnðxÞdx ðn ¼ 1; 2; . . . ;NÞ. (3)

The physical motions at any point of the string can be computed from the modal amplitudes qn(t) by
superposition:

yðx; tÞ ¼
XN

n¼1

jnðxÞ qnðtÞ (4)

and similarly concerning the velocities and accelerations. For given external excitation and initial conditions,
the previous system of equations can be integrated using an adequate time-step integration algorithm. Explicit
integration methods are well suited for the friction model used here. In our implementation, we used the so-
called Velocity–Verlet integration algorithm [18], which is a low-order explicit scheme (see Section 2.4). Note
that although (2–4) obviously pertain to a linear formulation, nothing prevents us from including in InðtÞ all
nonlinear effects arising in the system. Accordingly, the system modes become coupled by the nonlinear
effects.

For the present case, the external force field F(x,t) is due to the excitation friction force Fs,a(xc,t) provided by
the bow (which we will model in this paper as a single hair bow, although we can easily introduce excitation by
a bow of finite width—see Ref. [11]), by the interaction force Fb(xb,t) between the body and the string at the
bridge and by the possible presence of a finger on the fingerboard (see Fig. 1).

2.1.1. Friction model

Friction-related phenomena have been subject of a considerable amount of research, and several models
have emerged to address a number of related problems. Due to the complexity of the interaction between
contacting surfaces and of the associated high nonlinearity, most models are of an empirical nature. A survey
of the experimental and analytical knowledge in this field can be found in Refs. [19–24].

The friction model used in this work is based on ideas proposed by Antunes et al. [25] in the context of an
industrial vibro-impact problem, using at that time, velocity-independent sliding friction coefficient. In the
NutTailpiece
Bridge

Finger

String

Bow

Fig. 1. Idealised model of the bowed string.
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present paper, adherence is modelled using the concept of spring/damping attachment point, while sliding is
modelled by fitting an empirical formulation to experimental published data [26].

The friction force arising between the string and the bow hair at location xc of the string is given by

F sðxc; tÞ ¼ �md ð _ycÞ
FN

b
sgnð _ycÞ; if _yc

�� ��40;

F aðxc; tÞ
�� ��omS

FN

b
; if _yc

�� �� ¼ 0;

8>><
>>: (5)

where FN is the normal force between the bow and the string, mS is a ‘‘static’’ friction coefficient (used during
surface adherence), mdð _ycÞ is a ‘‘dynamic’’ friction coefficient (used for sliding regimes) and b is the number of
bow hairs used in the model. This friction model is depicted in Fig. 2. Here, the relative transverse velocity
between the bow and the string is given by

_ycðtÞ ¼ _yðxc; tÞ � _ybowðtÞ ¼
XN

n¼1

jnðxcÞ _qnðtÞ � _ybowðtÞ. (6)

In this work we assume that mdð _ycÞ is a function of the relative bow–string velocity, and use the following
model:

mdð _ycÞ ¼ mD þ ðmS � mDÞe
�C _ycj j, (7)

where 0pmDpmS is an asymptotic lower limit of the friction coefficient when j _ycj ! 1, and parameter C

controls the decay rate of the friction coefficient with the relative bow–string sliding velocity. The friction
model (7) can be readily fitted to typical experimental data, by adjusting the empirical constants mS, mD and C.

The sliding behaviour, described by the first relation in Eq. (5), does not cause problems for simulations, as
this equation explicitly shows how the sliding force should be computed as a function of the sliding velocity.
However, during adherence, simulation becomes more difficult. Indeed, the second equation in Eq. (5) merely
states a limiting value for the friction force, during adherence, and gives no hint on how F að _yc; tÞ may be
actually computed. This is because the adherence force depends on the overall balance of all internal and
external forces acting upon the system, which are quite complex for multi-degree-of-freedom problems.
Although the Friedlander construct [2] used by many investigators in this field leads to very fast computations
of the responses at the bowing point, many friction algorithms deal with this problem through costly iterative
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Fig. 2. Change of the friction coefficient with the bow–string relative velocity.
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numerical schemes, which may be quite expensive to run. In our approach, the following explicit procedure is
used at each time-step i:
(1)
 If in the previous time-step the system was sliding, we start by detecting a possible bow-hair–string adherence,
by computing Ji ¼ _ycðtiÞ _ycðti�1Þ. Then, if Ji40, the system is still sliding in the same direction. We compute
Fsð _yc; tiÞ according to the first relation in Eq. (5), with _ycðtiÞ given by Eq. (6) and md(ti ) by Eq. (7).
(2)
 However, if Jip0, then a reversal of the relative motion is occurring and adherence will arise. Then, we
compute the sticking force using the following model:

F aðxc; tiÞ ¼ �KaycðtiÞ � Ca _ycðtiÞ, (8)

which will be used during the complete duration of the adherence state. The idea in Eq. (8) is to ‘‘attach’’
the string to the bow at point xc using a suitable ‘‘adherence stiffness’’ and to damp-out any residual bow/
string relative motion during sticking using an ‘‘adherence damping’’ term in Eq. (8). yc is the relative
displacement between the string and the bow hair, at any time during adherence, given as:

yc ¼ yðxc; tÞ � ya
bowðtÞ ¼

XN

n¼1

jnðxcÞ qnðtÞ � ya
bowðtÞ (9)

where ya
bowðtÞ is the current position of the bow contact point. For a given constant bow speed, this

changes as ya
bowðtÞ ¼ ðt� taÞ _ybow, where ta is the time value when adherence was detected. The adherence

stiffness Ka in Eq. (8) is computed from

K̄a ¼ K̄a1 þ K̄a2, (10)

where K̄a1 and K̄a2 are related to the axial stiffness of the bow hair on each side of the contact point.
Although the real axial stiffness will change as the contact point moves along the bow, K̄a1 and K̄a2 are
here assumed for simplicity to be equal and given by

