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Summary 
At the present time, instruments are mostly designed by trial and error procedures, which are 
inefficient and costly. In the first part of this paper we present an approach, based on finite-element 
eigen-analysis coupled with optimization procedures, which enable the computation of optimal 
instrument shapes in order to obtain a target set of modal frequencies. We briefly discuss various 
optimization approaches, deterministic and stochastic, in relation with computational efficiency and 
effectiveness. A satisfying compromise has been found by describing the shape of the vibrating 
components in terms of orthogonal shape-functions, and then optimizing their amplitude 
coefficients using a deterministic optimization scheme. Beyond enabling a systematic and cost-
effective way of improving conventional instrument designs, an obvious advantage of optimization 
is the possibility of developing non-conventional instruments with new sound qualities. We 
illustrate the various aspects discussed by optimizing vibraphone or marimba-type bars, for several 
modal target sets. In the second part of this paper, we turn towards the sound synthesis of 
percussion bars. Here, the nonlinear physical modelling is based on a modal representation of the 
unconstrained bar. Such approach addresses the spatial aspects of the problem, being well suited 
for both non-dispersive and dispersive systems − which is the case of the flexural waves of interest 
here. Only the vibratory responses will be simulated, without an explicit accounting of sound 
radiation phenomena or of the coupling between vibrating bars and acoustic resonators. We 
illustrate the computational method with numerical simulations (sounds and animations) of 
marimba and vibraphone bars, for both classic and non-orthodox geometries. 
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1.   Introduction 
 
A significant number of modes can be 
excited in mallet percussion instruments. 
These are of paramount importance, as far 
as instrument intonation and timbre quality 
are concerned, and every effort must be 
provided to reach a successful design. At the 
present time, musical instruments are mostly 
designed by trial and error procedures, 
based on empirical knowledge and 
experimentation. In spite of the makers’ 
know-how, such methods are often 
inefficient and costly. We think that many 
aspects of instrument design can be 
improved using a more rigorous design 

approach, by coupling optimization 
procedures with adequate modelling 
techniques. 

Significant developments in system 
modelling and optimization, during the last 
decades, are the result of a spectacular 
increase in computational hardware and 
software capabilities − see, for instance, 
[1,2]. Although mainly applied in the 
context of industrial problems [3,4], there 
have been a number of attempts to apply 
optimization techniques in the context of 
musical instruments [5-11]. Results have 
been in general fruitful, and efforts in this 
direction are still actively pursued by the 
authors and others [12,13]. Some aspects of 



our own work in this area will be presented 
here, in order to elucidate how the various 
bar shapes used in our numerical 
simulations were obtained. A more detailed 
discussion and recent results of our work in 
the optimization of mallet percussion 
instruments will be found elsewhere [13].  

In a previous paper [10], we have 
developed a method for the optimal design 
of percussion instrument bars, such as found 
in xylophones, marimbas and vibraphones. 
The aim was to compute optimal bar 
shapes, in order to comply with a pre-
defined target set of modal frequencies − in 
other words, to shape the spectral content of 
the instrument response − given a number of 
technological constraints, which establish 
the acceptable ranges of the instrument 
physical and geometrical parameters, as well 
as other features such as shape simplicity. 

Typically, the modal frequencies of 
interest will display harmonic relationships 
(however, one might well wish otherwise, 
depending on the musical context). For 
instance, typical values of the first and 
second modal frequencies for xylophones 
and marimbas attempt integer relationships 
of 3:1  and 4:1 , respectively, with some 
variations on the third flexural modal 
frequency, most usually between 9:1  and 

10:1 . To obtain adequate intonation, the bar 
profile is progressively changed by trial and 
error, using a suitable undercut, until the 
target frequencies have been reached within 
the allowed tolerance [14]. 

In [10] we showed that the design of 
tuned bars can be greatly improved and 
simplified by coupling finite-element eigen-
computations with a suitable optimization 
procedure. Indeed, for complex and 
innovative modal frequency relationships, 
such approach may prove invaluable. Values 
of the geometrical parameters − the bar 
profile )(xH , given by the height 

)( jj xHH ≡  of each mesh element − were 
sampled in the admissible search space. 
Then, for each system configuration, an 
eigenvalue analysis was performed using the 
finite-element method. A suitable error 

function, to be minimized, was then 
computed between the eigenfrequencies 
obtained at each iteration and the modal 
target set.  

Many parameters are involved in the 
geometry optimization problem, with two 
unwanted consequences: Firstly, the 
optimization becomes computationally 
intensive, and this is further true as the 
number of parameters to optimize pP  
( L,2,1=p ) increases. Secondly, the error 
hyper-surface )( pPε  where the global 
minimum is searched will display in general 
many local minima. 

In [10] we avoided converging to sub-
optimal local minima by using a robust (but 
greedy) global optimization technique − 
simulated annealing [1,2,15]. In order to 
improve the computational efficiency, the 
global optimization algorithm was coupled 
with a deterministic local optimization 
technique [1,2], to accelerate the final stage 
of the convergence procedure. Very 
encouraging results have been obtained, 
demonstrating the feasibility and robustness 
of this approach, as well as the potential to 
address other aspects of musical instrument 
design. However, a negative side effect was 
the need for significant computation times, 
which seem ill suited to the optimization of 
large-scale systems − such as, for instance, 
carillon bells.  