K̄a1 ¼ K̄a2 ¼
EA

H=2
(11)

which would pertain to a bow acting about its middle length. Any correction to this assumption can be
easily established in this model. In Eq. (11) E is the Young Modulus, A the cross-section of one individual
bow hair and H the total length of the bow hair. The adherence stiffness of each contact point is given by

Ka ¼ K̄aa=b, (12)

where a is the number of bow hairs assumed in contact with the string, and b is the number of pseudo-
bow hairs (contact points) used in the numerical model. Similarly, Ca ¼ C̄aa=b, where C̄a is the adherence
damping of a single bow hair.
(3)
 After computing the adherence force, Fcð _yc; tiÞ is compared with the maximum allowable value mSF N . If
jF ajpmSF N , the current estimate is accepted and simulation continues assuming a sticking state. On the
contrary, when jF aj4mSFN , sliding will arise and the friction force is recomputed according to the first
relation in Eq. (5). Then, the procedure continues with the next time-step. Again, we stress that, by virtue
of (6) and (9), all the string modes become coupled when the nonlinear friction force is projected on the
modal basis, Eq. (3), and then incorporated in Eq. (2).
In this context, it should be mentioned that recent research results [27] suggest the relevance of dynamical
thermal phenomena in the tribology of rosin, which may induce hysteretic effects in the friction-velocity
dependence. In spite of the unquestionable interest of such findings, the classical approach for sliding
behaviour was used, as this article addresses a different issue.

2.2. Formulation of the body dynamics

As previously explained, the present method was implemented to simulate the influence of the string–body
coupling using two different procedures: incremental convolution of a measured impulse response or through
a modal model of the body dynamics.
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2.2.1. Incremental convolution formulation

At the bridge, the string motion forces the violin body into vibration. The response of the body can be
computed, at each time step i, by the incremental convolution of the time-history of the interaction force
between the bridge and the string Fb(xb,t) and the body impulse response function hb(t) at the same point xb,
according to Eq. (13):

ybðxb; tÞ ¼

Z t

0

Fbðxb; tÞhbðt� tÞdt, (13)

where yb(xb,t) is the displacement of the bridge at the contact point with the string, while hb(t) is the
displacement/force impulse-response functions of the instrument body, measured at the bridge, along the
horizontal direction (see Fig. 4).

2.2.2. Modal formulation

As for the string, we will assume that in the instrument body damping is proportional and hence body
modes are also real. This assumption is debatable, as discussed in Ref. [15], but will be adopted here to avoid
the additional burden of using a complex modal basis. Notice, however, that if the direct convolution
formulation (13) is used, the possible complexity of body modes is already embedded in the body impulse
response hb(t) and introduces no further difficulty. The response of the body of the instrument can be
represented by a simplified modal model:

½MB�f €QBðtÞg þ ½CB�f _QBðtÞg þ ½KB�fQBðtÞg ¼ fFBðtÞg, (14)

where ½MB� ¼ diagðmB
1 ; . . . ;m

B
PÞ; ½CB� ¼ diagð2 mB

1o
B
1 zB

1 ; . . . ; 2 mB
Po

B
P zB

PÞ; ½KB� ¼ diagðmB
1 ðo

B
1 Þ

2; . . . ;mPðoB
PÞ

2
Þ;

are the matrices of the body modal parameters, fQBðtÞg ¼ hq
B
1 ðtÞ; . . . ; q

B
PðtÞi

T and fFBðtÞg ¼ hI
B
1 ðtÞ; . . . ;

IB
PðtÞi

T are the vectors of modal responses and generalized forces, respectively. The modal forces IB
p ðtÞ

are obtained by projecting the string–body coupling force Fb(xb,t) (see Section 2.3), on the body modal basis.
The modal parameters are identified from a single transfer function measurement at the bridge,
HbðoÞ ¼ F½hbðtÞ�, where F denotes the Fourier transformation. This fact leads to a requirement that the

modal mass matrix should be normalised by postulating that all modeshapes jB
p ðxbÞ are unitary at the bridge

location. The physical motions at the bridge are then computed from the modal amplitudes qB
p ðtÞ by

superposition:

ybðxb; tÞ ¼
XP

p¼1

qB
p ðtÞ. (15)

2.2.3. Discussion of the body dynamics formulation methods

Both methods described before have advantages and disadvantages from the computational point of view.
The incremental convolution method allows the use of measured impulse response functions of real-life
instruments, without any other assumptions other than linearity, nor does it require the use of any modal
identification procedure. It allows the most accurate representation of the body dynamics, but has the great
disadvantage of requiring long-computation times if the direct convolution formulation (13) is used. This
problem can, however, be alleviated by the implementation of some form of fast-convolution approach. On
the other hand, the modal approach of the body allows for much lower computation times (at least by one
order of magnitude), but requires a careful modal identification to be performed. Furthermore, the modal
representation is less than ideal to cope with the body dynamics at higher-frequency modal densities because
of the large number of modes that would be required. Computation times are proportional to the number of
modes used in the model. In contrast, the incremental convolution procedure’s computation time does not
depend on the modal order but only on the duration of the impulse-response function. Finally, it should be
emphasised that although not presented in this paper, vertical motion of the string and bridge can be easily
implemented with this computational method.
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2.3. Formulation of the string– body coupling

The coupling between the string and the body of the violin arises from the bridge–string contact force
Fb(xb,t) which is used in Eqs. (2), (13) and (14). In this paper we model this interaction by connecting the string
to the bridge through a very stiff spring and a dashpot to prevent parasitic oscillations:

F bðxb; tÞ ¼ Kbs½ybðxb; tÞ � ysðxb; tÞ� þ Cbs½ _ybðxb; tÞ � _ysðxb; tÞ�, (16)

where Kbs is the stiffness coupling coefficient between the bridge and the string, Cbs is the damping coupling
coefficient between the bridge and the string and ys(xb,t) and ys(xb,t) are the displacement and velocity of the
string at the bridge, respectively.

2.4. Integration algorithm

The modal Eqs. (2) and (14), coupled through the right-hand side force terms, may be numerically
integrated using either an explicit or implicit approach, meaning that the dynamical force balance may be
based on the state of the system at either the last computed time-step ti or the next time-step tiþ1 ¼ ti þ Dt

under computation. Both approaches have merits and disadvantages as, in broad terms, explicit algorithms
are simpler and faster per time-step than implicit algorithms, which must iterate until convergence. However,
the latter typically enable the use of larger integration time-steps Dt, which may compensate the previous
disadvantage, the best option being problem dependent. Previous experience with vibro-impacting and
friction-excited systems (see Refs. [8–11,28]) suggests that explicit algorithms are well suited for such problems.
Among other possible choices the so-called ‘‘Velocity-Verlet’’ method introduced in Ref. [29] is used here. This
is a simple explicit algorithm of second order. Although not frequently found in structural dynamics
computations, this algorithm has been widely used by researchers dealing with granular flow and molecular
dynamics computations—see Ref. [30], for instance. However, other methods such as Newmark’s algorithm
[31,32] might be used as well.

Please notice that because numerical efficiency is not an issue here, it is not claimed that the time-step
integration algorithm used in the paper is the most efficient approach for the problem.

For each modal equation, the Velocity–Verlet algorithm is expressed as

qnðtiþ1Þ ¼ qnðtiÞ þ _qnðtiÞntþ
nt2

2

InðtiÞ

mn

þOðnt3Þ,

_qnðtiþ1Þ ¼ _qnðtiÞ þ
nt

2

InðtiÞ þ Inðtiþ1Þ

mn

þOðnt3Þ, ð17Þ

where, because the interaction forces depend on the system response, we have InðtiÞ ¼ In½qjðtiÞ; _qjðtiÞ� and,
strictly speaking, Inðtiþ1Þ ¼ In½qjðtiþ1Þ; _qjðtiþ1Þ� (where the index j stands for all modes in the range
j ¼ 1,y,N). However, the use of such expression for Inðtiþ1Þ would enforce an implicit scheme. In practice,
formulation (1) may be split as follows:

_qnðtiþ1=2Þ ¼ _qnðtiÞ þ
nt

2

InðtiÞ

mn

,

qnðtiþ1Þ ¼ qnðtiÞ þ _qnðtiþ1=2Þnt,

_qnðtiþ1Þ ¼ _qnðtiþ1=2Þ þ
nt

2

~Inðtiþ1Þ

mn

, ð18Þ

with InðtiÞ ¼ In½qjðtiÞ; _qjðtiÞ� and the approximation ~Inðtiþ1Þ ffi In½qjðtiþ1Þ; _qjðtiþ1=2Þ� is used instead of the
unknown value Inðtiþ1Þ.

3. The wolf note

The wolf note is a particular effect to which bowed-string instruments (bad or good) are known to be very
susceptible. It is an unpopular phenomenon among musicians since it gives rise to harsh and beating-like
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sounds, making proper musical execution extremely difficult at some positions along the fingerboard.
Although unpleasant for the listener, the emergence of this effect is paradigmatic of the importance of the
body–string interaction.

The wolf phenomenon has been the subject of several studies [1,12,33–38], the most generally accepted
explanation being the one suggested by Schelleng [33], 40 years ago. More recently the basis of this
explanation has been revisited and further discussed by Woodhouse [38]. However, there are still a few aspects
deserving exploration, such as the influence of the string dynamics in the portion between the tailpiece and the
bridge (see Ref. [14] for an interesting experimental account). On the other hand, we experienced a dependence
of the wolf-beating frequency on the bowing parameters, an aspect which seems almost absent from the
literature, other than in Ref. [4] where two simulations of a wolf note played with different bow forces are
shown, exhibiting different wolf-beating frequencies. Also, the emergence of wolf phenomena appears to
depend somewhat on the time-history of the bowing parameters, a fact which has also been noted in Ref. [14].
These issues will be addressed in the present and future papers.

3.1. Wolf note measurements

In order to explore the coupling between the body of the instrument and the strings, some preliminary
measurements were made on a cello. Fig. 3 shows a typical mobility frequency response function measured at
the bridge in the horizontal direction as shown in Fig. 4, through impact excitation, the bridge response being
sensed by an accelerometer. After careful consideration it was decided to, similar to Ref. [15], perform the
measurements keeping the strings of the instrument tensioned and in-tune but damped with a light cloth.

The main body resonance occurs at approximately 196Hz with a relatively low damping ratio (z ¼ 0.7%)
when compared with the majority of the other peaks which reveal damping ratios of the order of 2%. This
high amplitude mobility peak (1.63� 10�1m s�1N�1) is responsible for the wolf note.

Figs. 5–7 show several typical time-histories, and corresponding spectra, to excitation by bowing on the C2

open string (tuned to 65.4Hz) at different notes on the fingerboard. Typical velocity amplitudes for the
vibration of the bridge at the C2 open string are shown to be of the order of 0.1–0.2m s�1. At a bowing
position of approximately 40mm from the bridge (Fig. 5), the third harmonic is prevalent relative to the lower
order partials. The proximity of its frequency to the main body resonance (3� 65.4Hz ¼ 196.2Hz) enhances
this particular harmonic, revealing the importance of string–body coupling for normal musical regimes.