More recently, we tried to alleviate this 
problem, by reducing the dimension of the 
search space where optimization is 
performed [11]. This can be achieved in 
several ways, by describing the geometrical 
profiles of the vibrating components in 
terms of a limited number of parameters. 
Here, we chose to develop )(xH  in terms of 
a set of orthogonal shape functions )(xsΨ , 
optimizing their amplitude coefficients. For 
complex systems, described by finite-
element meshes with hundreds or thousands 
of elements, this approach may reduce the 
size of the optimization problem by several 
orders of magnitude. Then, we have found 
that, most often, acceptable solutions can be 
obtained using efficient local optimization 



algorithms, leading to a further reduction in 
computation times. Most of the examples 
presented in this paper have been obtained 
using such approach. We illustrate the 
various aspects discussed by optimizing 
vibraphone or marimba-type bars, for 
several modal target sets. Both classic and 
non-orthodox geometries are addressed. 

We then turn to the physical modelling 
of the nonlinear responses of percussion 
instruments. Physical modelling of musical 
instruments is one of the most active areas 
in music acoustics, and very significant 
developments have been achieved in recent 
years [16-18]. Among these, string and wind 
instruments have been addressed in many 
significant papers. However, in spite of the 
relevant work offered by a few authors, 
idiophones − which typically display 
strongly dispersive waves − have received 
much less attention. Rossing [19] has put 
much effort in understanding the fascinating 
dynamics of many percussion instruments. 
Among authors interested in the physical 
modelling of idiophones, Chaigne and his 
co-workers have been particularly active in 
this field − see, for instance, [20-24]. 

Our interest in the physical modelling of 
impacted bars was motivated by the need to 
assert the timbral qualities of different 
designs, without the need for costly and 
lengthy prototype machining of each and 
every computed optimized bar profile 

)(xH . Hence, we will address here a sound 
synthesis problem already approached by 
Chaigne & Doutaut using a spatial 
discretisation in terms of finite differences 
[20]. However, we will develop a 
completely different approach, based on the 
modal representation of unconstrained bars, 
to address the spatial aspect of the 
dynamical problem. Such approach is well 
adapted to nonlinear problems involving 
both non-dispersive and dispersive systems 
− and, as such, suited to the flexural waves 
excited in idiophones, as we have shown 
recently [25,26].  

Only the vibratory aspects will be 
simulated here, without an explicit 
accounting of the sound radiation 

phenomena or of the coupling between 
vibrating bars and acoustic resonators − see 
[21,27-29]. We also assume that all 
nonlinear effects stem from the mallet/bar 
interaction, with no material or large-
displacement nonlinearities − such as 
unmistakably found in thin-walled plates, 
shells, cymbals and gongs [24,30-33]. From 
our nonlinear numerical simulations, we 
have obtained bar-animations and sounds, 
for marimba and vibraphone bars, using 
both conventional and innovative designs. 
 
 
2.   Optimization procedures 
 

We will start by briefly describing the 
computational approach used here to obtain 
the bar eigenvalues. These are needed in the 
error function to be minimized, and we 
discuss the structure of such error function. 
We then recall the deterministic and 
stochastic optimization algorithms used in 
the present work, as well as the relevant 
constraints which must apply. To conclude 
this section, we propose a computationally 
efficient approach, using orthogonal shape-
functions to describe the system geometry, 
and develop the modified constraints which 
apply to such formulation. 
 
4.1 Computational approach 

The cross-section dimensions of bars 
used in marimba-like instruments are not 
usually small compared to their length. 
Indeed, as modal frequencies increase, the 
Bernoulli-Euler slender beam model 
becomes progressively inadequate. 
Therefore, flexural modes are here modelled 
in terms of the Timoshenko thick-beam 
model, which corrects for the effects of 
rotary inertia and shear deformation [34].  

We will assume that only bending 
modes are of interest here. Obviously, for 
eccentric blows, torsion modes will be 
excited [14,35]. On the other hand, as shown 
by Bork et al. [35], modal displacements are 
three-dimensional at higher frequencies and 
the beam approximation becomes then 
clearly abusive. However, we will only 



consider beam modes here, for simplicity. 
For the same reason, we will neglect the 
influence of material anisotropy and 
inhomogeneities, which are significant when 
dealing with wood bars [ 35,36]. 

Thus, for small vibratory motions, the 
transverse displacement ),( txy  and slope 

),( txφ  of the free conservative system are 
formulated as: 
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where the local bar cross-section area and 
moment of inertia are respectively 

)()( xHBxA =  and 12/)()( 3xHBxI =  
(with the bar width B ), ρ  is the specific 
mass of the bar material, E  is the Young 
modulus, ( )[ ]ν+= 122G  is the shear 
modulus and k  is a geometric factor for the 
shear energy (equal to 6/5  for rectangular 
cross-sections). Inertial and stiffness terms 
can be easily recognized in equations (1) 
and (2). 

Finite element discretisation of the 
preceding formulation leads to a linear 
system of equations in the classic form: 

 
[ ]{ } [ ]{ } { }0YKYM =+&&               (3) 

 
where [ ]M  and [ ]K  are the inertia and 
stiffness operators, respectively (the later 
incorporating any boundary conditions), and 
{ }Y  is the vector of physical displacements. 
In the case of bars with arbitrary height 
profile )(xH , we discretize the system 
using J  elements of identical length 

JLl /= . 
From (3), the system modal frequencies 

mω  and corresponding modeshapes { }mϕ  

are computed in the usual manner, assuming 
harmonic solutions: 
 

{ } { } )exp()( tit mm ωϕ=Y              (4) 
 
and we obtain the classic eigenvalue 
formulation: 

 
[ ] [ ][ ]{ } { }0MK =− mm ϕω 2            (5) 

 
from which the modes are computed, for 
each bar geometry of interest. 
 
4.2 Error function 

In what follows we postulate that the 
material properties ρ , E  and G  are known 
and constant. Hence, we wish to determine 
the optimal bar height profile *

jH  and total 

length *L  that lead to a given set of modal 
frequencies of interest ref

mω . 
Let us assume we have a bar with height 

profile jH  and length L , leading to the 
modal frequencies ),( LH jmω . An obvious 
term in the error function must concern 
deviations from the computed eigenvalues 
and the reference target set ref

mω : 
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mjmmj LHWLH ωωε −= ),(),(1 (6) 

 
where mW  are weighting factors for the 
modal errors and rL  is a suitable norm, 
computed over the TMm ,,2,1 L=  modal 
frequencies of the target set. Specifically, 
we tested the following norms: 
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with ref

mjmm LH ωω −=∆ ),( . In most cases 
we did not find significant differences 
between results − therefore, the quadratic 
norm 2L  is consistently used in the 
following illustrative computations. 



To the basic error term (6), one may 
wish to add other terms, in order to penalize 
non-desirable effects, for instance 
excessively non-smooth (and difficult to 
machine) geometry profiles jH . We did so 
for the optimizations presented here, by 
introducing an additional penalty term for 
the profile curvature: 
 

rLjj xHLH 22
2 ),( ∂∂=ε          (7) 

 
so that our final error function reads: 
 

),(),()1( 21 LHLH jj εεε αα +−=    (8) 
 

where 10 ≤≤ α  is a weighting factor of the 
geometrical complexity penalization − when 

0=α  only frequency deviations are 
accounted; if 1=α  only geometrical 
smoothness would be of interest. 
 
4.2 Deterministic optimization 

Basically, the optimization problem may 
be stated as finding the J  element heights 
of *

jH  and the length *L  leading to a set of 

TM  modal frequencies *
mω  which will 

minimize (8). This is a problem of 
constrained optimization, as typically jH  
and L  will be limited by some admissible 
values, due to technological or other 
reasons. Then, defining a global vector 
{ } T

j LH ,=Y  of the 1+J  unknowns, our 
optimization problem will fit the following 
general framework: Find the optimal 
solution { }*Y  which minimises { }( )Yε  
while complying with a set of constraints 

{ }( ) 0≤YcG , with ( Cc ,,2,1 K= ). 
In our problem, the error function 
{ }( )Yε  defined by (6-8) depends 

nonlinearly on the geometrical unknowns 
{ }Y , through the eigenvalue computations. 
However, the  constraints { }( )YcG  are here 
simply stated as: 

 

{ } { } { }maxmin YYY ≤≤                (9) 
 
Another common form of { }( )YcG , most 
useful in the context of §4.4, is the 
following matrix inequality − which 
generalises condition (9): 

 
[ ]{ } { }BYA ≤                    (10) 

 
Basically, local optimization algorithms 

search for a decrease in the gradient of the 
error function { }( )Yε∇  − that is why they 
are prone to being trapped in local minima. 
Such basic approach is inefficient, and more 
powerful methods rely on additional devices 
to improve the convergence speed. Newton 
and quasi-Newton schemes use (or build up) 
second-order local information on the error 
surface, and use curvature data − the local 
Hessian matrix − to improve convergence.  

Constraints are imposed through penalty 
terms affecting the active constraints (using 
Lagrange multipliers), which force the 
solution to lay on the admissible workspace. 
The necessary conditions for optimality in a 
constrained problem are given by the Kuhn-
Tucker equations [2,37]: 
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The main equation states that, at the 

optimal point, the gradients of the original 
error function and of the active constraints 
(weighted by Lagrange multipliers) must 
cancel. Obviously, the optimality condition 
for unconstrained problems would be: 

 
{ }( ) 0* =∇ Yε                   (12) 

 
 Many nonlinear programming 

algorithms have been developed to solve for 
the *

cλ  in equations (11). In the present work 
we used the so-called Sequential Quadratic 
Programming (SQP), which is an efficient 
quasi-Newton scheme. Further details may 
be found in references [2,38]. 



4.3 Stochastic optimization 
Many of the available algorithms for 

global optimization are inspired by the ways 
nature works, and are based on stochastic 
procedures. Typical examples include 
genetic methods and simulated annealing 
(SA) [2-4]. The method used in the present 
work, simulated annealing, is a powerful  
stochastic approach originally developed by 
Metropolis et al. [39] as a Monte Carlo 
sampling technique for modelling the 
evolution of a solid at a given temperature. 
Later, Kirkpatrick at al. [40] generalized this 
technique, which was then applied as a 
global optimization procedure. We will 
review here briefly the main aspects of SA. 

Minimizing the error function { }( )Yε  is 
seen as being analogous to the decrease of 
the energy state of a molten metal during 
cooling. At high temperature energy is high, 
as particles move freely everywhere. But, as 
temperature decreases, motions are 
progressively restricted and energy lowers. 
If the cooling schedule is sufficiently slow, 
particles will settle into a very ordered state, 
and the system will reach a global (or near-
global) energy minimum. However, if 
cooling is enforced at a very fast rate, then 
particles will “freeze” in a disordered state 
(quenching), far from the energy minimum. 