Fig. 6 depicts the typical amplitude-modulated waveform that characterizes the wolf note. In order to
achieve this sound, the C2 string was stopped at a distance approximately L/3 from the bridge (where L is the
length of the string), and the G3 note was played at approximately 196Hz. Clearly, the beating phenomena
displayed is the result of strong coupling between the string vibration and the main body resonance, which is
1
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Fig. 3. Mobility transfer function of the cello measured at the bridge.
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related to the proximity of their frequencies. Shortening the effective length of the string by a small amount is
enough to prevent the wolf note to develop as can be seen in Fig. 7. In this case, the finger moved along the
fingerboard in the direction of the bridge a few millimetres, which was enough to alter the fundamental
frequency of the stopped string to 218Hz which prevented the strong string–body coupled response.
4. Simulations

Simulations were performed for both a violin and a cello. The movement of a violin G-string with a
fundamental frequency of 196Hz is simulated, with an effective length L ¼ 0.33m and a linear density of
rS ¼ 3.1� 10�3 kgm�1, in order to test the behaviour of the coupled computation method described above.
The cello C-string simulated has a total length of 0.83m from the nut to the tailpiece with 0.7m and a linear
density of rS ¼ 14� 10�3 kgm�1 from the bridge to the nut, giving a fundamental frequency of 65.4Hz. In
order to achieve adequate computational convergence 60 modes were used for the violin string and 80 modes
for the cello string, with a recorded sampling frequency of 20 000Hz. For simplicity, a modal damping value of
0.1% was used for all modes (however, frequency-dependent damping can be easily introduced with this
method) and a string inharmonicity coefficient B was introduced to provide more realistic simulations [3,5].
This effect is easily simulated using our approach, as the bending stiffness influence is automatically
incorporated in the string modes, with modified frequencies according to

on ¼ no1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bn2

p
; for nX2, (19)

where B ¼ pEf4/64L2T for homogeneous strings. However, the lower strings for the violin or cello are usually
wound and therefore nonhomogeneous, so a value of B ¼ 2.33� 10�4 was used, which was inferred from
Table 4.9 of Ref. [39].

The bodies of the violin and the cello were simulated using a modal basis whose parameters were identified
from measured input admittances. In the case of the violin a very crude model was used comprising only 13
modes covering the frequency range between 200 and 3500Hz. In the case of the cello a thorough modal-
identification procedure was carried and 53 modes were chosen leading to the synthesised input admittance
shown in Fig. 8.

A classic sliding law friction model, such as the one presented in Eq. (7), with mS ¼ 0.4, mD ¼ 0.2 and C ¼ 5,
was chosen, which produced realistic results. For the adherence model a total value of Ka ¼ 105Nm�1 has



ARTICLE IN PRESS

10 400 600 1000 1200

10-5

10-4

In
pu

t a
dm

itt
an

ce
 [m

/N
]

10-6

10-7

Frequency [Hz]

200 800 1400

Fig. 8. Measured (light line) and synthesised (heavy line) input admittance of the cello used in the simulations.

O. Inácio et al. / Journal of Sound and Vibration 310 (2008) 260–286 271
been used. As previously discussed, a near-critical value of the adherence damping term Ca was adopted
[10,11].

The stiffness constant value, Kbs, used for the string–body coupling was chosen in order to enable a very stiff
connection, while keeping a satisfactory computational convergence. As demonstrated in Appendix A a value
equal or higher than 106Nm�1 is enough. Concerning the damping constant a value Cbs ¼ 10Nsm�1 proved
adequate. As also shown in Appendix A, for Kbs X106Nm�1 the modal damping of the string–body coupled
modes is not affected by this value of Cbs.
5. Results

5.1. Violin simulation results

Figs. 9–11 show simulations of the violin string and bridge dynamics for different boundary conditions,
when applying a normal bow force (FN) of 1N and bow velocity ( _ybow) of 0.1m s�1, at 0.030m (approximately
L/10) from the bridge. Fig. 9 shows the most widely simulated case of a string pinned at the bridge and the nut
(with a length of 0.330m). Perfect reflections arise from these extremities and the Helmholtz motion is clearly
perceptible. The force at the bridge is easily computed from the modal time responses qn(t), through a
superposition of the modal reaction forces, Eq. (20), where f1 is the fundamental frequency of the string:

F bðtÞ ¼ �4p
r
S

Lf 2
1

XN

n¼1

nqnðtÞ. (20)

Fig. 10 represents the case of a string pinned at the tailpiece and the nut, with a total length of 0.385m, a
rigid bridge being placed at 0.330m from the nut. The same overall behaviour as in the previous example
could be expected, since there is no movement of the bridge. However, note that the string inharmonicity
enables some energy to pass to the tailpiece side of the string, leading to low-amplitude waves at higher
frequency. These parasitic oscillations are clearly perceptible in the string–bridge coupling force shown in
Fig. 10, superimposed on the well-known bow-bridge secondary waves shown in Fig. 9. This effect, noted by
Puaud et al. [12], can be seen very clearly on the computed animations of the string motion. Nevertheless, and
not unexpectedly, a Helmholtz motion similar to the previous example developed. Notice that the overall
behaviour of the string-bridge contact force is similar for the computations in Figs. 9 and 10. This is a
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reassuring feature, given that in Fig. 9 the contact force is computed from the modal summation of Eq. (20),
while in Fig. 10 the interaction force stems from the totally different approach stated in Eq. (16).