 The SA analogy proceeds as a sequence 
of solution configurations { }iY , each one 
randomly sampled within a certain vicinity 
of the last accepted iteration { }1−iY , while a 
control parameter T  (analogue to the 
cooling temperature) decreases at a 
sufficiently smooth rate. A very important 
aspect is that, when iteration moves induce 
an increase of the error function { }( )Yε , 
such iterations may still be accepted − with 
a probability which depends on T : 

 
{ } { }( )[ ]TP ii )()(exp 1−−−= YY εε    (13) 

 
 This essential feature enables the 

algorithm not being trapped in local minima. 
Additionally, the radius of the hyper-sphere 
centred in { }1−iY  − where the next iteration 

{ }iY  will be randomly sampled − may also 
decrease with T . 

In short: the solution space is initially 
explored at high “temperatures”, when many 
error-increasing moves are accepted, 
allowing the algorithm to find the region 
where the global minimum lays. Later, at 
lower “temperatures”, almost only smaller, 
error-decreasing moves are accepted, 
refining the solution.  

The general SA implementation 
procedure is as follows: 

 
1) Start from an initial “temperature” 

0T  and configuration { }0Y . 
2) From the last accepted configuration, 

generate a new candidate solution 
{ }iY , randomly sampled within a 
certain vicinity of { }1−iY . 

3) Compute the error { }( )iYε  and 
compare with { }( )1−iYε : 
a) If { }( ) { }( )1−< ii YY εε  accept the 

move; 
b)  If { }( ) { }( )1−> ii YY εε   accept (or 

refuse) the move with probability 
P  − see equation (13). 

Then go to step 2. 
4) Repeat steps 2 and 3 for a number 

N  of cycles. Then decrease the 
temperature according to a given 
schedule ( )tt TT F=+1  and continue 
from step 2. 

5) When { }( )iYε  becomes less than the 
allowable value Tolε , stop the 
computation. 

 
For further information on cooling 

strategies and other algorithm details, see 
for instance references [1,2,41-43].  

When the global minimum “valley” has 
been found, convergence can be somewhat 
improved by coupling the global 
optimization algorithm with an efficient 
determinist approach, such as described 
before. As stated before, this has been done 
in the present computations.  

 



4.4 Shape-function approach 
In order to reduce significantly the size 

of the optimization problem, we suggest 
developing the height profile in terms of a 
set of orthogonal functions (plus a mean 
value): 
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Obvious suitable basis functions include 
Fourier series and Chebyshev polynomials. 
Here we will illustrate the method using 
simple trigonometric series.  

The optimisation is now performed in 
terms of S  amplitude coefficients sA  of the 
shape functions, either simultaneously or in 
successive approximations, by progressively 
increasing the number of shape functions. 
Note that, for complex geometries, we have 

JS <<  and the dimension of the 
optimization problem may become orders of 
magnitude lower than using the physical 
mesh coordinates, as previously described. 
Then, the smoothness of the system shape 
will be mostly governed by the truncation 
order S  of the spatial series. However, if 
the penalty term (7) is still used, then low-
order spatial terms will be favoured in the 
optimization process. 

We conjecture that the reduced order of 
the search space { } T

s LA ,=Z  may lead to 
a “filtered” error surface { }( )Zε  with 
greater regularity than the original error 
function { }( )Yε . Hence, if deterministic 
optimization strategies are attempted from 
scratch, they stand lower chances of being 
trapped in local minima. Obviously, global 
optimization methods can also be used to 
minimize { }( )Zε . 

Using the approach suggested here, we 
have to adapt the physical search-domain 
constraints (9) in order to accommodate the 
new variables sA . This can be easily 
achieved using the matrix formulation (10), 
as follows. The original constraints are: 

 

maxmin HHH j ≤≤                 (15) 

maxmin LLL ≤≤                    (16) 
 
and, from (14) and (15), we obtain: 
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or, in matrix form: 
 
[ ]{ } { } [ ]{ } { }maxmin ; HAΨHAΨ ≤−≤−  (18) 

 
and, assembling conditions (16) and (18), 
we obtain the full matrix constraint: 
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3.   Illustrative results 
 

The previous remarks will now be 
illustrated on marimba-type bars. We will 
only address here systems symmetric with 
respect to their middle point. Therefore, 
optimization is performed only on half of 
the element heights jH  used in the finite 
element mesh, so that 32=J . Concerning 
the shape function approach, we used either 

 
)/2cos()( LxsxC

s π=Ψ  

or             )/2sin()( LxsxS
s π=Ψ  

 
in the first half of the bar length, with 
symmetry beyond. A maximum value of 

10=S  was used − however, for the present 
bar optimizations, convergence was often 
achieved using less orthogonal functions. In 
our first example we kept the bar length L  
as a variable to be also optimized, however 
it was enforced as a constant parameter in 
all other computations, for an easy 
comparison of the optimized height profiles. 



The following fixed parameters were 
used for the modal computations: 

350=L mm (when imposed), 40=B mm, 
2840=ρ kg/m3 and 1010726.6=E N/m2. 

The valid search ranges imposed for the bar 
height and total length are: 305 ≤≤ jH mm 
and 500100 ≤≤ L mm (when “free”). Most 
of the computed bars have a fundamental 

frequency of 440 Hz (except those in Figure 
1, which are tuned to 880 Hz). In all the 
optimizations performed we used unit 
weight factors mW  for the modal errors. The 
value adopted for the penalty coefficient on 
the non-smoothness of )(xH  was most 
often 2.0=α  (except in the examples of 
Figure 1, where 3.0=α ). 

 

   
 

   
Figure 1: Optimized vibraphone bars with fundamental frequency 880  Hz and frequency relationships 

10:4:1  of the tuned modes (bar length not imposed; smoothness parameter 3.0=α ):  (a) Stochastic 
optimization using SA, performed on the physical element heights;  (b) Deterministic optimization 
using SQP, performed on the amplitudes of cosinusoidal shape-functions. 
 

In Figure 1 we show two optimized bars 
with frequency relationships 10:4:1  of the 
tuned modes (commonly found in concert  
marimbas). Result (a) was obtained 
performing a stochastic optimization on the 
physical heights jH , while result (b) 
pertains to a deterministic optimization 
performed on the shape-function amplitudes 

sA . Both computed shapes are perfectly 
tuned for the imposed frequency 
relationships. However, beyond 8800 Hz, 
their modal frequencies will obviously be 
different from each other. 

Notice that both optimization schemes 
automatically produced designs with central 
undercuts, as found in commercial marimba 
bars. Ten shape functions )(xC

sΨ  were used 
for the second optimization, but three are 
enough to converge in such a simple 
problem. The important point here is that, 
even for this simple system, the computation 
time using approach (b) is typically two 

orders of magnitude lower than using 
approach (a). Therefore, the optimization 
method described in §4.4 will be used in 
most of the following illustrations (except in 
Figure 3). 

Figure 2 shows successive stages of the 
deterministic optimization approach, as the 
number of shape functions increases. Six 
terms are needed to tune five modes of a 
bar, on the unusual frequency relationships 

16:8:4:2:1 . Notice that, as the number of 
orthogonal functions is incremented, tuning 
progresses from the lower modes towards 
the higher modes. This is easily explained, 
as higher frequencies are related to shorter 
wave-lengths. Tuning of higher-frequency 
modes usually ask for the contribution of 
higher-order shape functions. 

We have found that computations 
performed by optimizing simultaneously all 
the amplitude coefficients of the shape-
function usually lead to results of 
comparable quality. 
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Figure 2: Deterministic optimization process of a vibraphone bar with fundamental frequency 440  Hz 
and frequency relationships 16:8:4:2:1  of the tuned modes (bar length imposed 350.0=L m; 
smoothness parameter 2.0=α ): Convergence while increasing the number of shape-functions. 
 

The influence of the smoothness 
parameter α  is shown in Figure 3. Here, 
stochastic optimization was performed on 
the geometrical variables jH . The 
progressive smoothing effect, when α  
increases, is obvious. However, if the 
smoothness penalty is excessively 
emphasised, tuning may become unfeasible 
− such was the case when 8.0=α  was 
imposed. 

Figure 4 shows three different examples, 
where deterministic optimization was 
achieved using either )(xC

sΨ  or )(xS
sΨ  as 

shape functions. We consistently obtained 
adequate results, irrespective of the shape 
function set used. Often, both sets produced 
rather similar optimal shapes. 

Finally, several examples of optimized 
bars are shown in Figure 5, corresponding to 
quite un-orthodox frequency relationships. 
This illustrates the power of an optimization 
approach to generate new instruments, when 
suitable design criteria can be established.  

4.   Nonlinear dynamical modelling 
 

The computational method used here is 
described next: 

(1) From the optimized bar profile )(xH  
and the physical properties of the bar, we 
compute the planar flexural vibration modes 
of the unconstrained system in the audible 
frequency range. At this stage, as in Section 
2, we use the finite-element method with 
computations based on the Timoshenko 
beam model. The boundary conditions used 
are those of a free-free bar, which imply the 
existence of two rigid-body zero-frequency 
planar modes (translation and rotation), as 
well as the modes with elastic deformation. 
Again, as in Section 2, we will ignore here 
for simplicity the torsion modes and high-
frequency 3-D effects. However, the use of 
a more accurate modal basis, computed 
from an extensive 3-D mesh of massive 
elements, would not change in any way the 
numerical approach used here for the time-



domain simulations. Indeed, the use of 
modes based on such a refined model would 
further highlight the computational 
efficiency of the modal approach, when 
compared for instance with time-domain 
finite-element computations. 
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Figure 3: Stochastic optimization of a 
vibraphone bar with fundamental frequency 
440  Hz and frequency relationships 10:4:1  
(bar length imposed 350.0=L m): Results as a 
function of the smoothness parameter α . 