Fig. 11 shows the results obtained from the simulations computed through the implementation of the
string–body coupling by application of the modal model of a violin body (Section 2.2.2). A modal
identification was performed, as pointed before, on a mass-produced violin and 13 modes were chosen to
represent the gross features of its dynamical behaviour. The corresponding synthesised impulse response
function was also calculated and used in the incremental convolution method, leading exactly to the same
results. As in the previous example, the oscillations of the tailpiece side of the string can also be seen in the
string–bridge-coupling force.
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The similarity of the plots depicted in Figs. 10 and 11 is due to the high impedance presented by the violin
bridge to the string waves, which are—in this computation—hardly affected by the comparatively negligible
bridge motion. However, it is important to emphasise that this result was obtained when bowing an open G-
string, with a fundamental frequency significantly lower than the first body resonance (at about 276Hz).
However, in contrast to this situation, interaction between the string and the body can be much stronger when
playing notes with frequencies close to body resonances. Then, bridge motion amplitude (and energy
string–body interplaying) may become very significant, as typically experienced in cellos when playing wolf
notes. Typically, the cello string suffers a much greater influence from the body, as was clear from the
experiments shown in Figs. 5 and 6.

Simulations of plucked violin strings were also performed using a rigidly supported bridge and a flexible
(compliant) bridge. Fig. 12(a) and (b) depict the velocity of the string at the plucking point for these two
conditions. Using a rigid bridge, case (a), the string motion decreases in a simple exponential manner, while
with the compliant bridge, case (b), the interaction with the body dynamics can be clearly seen. In this latter
case, energy is transferred from the string and dissipated by the body through the bridge originating a higher
motion decay rate. An accurate identification of the damping factor of the individual modal responses of the
plucked string, using the modal identification ERA method [40,41], showed that the 0.1% damping of the
string modes is unaltered when the string’s modal frequencies are not close to a body resonance (the same
conclusion applies to the body modes’ damping factors). However, in the case of the compliant bridge, when
the string and body resonances are close (a few Hertz apart) the string mode damping values become higher, as
expected. As an example, the modal damping of the string’s second mode (at 392Hz) couples well to the
body’s second mode (at 404Hz) changing the damping value from 0.1% to 0.37%. The correctness of the
damping values identified from the time-domain simulations was verified by the complex eigenvalues of a
coupled system model, as shown in Appendix A.

5.2. Cello simulation results

As the influence of the cello body on the dynamics of its C2 string was so apparent during the preliminary
experiments, several coupled simulations for this instrument using a modal representation of this instrument
body (see Fig. 8) were performed. To easily detect the emergence of a possible wolf note, a glissando was
implemented in the simulation scheme by moving a finger along the fingerboard in the range xf ¼ 260–210mm
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relatively to the bridge—upward glissando—or xf ¼ 210–260mm—downward glissando. In this case, the bow
was placed at 40mm from the bridge. To simulate the force exerted by a moving finger on the string, the
‘‘finger’’ was pragmatically modelled using three spring/dashpots of adequate stiffness/dissipation at
coordinates [xf�5mm , xf , xf +5mm].

The results are presented in Figs. 13–16, which represent the bridge displacement, for different bowing
conditions. The wolf note emerges approximately between positions 243 and 237mm for the upward
glissando, however it does not arise at exactly the same range for the downward glissando as can be seen in
Fig. 14.

Another interesting aspect is the fact that the wolf note beating frequency changes for different bowing
conditions. Increasing the bowing velocity causes an increase of the beating frequency (Fig. 15), while higher
bow normal forces tend to reduce this value. Reducing the bow normal force obviously increases the beating
frequency as can be seen in Fig. 16. This latter dependence of the beating frequency on the applied normal
force was already briefly numerically demonstrated in Ref. [4]. However, no account has been found in the
literature on the bow velocity-dependent beating frequency.

An interesting aspect is that the playing conditions in Figs. 15 and 16 seem to extend the range in which the
wolf note emerges, probably associated with the complexity of the body modal response. This feature is also
apparent in real-life playing in which musicians denote high difficulty in obtaining clear and repeatable wolf
notes.

The explanation of the wolf note formation was first stated by Raman [1] and later revisited by McIntyre
and Woodhouse in Ref. [36], which mentions the connection between their time-domain explanation and the
frequency-domain explanation by Schelleng. They explain the emergence of the wolf note in the light of the
concept of minimum bow force: the continual increase of energy loss from the string due to the build-up of
energy in the coupled body implies an increase in the minimum bow force necessary to establish Helmholtz
motion. If the minimum bow force needed exceeds the actual bow force, the Helmholtz motion gives way to a
‘‘double slip’’ regime, during which the two slips gradually get out of phase and the new slip takes over as the
new Helmholtz motion. This cycle repeats itself giving rise to the characteristic wolf note sound [36].
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It is then tempting to link the wolf beating frequency to the conditions enabling the emergence of the
double-slip regime. By increasing the normal force double slips will be triggered later (or even suppressed),
leading to a lower beating frequency. However, by increasing the bow velocity, double-slip motions will be
triggered more easily (as shown in Fig. 19 in this section) causing an increase of the wolf beating frequency.
Nevertheless, this tentative reasoning should be supported by a detailed analysis.

In order to map the space of dynamical regimes obtainable with different playing conditions, FN and _ybow,
at the wolf note finger position, one of these input parameters was successively set to a wide range of discrete
values while the other parameter values were continuously increased in an exponential time sweep. It should
be clear that this approach is not intended to represent real transient behaviour, but simply para-
metric changes over a determined range of values (for details on bowed-string musical transients, refer to
Guettler [42]).

Fig. 17 shows the instrument bridge displacement time-histories resulting from an exponential sweep of the
bow velocity between 0.01 and 1m s�1 while the bow normal force is varied between 0.2 and 10N in discrete
steps proportional to 1, 2 and 5. Fig. 18 represents also the bridge displacement time-histories but now
resulting from an exponential sweep of the bow normal force between 0.1 and 10N while the bow velocity is
varied between 0.01 and 0.5m s�1 in the same proportion as in Fig. 17. A colour scheme is used to represent
the oscillation regimes that arise for different values of the input parameters.

Six regimes were found during the exponential sweeps performed: a low amplitude or inexistent oscillation;
the wolf note regime; the familiar Helmholtz regime; higher-order regimes characterised by multiple slips
within one fundamental period; a raucous regime of chaotic oscillations, and, for a small range of input
parameters, the anomalous low-frequency regime (see Ref. [43]).

A detailed analysis of the previous figures can give some insight on the mechanism through which musicians
usually try to avoid the wolf note by varying the bow-playing conditions. According to these simulations, and
as can be seen in Figs. 17 and 18, the wolf note can emerge over a large range of bow velocities and normal
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Fig. 17. Map of the oscillation regimes (see legend below) of a cello string bowed at the wolf note position, for discrete values of F N and

an exponential sweep of _ybow.
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forces. Nevertheless, from Fig. 17, if a bow force of 1N is applied with a bow velocity around 0.03m s�1,
Helmholtz motion is possible, as well as for higher bow velocities and normal forces. Interestingly, Fig. 18
shows a somewhat different picture, with a large range of playing conditions leading to a very low amplitude
or even nonexistent oscillation, for values where in Fig. 17 a self-sustained regime would appear. As in many
nonlinear systems, various response regimes may arise, for the same driving parameter values, depending on
the initial conditions of the motion. Even so, the global behaviour is similar in both figures, with other
regimes, such as the anomalous low-frequency, emerging or being less excited, such as the higher-order regime.
Thus, it seems probable that musicians try to escape the wolf note by using playing conditions of bow velocity
or normal force outside the ‘‘wolf’’ range represented in the previous figures.

Another interesting and expected result is the appearance of the flattening effect [5] when increasing bow
normal force is applied. This feature is particularly clear in the results from the force exponential sweep. A
detailed analysis (or simply listening to the sound resulting from these simulations) shows that Helmholtz
motion is maintained in some regions (see Fig. 18) but as the force increases the fundamental frequency
decreases, until chaotic (raucous) motion establishes.

The dependence of the wolf beating frequency on the playing conditions, is also evident in the simulations
represented in Figs. 17 and 18. The continuous ‘‘sweep’’ of bow velocity or normal force shows very clearly
this dependence. Figs. 19 and 20 depict a detail of the time history of bridge displacement, in which this
continuous change in the wolf note frequency is apparent. Values of this frequency are shown for clarity in
Figs. 19 and 20.

The values of the wolf note ‘‘beating’’ frequency were identified over short time intervals containing two
‘‘beating’’ periods, represented by the shaded areas in Figs. 19 and 20. As can be seen from the values
presented and by inspection of the figures, there is a clear trend for increasing ‘‘beating’’ frequency as the bow
velocity increases. Also, as stated before, the opposite effect occurs as the bow normal force is increased.

This variation was also clearly heard in real bowing experience, and for that reason an attempt was made
to obtain preliminary experimental results that could qualitatively substantiate the previous numerical
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simulations. Obtaining similar controlled playing conditions as the ones numerically implemented was not
possible for the scope of this work. Therefore, a human playing approach was followed, and for that reason
the qualitative results shown in the figures should be regarded in this light.

Figs. 21 and 22 show the time history of the uncalibrated sound pressure measured at 40 cm from the bridge of a
cello (the same that was used to obtain the frequency response in Fig. 3), when playing a wolf note under varying
playing conditions. For the results of Fig. 21 an attempt was made to keep the applied normal force constant and
continuously increasing (as steady as possible) the bow velocity, while in Fig. 22 the normal force was increased
and the velocity kept approximately constant. These results are clear in showing the same trend as in Figs. 19
and 20, apart from some deviations due to the difficulties in accurately controlling the playing parameters.

From the various bow strokes realised during these experiments, other aspects were found which are in
accordance (at least qualitatively) with the change in regimes depicted in Figs. 17 and 18. During most of the
strokes in which the bow velocity was continuously increased, the wolf note would change to a higher-order
regime after a limiting bow velocity (as also seen Fig. 17). On the other hand, the increase of normal force also
showed the emergence of the Helmholtz regime after the wolf note, and if the bow force was further increased,
the Helmholtz regime would give rise, as expected, to a raucous regime.

6. Conclusions

In this paper, we propose a significant extension of the modal bowed/plucked string modelling technique,
in order to incorporate the complex dynamics of real-life instrument bodies, coupled to the string motions.
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In this hybrid approach a modelled string interacts with actual or synthesised body data, in the form of bridge
impulse-response functions or identified modes. Numerical simulations illustrate the Helmholtz motions of an
isolated and of a body-coupled violin G-string, for comparative boundary conditions. Computations show
that string motions between the bridge and the tailpiece may influence, to some degree, the system dynamics.
Simulations of a cello C-string subjected to glissando playing highlight the string–body interaction, as well as
the interesting behaviour of wolf notes, in particular concerning the dependency of the beating frequency on
the bowing parameters.
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Appendix A. Modal behaviour of the string–body coupled system

Detailed interpretation of the numerical simulations presented in this paper depends on the modal
behaviour of the string–body coupled system. Therefore, in this appendix we detail how those coupled modes
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may be computed and also present some representative results pertaining to the violin configuration. First, we
will address the string constrained by a ‘‘rigid’’ bridge (meaning that yb(xb,t) ¼ 0), and investigate the
dependence of the constrained modes on the constraining parameters. Then we focus on the modal behaviour
of the full string–body coupled problem, with yb(xb,t) given by the body motion at the bridge location, and
highlight a few interesting features of the coupled modes.