 
(2) When performing the dynamical 

computations, the modal damping values 
used clearly affect the bar dynamics, as well 
as the subjective perception of the simulated 
sounds. Due to the nature of the various 
dissipative phenomena, damping values are 
usually frequency-dependent, as discussed 
in [22,23,36,44,45]. Although this is a subtle 
aspect, we used − again for simplicity − 
constant values for all modes in our 

computations. Note, however, that the 
modal model can accommodate most easily 
any frequency-dependency of the damping 
coefficients. The average values used in the 
present computations were based on 
experimental identifications. Obviously, 
these values are very different for wood and 
for aluminium bars.  
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Figure 4: Deterministic optimization of three 
vibraphone bars with fundamental frequency 
440  Hz (bar length imposed 350.0=L m; 
smoothness parameter 2.0=α ): Results using 
10 cosinusoidal or sinusoidal shape-functions. 
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Figure 5: Deterministic optimization of several non-orthodox vibraphone bars with fundamental 
frequency 440  Hz (bar length imposed 350.0=L m; smoothness parameter 2.0=α ). 

 (3) The vibrating bars are assumed 
supported at two locations 1sx  and 2sx  
through flexible dissipative fixtures. The 
stiffness constant sK  and damping constant 

sC  used in the computations are based on 
experimental results. 

(4) We assume that the bar is impacted 
by a point mass cM  with initial velocity cV  
at the nominal contact location cx . As other 
authors, we will use a simple Hertz model, 
to relate the nonlinear contact force (at the 
nominal contact point) to the relative 
bar/mallet motion after impact [20]. This 
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interaction point-model is a very convenient 
approximation. A more accurate contact 
model might be easily implemented in our 
computations, by including the elastic 
modes of the mallet as well as by using a 
time-dependent contact length, as a function 
of the mallet geometry and of the bar/mallet 
elastic interpenetration. Also, dissipative 
contact phenomena could easily be 
incorporated in the model. However, if the 
parameters used in Hertz-type models are 
well chosen, quite realistic results can be 
obtained even with this simple contact 
model. The mallet physical parameters 
(inertia and stiffness) and the impact 
velocity used in our computations are based 
in experimental data by Bork [46].  

(5) At each time-step n , we compute by 
modal superposition the physical vibratory 
responses at locations 1sx , 2sx  and cx . This 
enables the computation of the interaction 
forces between the bar and the two elastic 
supports, )(1 tFs  and )(2 tFs , as well as the 
contact force between the bar and the mallet, 

)(tFc . These interaction forces are then 
projected on the modal basis, and the 
dynamic modal equations are integrated one 
step ahead using an explicit algorithm. This 
scheme is pursued for the full duration T  of 
the simulation. 

 
4.1 Bar dynamics 

We will now formulate the equations 
used in our computational scheme. Let us 
then consider a bar of length L , constant 
width B  and variable height profile )(xH .  
In terms of the chosen modal representation, 
the system dynamics are governed by: 
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Here the modal matrixes are given as: 
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where mω  and mζ  stand, obviously, for the 
modal (circular) frequencies and damping 
values, and )(xmϕ  are the bar modeshapes. 
The modal masses depend on the 
modeshapes, as well as on the bar profile 
through the mass per unit length 

)()()( xHBxAxm ρρ == . As stated 
before, for each bar geometry, all modal 
parameters are computed, once and for all, 
using a finite-element model based on 
equations (1) and (2). 

The vectors of modal responses and 
modal forces are given as: 
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and, at any location x , the physical 
response ),( txy  can be simply computed 
from the modal amplitudes )(tqm  through 
modal superposition: 

 

∑
=

=
M

m
mm tqxtxy

1

)()(),( ϕ            (24) 

 
and similarly concerning the velocities and 
accelerations. 

The modal forces are obtained through 
modal projection of all the external forces. 
For this system, these are the two support 
reactions and the mallet/bar interaction 
force. Hence: 
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where )(xδ  is the Dirac distribution. 



4.2 Mallet dynamics 
In our model, the mallet is modelled 

simply as a point mass cM  with initial 
velocity cV , interacting with the bar at 
location cx . If )(tz  is the motion of the 
impactor, then the mallet dynamics will be 
governed by: 

 

gMtFzM ccc −= )(&&               (26) 
 

where g  is the acceleration due to gravity. 
 
4.3 Impact force 

The Hertz model used here leads to the 
following contact force: 
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where ),()( txyty cc ≡  and 2/3=s . Note 
that equation (25) insures that only modes 
such that 0)( ≠cm xϕ  will be excited by the 
mallet. 
 
4.4 Support forces 

The bar supports, modelled as linear 
flexible-dissipative fixtures, lead to the 
following reaction forces: 

 
2,1;)()()( =−−= jtyCtyKtF sjssjssj &   (28) 

 
where ),()( txyty sjsj ≡ . Again from 
equation (25), we note that only modes such 
that 0)( ≠sjm xϕ  will be affected by the 

supports. If − as is usual practice − the 
supporting fixtures are located at the nodes 
of the first mode, then only higher-order 
modes will suffer additional damping from 
the supports. 
 
4.5 Time-step integration 

There are many integration algorithms 
that might be used to integrate equations 

(20) − Runge-Kutta, Verlet, among others. 
We used the Euler-Richardson scheme, 
which is of the explicit type [1]. In this 
algorithm, an estimate of the acceleration 
vector is performed at the next half-step 

2/2/1 ttt nn ∆+≡+ , using the information at 
time nt : 
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which is then used to update displacements 
and velocities at time 1+nt : 
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5.   Numerical simulations 
 

We will present now some sample 
computations, using several optimized bar 
geometries computed as shown in Sections 2 
and 3. Apart from the “static” plots 
presented here, we also have generated 
animations of the bar responses and the 
corresponding sound files. Parametric 
computations have been performed, to 
illustrate the influence of: 

- the impact location cx ; 
- the bar material; 
- the mallet stiffness; 
- the bar modal frequency ratios. 
Parameters kept constant in our 

computations are the mallet mass 20=cM g 
and impact velocity 1=cV m/s, as well as 

the support stiffness 410=sK N/m and 
dissipation 20=sC Ns/m. For all the 
geometries computed we postulated that 
supports are located at the nodes of the first 



elastic mode of the unconstrained bar. The 
first modal frequency is 440 Hz, for all the 
computed bars, irrespectively of their shape 
or material. As stated before, besides the 
first tuned modes of the optimized bars, all 
modes in the range 20~0 kHz  were used in 
the numerical simulations. 