A.1. String constrained at the bridge

The dynamical behaviour of the string constrained at the bridge is described in terms of Eqs. (2–4) and the
constraint force (16) with yb(xb,t) ¼ 0. We obtain

½M�f €QðtÞg þ ½C�f _QðtÞg þ ½K�fQðtÞg ¼ �Cbs½FðxbÞ�f _QðtÞg � Kbs½FðxbÞ�fQðtÞg, (A.1)

where, as before, matrices ½M� ¼ diagðm1; . . . ;mNÞ; ½C� ¼ diagð2 m1o1 z1; . . . ; 2 mNoN zN Þ and K½ � ¼

diagðm1o2
1; . . . ;mNo2

NÞ pertain to the modal parameters of the unconstrained string, pinned at the tailpiece
and the nut, while fQðtÞg ¼ hq1ðtÞ; . . . ; qNðtÞi

T is the vector of modal responses. The right-hand-side terms stem
from the modal projections (3) of the constraining force (16) at the bridge, accounting for the physical
response (4) of the string at the bridge location xb, whence the coupling matrix

½FðxbÞ� ¼ fjnðxbÞgfjnðxbÞg
T ¼

j1ðxbÞj1ðxbÞ j1ðxbÞj2ðxbÞ . . . j1ðxbÞjN ðxbÞ

j2ðxbÞj1ðxbÞ j2ðxbÞj2ðxbÞ . . . j2ðxbÞjN ðxbÞ

..

. ..
. . .

. ..
.

jNðxbÞj1ðxbÞ jN ðxbÞj2ðxbÞ . . . jN ðxbÞjN ðxbÞ

2
666664

3
777775, (A.2)

where fjnðxbÞg � hj1ðxbÞ j2ðxbÞ . . . jNðxbÞ iT stands for the modeshapes, at the bridge location, of the
unconstrained string.

From Eq. (A.1) we obtain

½M�f €QðtÞg þ ½½C� þ Cbs½FðxbÞ��f _QðtÞg þ ½½K� þ Kbs½FðxbÞ��fQðtÞg ¼ f0g. (A.3)

And, assuming free-response solutions of the form fQðtÞg ¼ CQ
n

� �
expðlntÞ, the following quadratic

eigenproblem is obtained:

l2n½M� þ ln½½C� þ Cbs½FðxbÞ�� þ ½½K� þ Kbs½FðxbÞ��
� �

CQ
n

� �
¼ f0g (A.4)

which can be easily converted into an equivalent first-order (state-space) form and then readily solved using
standard procedures. Eq. (A.5) is one possible symmetrical form, among others (see, for instance Ref. [44]).

ln

½½C� þ Cbs½FðxbÞ�� ½M�

½M� ½0�

" #
þ
½½K� þ Kbs½FðxbÞ�� ½0�

½0� �½M�

" # !
CQ

n

� �
ln CQ

n

� �
( )

¼
f0g

f0g

( )
(A.5)

The eigenvalues and corresponding eigenvectors obtained from (A.5) are in general complex and, for
oscillating solutions, arise in conjugate pairs ln ¼ ŝn � iôn. The (damped) modal frequencies ôn ¼ ImðlnÞ and
modal dissipation values ŝn ¼ ReðlnÞ reflect the linear dynamics of the dissipative-coupled system, in terms of
the constraint parameters Kbs and Cbs. The undamped modal frequencies ôn0 and modal damping values ẑn of
the constrained string may be inferred from the various ln using the following relations:

ôn0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2n þ ô2

n

q
; ẑn ¼ �

ŝnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2n þ ô2

n

q , (A.6)

and one obtains ôn ¼ ôn0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ẑ

2

n

q
, as usual. After obtaining the eigenvectors CQ

n

� �
of the coupled system in

terms of the modal amplitude coefficients of the original string modes, one can easily express the
corresponding modeshapes CY

n

� �
in terms of physical amplitudes by recombination of the unconstrained

modeshapes

CY
n

� �
¼ ½fj1g; fj2g; . . . ; fjNg� C

Q
n

� �
; n ¼ 1; 2; . . . ;N. (A.7)
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Figs. A1 and A2 show the changes in the string modal frequencies and damping values, respectively, as the
bridge constraining stiffness Kbs increases in the range 10–107Nm�1 with no coupling dissipation (Cbs ¼ 0),
for the first nine modes. One may notice that modal frequencies behave as an almost harmonic series for the
very lowest values of Kbs, meaning that the bridge is then barely ‘‘felt’’ by the string. On the opposite extreme,
when Kbs4106Nm�1, further increase in the constraining stiffness brings no significant changes, as for all
practical purposes, the bridge is already ‘‘rigid’’ as far as the string is concerned. Again, the highly constrained
string modal frequencies are almost harmonic, except for a mode at 1224Hz, which will be explained later. All
the modal frequencies increase with Kbs, as they should, system inharmonicity being maximal at about
KbsC5� 103Nm�1, when the bridge is far from ‘‘rigid’’ but already a significant constraint.

From Fig. A2 it appears that the modal damping values of the constrained modes are almost independent
Kbs when Cbs ¼ 0, and always slightly lower than those of the original (unconstrained) string modes (here
0.1% was postulated for all modes). However, as shown in Fig. A3, the scenario is considerably different when
Cbs is not nil (here Cbs ¼ 10Nsm�1), because significant energy is then damped out when the constraining
stiffness is low enough to allow for string motions at the bridge location. Notice that, for high values
Kbs4106Nm�1, modal damping of the constrained modes does not depend on Cbs and only reflect the modal
damping values of the original modes.
Fig. A1. Modal frequencies of the string modes constrained at the bridge, as a function of the stiffness coupling constant Kbs (with

Cbs ¼ 0).

Fig. A2. Modal damping of the string modes constrained at the bridge, as a function of the stiffness coupling constant Kbs (with Cbs ¼ 0).