The numerical simulations presented 
here extend for 5 seconds − which is enough 

to highlight both the initial transient and the 
subsequent decay. Sound files have been 
generated at the usual sampling rate of 

1.44=sf kHz. Computational speed was 
not an important issue for the numerical 
simulations presented here, therefore a very 
comfortable time-step of 6103.2 −=∆t s 
was used. 
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Figure 6: Typical response of a 9:4:1  vibraphone bar impacted at location 0=cx  using a mallet 

with contact stiffness 810=cK N/m3/2:  (a) Time-history of the velocity response at the bar end 
0=x ;  (b) Detail of the velocity response during the initial transient and the final decay;  (c) Velocity 

spectra during the initial transient and the final decay. 
 
 
5.1 Results 

As a first example, Figure 6 (a-c) shows 
several aspects of the vibratory response of 
a vibraphone bar, when impacted at location 

0=cx . For this aluminium bar, which has a 
typical undercut, we postulated modal 
frequency ratios of 9:4:1  for the tuned 
modes. A modal damping value of 

02.0=mζ % has been assumed for all 
modes, as explained before. A contact 

stiffness value of 810=cK N/m3/2 between 
the mallet tip and the bar − see equation (27) 
− has been used.  

The time history trace in Figure 6 (a) 
shows the initial transient after the mallet 
impact, followed by the slow decay of the 
first elastic mode. The first zoomed trace in 
Figure 6 (b) highlights how, during the 
initial transient, the low-frequency support-
dependent rigid-body modes are excited, as 

(a)

(b)

(c) 



well as the higher frequency elastic modes. 
The second zoomed trace shows that the 
decay response is dominated by the lightly 
damped first elastic mode. These effects are 
confirmed by the corresponding response 
spectra shown in Figure 6 (c).    

The spectrogram of the bar response at 
location 0=cx  is illustrated in Figure 7. It 
is clear that the higher frequency modes 
only vibrate significantly during a few 
tenths of a second − which are however 
crucial for the timbre recognition. Overall, 
we feel that the perceived “sound” (we used 

the velocity signal at a bar end for our 
subjective timbre comparisons) is quite 
realistic, although the resonator has not been 
incorporated yet in the model.  

In Figure 8 we display the relative 
energies of the system modes (notice that 
the energy scale is logarithmic). Clearly, 
most of the impact energy goes to the first 
elastic mode − number 3 in this plot. The 
two low frequency rigid-body modes also 
vibrate significantly. The energy of the 
higher frequency elastic modes decreases 
fast, as the modal frequency increases. 
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Figure 7: Typical response of a 9:4:1  vibraphone bar impacted at the bar end 0=cx  using a mallet 

with contact stiffness 810=cK N/m3/2:  (a) Time-history of the velocity response at the impact 
location;  (b) Corresponding spectrogram. 
 
 
5.2 Impact location 

We will now discuss, through parametric 
computations, several aspects which are 
particularly significant for the vibratory 
responses of this system. Figure 9 shows the 
time-responses and corresponding 
spectrograms of the same  9:4:1  
vibraphone bar, as a function of the impact 

location cx , when a mallet with contact 

stiffness 810=cK N/m3/2 is used. The 
corresponding sound files show clear 
differences in the perceived sounds. The 
sounds obtained at 10/Lxc =  and  

3/Lxc =  are rich and well balanced (the 
typical “vibraphone-sound” one usually 

(a)

(b)



hears). However, because the nodes of the 
fundamental mode are located near 

5/Lxc = , striking the bar near the supports 
will induce a “thin” sound, rich at higher 
frequencies but poor as far as the 

fundamental is concerned. On the other 
hand, when the mallet strikes the middle of 
the bar, only the symmetric modes are 
excited. The corresponding sound is 
comparatively dull. 
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Figure 8: Typical response of a 9:4:1  vibraphone bar impacted at location 0=cx  using a mallet 

with contact stiffness 810=cK N/m3/2:  Relative modal energies. 
 
 
5.3 Contact stiffness 

Figure 10 shows the time-responses and 
corresponding spectrograms of the same  

9:4:1  vibraphone bar, as a function of the 
contact stiffness cK , when the mallet strikes 
at location 10/Lxc =  (the influence of the 
bar material is also shown here and will be 
discussed in next). The extreme values of 
the contact stiffness used in these 
simulations, 710  and 910 N/m3/2, represent 
respectively soft and hard mallets. When 
using soft mallets, the sounds produced are 
smooth, as most of the energy is excited at 
lower frequencies. Conversely, the much 
brighter sounds excited by hard mallets are 
attested by the significant excitation of the 
higher frequency modes.  
 
5.4 Bar material 

Figure 10 also shows how significant the 
bar material is, for the instrument timbre. 
Here, the last two time-plots and 
spectrograms display the responses of a 
typical marimba bar, with the same 
fundamental frequency. Obviously, wood 
has a lower density than aluminium (about 
one third). However, the main effect of the 
material is, without doubt, the much higher 

dissipation of wooden bars. Here, we recall 
that modal damping values of 02.0=mζ % 
and 5.0=mζ  % were used (for all modes), 
respectively in the case of aluminium and 
wood bars. The consequences of this simple 
parameter change, when the subjective 
timbral qualities are concerned, go much 
beyond the mere decrease in response 
duration shown in Figure 10. Indeed, 
simulations using the lower damping value 
sound as impacted metal, while those using 
the higher damping value sound as impacted 
wood. 

 
5.5 Bar shape: conventional designs 

Figure 11 shows the time-responses and 
corresponding spectrograms of several 
“conventional” bars, with frequency ratios 
that might be found in xylophones, 
marimbas and vibraphones. Common 
variations include the second partial, at 
either 3:1  (one octave + one fifth) or 4:1  
(two octaves), as well as the third partial, at 
either 9:1  (three octaves + one minor third) 
or 10:1  (three octaves + one major third). 
All these cases are illustrated in the figure, 
based in the optimized shapes obtained as 
shown in Sections 2 and 3. The 



corresponding sounds show that influence of 
the second partial frequency is very easily 
perceived. However, for the untrained ear, 
the influence of the third partial is more 
subtle.  

 
5.6 Bar shape: non-orthodox designs 

We conclude by illustrating in Figure 12 
the time-responses and corresponding 
spectrograms of the four unconventional 
bars optimized in Section 3. Here, one 
should bear in mind that the perceived 
sounds depend, not only on the tuned 
modes, but also on other higher frequency 
modes which are outside the optimized 
frequency range (and therefore 
“uncontrolled”). Here, we chose the modal 
relationships of 3:2:1 , 12:6:3:1 , 

16:8:4:2:1  and 15:10:5:1 , not on the 
ground of their particular “musical” 
qualities, but only because such modal 
tunings lead to very different bar 
geometries, as well as response spectra. 
And, indeed, the sounds obtained are 
different, as can be inferred from the 
spectrograms in Figure 12. 

The case 3:2:1  deserves a short 
comment, because it led to a somewhat 
unexpected sound. Indeed, from such 
frequency combination, one might naively 
expect a “sweet” sound, but what we 
obtained sounds harsh, almost as sounds 
issued from some gamelan instruments, for 
instance. What happens here is that the non-
optimized forth and upper partials present 
frequencies which are relatively low. These 
are significantly excited and severely 
inharmonic. If we assume that such effect is 
undesirable, there is a lesson to extract from 
this example: Sometimes, one should design 
the optimization procedure not only on the 
basis of what is wanted, but also on the basis 
what is not wanted. This can be achieved 
easily: In the first case, penalty terms in the 
error-function should tax divergence 
between the computed modal frequencies 
and the target set. In the second case, 
penalties should tax proximity of the 
computed modal frequencies to any 
undesirable frequency range. Both aspects 

can be easily combined in the optimization 
procedure. 

 
 

6.   Conclusion 
 

Two important aspects of the design of 
percussion instruments have been addressed 
in this paper: (1) Geometry optimization of 
the vibrating component, and (2) Sound 
synthesis through nonlinear physical 
modelling. The feasibility  of these two 
complementary approaches has been 
demonstrated.   

Beyond enabling a systematic and cost-
effective way of improving conventional 
instrument designs, an obvious advantage of 
optimization approaches is the possibility of 
developing non-conventional instruments 
with new sound qualities. We illustrated the 
various aspects discussed by optimizing and 
dynamically simulating several vibraphone 
and marimba bars. Bar/resonator vibro-
acoustic coupling and radiation effects have 
not been yet incorporated in our 
computational model. Even so, the 
subjective quality of the simulated sounds 
was found quite satisfactory. 

We intend to extend the present work in 
several directions. Concerning optimization, 
these include: 
- optimization of resonator geometries, to 

control other acoustic modes beyond the 
first, in connection with the bar 
vibratory modes;  

- optimization with respect to other 
aspects beyond modal frequencies, for 
instance the system modeshapes, in 
order to better control the radiated 
spectra; 

- optimization of more complex problems, 
ranging from soundboard geometries 
(and bridge placement) to the design of 
optimized carillon bells; 
Turning towards dynamical simulations, 

the most urgent aspects to include in our 
approach are the bar/resonator vibro-
acoustic coupling and radiation. Some of 
these aspects are currently being addressed. 

 



 
 

 
 

Figure 9: Vibratory responses of a 9:4:1  
vibraphone bar as a function of the impact 
location cx  (contact stiffness 810=cK N/m3/2). 
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Figure 10: Vibratory responses of a 9:4:1  
vibraphone bar as a function of the contact 
stiffness cK  and also of the bar material 
(impact location 10/Lxc = ). 
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Figure 11: Vibratory responses of four near-
conventional vibraphone bars (contact stiffness 

810=cK N/m3/2, impact location 10/Lxc = ). 

 
 

 
 
Figure 12: Vibratory responses of four non-
orthodox vibraphone bars (contact stiffness 

810=cK N/m3/2, impact location 10/Lxc = ). 
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