ARTICLE IN PRESS

Fig. A3. Modal damping of the string modes constrained at the bridge, as a function of the stiffness coupling constant Kbs (with

Cbs ¼ 10Nsm�1).
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Fig. A4. Modeshapes of the first string modes constrained at an almost-rigid bridge (Kbs ¼ 107Nm�1).
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To conclude this section Fig. A4 displays the modeshapes of the first nine constrained modes, computed
from (A.5) and (A.7), when the bridge behaves as an almost-rigid constraint (Kbs ¼ 107Nm�1). Note that for
most modes in this frequency range the modal amplitudes are only significant between the nut and the bridge,
the string length between the bridge and the tailpiece being only marginally active, which is well consistent
with the near-harmonic series obtained for the constrained modal frequencies. The only exceptions (in this
frequency range) being the 6th mode, with its modal frequency barely affected by the string motion on the
tailpiece side (because the bridge naturally stands at a node), and mostly the 7th mode. Indeed, this mode is
strongly dominated by a localized tailpiece-side response, and hence displays a modal frequency mostly related
to the bridge-tailpiece distance. Obviously, this is the mode which breaks the harmonic series of the modal
frequencies displayed by the right-hand side of Fig. A1.
A.2. String– body coupled modes

We will now address in a similar manner the coupled modes of the string–body system. Formulation follows
lines similar to the previous presentation, although—because now we have yb(xb,t) 6¼0—the modal parameters
of the P body modes must obviously be included. Then, from Eqs. (2)–(4) and (14)–(16), we obtain the coupled
system

M 0

0 MB

" #
f €QðtÞg

f €QBðtÞg

( )
þ

C 0

0 CB

" #
f _QðtÞg

f _QBðtÞg

( )
þ

K 0

0 KB

" #
fQðtÞg

fQBðtÞg

( )

¼ �Cbs

FSSðxbÞ FSBðxbÞ

FBSðxbÞ FBBðxbÞ

" #
f _QðtÞg

f _QBðtÞg

( )
� Kbs

FSSðxbÞ FSBðxbÞ

FBSðxbÞ FBBðxbÞ

" #
fQðtÞg

fQBðtÞg

( )
ðA:8Þ

with the coupling sub-matrices

½FSSðxbÞ� ¼ fjnðxbÞgfjnðxbÞg
T; ½FSBðxbÞ� ¼ �fjnðxbÞgffpðxbÞg

T;

½FBSðxbÞ� ¼ �ffpðxbÞgfjnðxbÞg
T; ½FBBðxbÞ� ¼ ffpðxbÞgffpðxbÞg

T;
(A.9)

where ffpðxbÞg is the vector of the body modeshape values at the bridge location (here taken as unity,
following the normalization procedure adopted).
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Fig. A5. Modal frequencies of the string–body coupled modes, as a function of the stiffness coupling constant Kbs at the bridge (with

Cbs ¼ 0).
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Eq. (A.8) is of the form (A.1), although obviously the system size is now N+P. Therefore, the corresponding
eigenproblem may also be written in form (A.4) or (A.5), from which the string–body coupled modes are
computed. Notice that the coupling matrix built from Eq. (A.9) is symmetric, as it should be. This, however, is
no guarantee that the coupled modes will display real modeshapes—and indeed, as will be shown later,
complex modes are the rule here more than the exception.

Fig. A.5 displays the change of the string–body modal frequencies as the stiffness-coupling constant Kbs

increases. These computations are based on the same unconstrained string modes as before, while Table A1
presents the modal frequencies and damping values used for the first few body modes used in this calculation.
Notice that these body modes display damping values typically one order of magnitude higher than the
uncoupled string modes.

Essentially, the left-hand side of the plot shows the string and body modes when they are almost un-
coupled, while the right-hand side of the plot shows the string and body almost rigidly coupled at the bridge.
In-between, the interplay of the modal frequencies stems from increasing coupling. Understandably, the
Table A1

Body first modal frequencies and damping values

Mode 1 2 3 4 5

Frequency (Hz) 276.5 404.0 480.7 846.5 1093.0

Damping (%) 2 3 1 1 1
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string modal frequencies change significantly as Kbs increases, while the body modal frequencies are hardly
affected.

At the modal frequencies controlled by the body, the bridge presents a lower impedance to the string, so
that the coupled modes do not display any more a node at the bridge location. This is demonstrated in
Fig. A6, which shows the first 9 modes of the coupled system (using Kbs ¼ 107Nm�1)—see modes 2, 4, 5 and 8.
Also notice that, the coupled string–body modes are complex, as the energy dissipation from the string will be
mainly localized at the bridge, and hence damping is nonproportional. This is particularly significant for the
coupled modes controlled by the body motion, as shown in Fig. A6, where the modeshapes have been
normalised at unity for the maxima of their real part, the corresponding imaginary part being plotted with a
dotted line.

Concerning the modal damping of the coupled modes one may note that, when the bridge is almost still, the
modal damping values are essentially those of the uncoupled string modes. Also understandably, when the
coupled modes are controlled by the body, damping values are essentially those of the corresponding body
modes. As thoroughly discussed by Woodhouse [15], if the system damping is modelled in a satisfying manner,
such typical scenario should be displayed even when two coupled ‘‘string-controlled’’ and ‘‘body-controlled’’
modes present close frequencies, as the orders of magnitude of their respective damping values should respect
those of the decoupled substructures. An illustration is provided by modes 3 and 4 in Fig. A6, even so, the
60% damping increase in the ‘‘string-controlled’’ mode is enough to produce some of the visible changes in the
response shown in Fig. 12(b). A more detailed discussion of the string–body coupled responses is postponed to
a forthcoming paper.
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