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Abstract: Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools,
mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life.
Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating
Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed
Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the
gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely
PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly
investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution,
and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI
application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles
was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity
and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of
the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic
potential through the coordination of other therapeutically interesting radiometals. Altogether, our
nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2-
MRI / SPECT imaging probes.
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1. Introduction

The primary source of information for clinical diagnostic applications comes from medical imaging.
The available molecular imaging modalities provide different information about the patient with
different spatial and temporal resolution and sensitivity. For that reason, it is currently accepted that a
single imaging modality cannot provide sufficient and exact information of the human body. Besides
that, nowadays there is an increasing interest in merging diagnostic and therapeutic functions in
the same tool to perform the so-called “theranostics” [1–4]. Nanotechnology is now a central field
in biomedical research, namely to design nanosized theranostic agents. Due to their unique optical
properties, non-toxic nature, relatively simple preparation, and functionalization, gold nanoparticles
(AuNPs) are excellent candidates for this type of application. AuNPs are versatile nanoplatforms
that can be easily functionalized with several imaging agents, plus biological targeting moieties and
drugs, combining therapeutic and diagnostic functions within a single nanoparticle [4–8]. While this
concept is auspicious, AuNPs have to overcome multiple hurdles to reach their full potential in clinical
applications. The limitations in medical practice are closely associated with the pharmacokinetics and
tissue distribution of AuNPs that are strongly dependent on their physical and chemical properties,
and surface composition. Thus far, the real “magic gold nanoparticle” still remains an unmet goal
despite the recent and encouraging results that have been reported for target-specific AuNPs applied
to cancer theranostics. Indeed, this progress is only at the proof-of-concept stage and its application to
clinical trials is still a few years away [9–11].

Magnetic Resonance Imaging (MRI) is one of the most widely used imaging modalities in clinics.
It often makes use of the paramagnetic properties of Gd3+ based Contrast Agents (GBCAs) to enhance
image contrast, due to their reduction of water proton relaxation times of selected tissues. MRI provides
anatomical images inside the human body with high spatial resolution, although with relatively
low sensitivity [12–16]. The Solomon–Bloembergen–Morgan (SBM) theory predicts that very high
relaxivities, of the order of magnitude 100 mM−1

·s−1at magnetic fields relevant for clinical imaging,
are attainable by Gd3+ chelates displaying simultaneous optimization of the main parameters that
govern relaxivity: Rotational correlation times (τR), water exchange rate constant (kex), and electron
spin relaxation parameters (τv and ∆2) [12,17–19]. However, despite many attempts, this goal is still
elusive. In fact, the clinically approved low molecular weight GBCAs display relaxivities of the order
of magnitude 3–5 mM−1

·s−1at magnetic fields relevant (currently) for clinical MRI (20–120 MHz).
However, nuclear imaging techniques, like Single Photon Emission Computed Tomography (SPECT)
and Positron Emission Tomography (PET), provide physiological images that contain information about
metabolic parameters with high sensitivity, but have low spatial resolution [20–22]. Several in vivo MRI
studies established the merits of functionalized AuNPs as CAs for MRI, bimodal MRI/X-ray imaging,
and as theranostics platforms. More recently, in the late twentieth century, due to the high cross-section
of the photoelectric effect in gold, gold nanoparticles have been evaluated in vitro and in vivo as
enhancers of the radiation used in cancer therapy. Studies have shown that the synergistic effect of
irradiation and gold nanoparticles can lead to a significant tumor reduction. Moreover, the benefit of
this combinatory therapy is also strongly dependent on the size, coating, and number of internalized
nanoparticles in cancer cells and on the radiation energy [23–34]. A few Gd3+-based molecules and
particles have also been reported, combining MRI guided imaging with radiosensitization. Indeed,
Gd3+ is well known for its paramagnetic properties, but its high mass absorption coefficient and high
atomic number also makes it interesting for such applications [28,35]. Up to the present time, there are
no Gd3+-bearing AuNPs that have been evaluated in clinical trials for MRI, and PET/MRI bimodal
imaging studies are in general scarce [36–39]. While some studies have been done regarding the
application of AuNPs for theranostics, their therapeutic function is mostly based on the photothermal
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properties of the AuNPs themselves or on the delivery of a payload acting as a cytotoxic drug [40–46].
There are some examples of AuNPs that have been evaluated in the delivery of medically relevant
radionuclides, aiming to obtain “radiotheranostic” agents suitable to provide clear and sensitive
tumor detection and selective therapeutic effects [47,48]. This included nanoconstructs decorated
with bombesin (BBN) analogues, a bioactive peptide with high affinity towards the Gastrin Releasing
Peptide receptor (GRPr) overexpressed in a variety of human cancers, and demonstrated that the
AuNPs displayed specificity towards GRPr overexpressing tumors [49–51].

Within our on-going studies on GRPr-targeted nanotools, we have evaluated
some radiolabeled AuNPs stabilized with an acyclic DTPA derivative (DTTPA =

(2-[bis[2-[carboxymethyl-[2-oxo-2-(2- sulfanylethylamino)ethyl]amino]ethyl]amino]acetic acid) or
with a macrocyclic DOTA derivative (TDOTA = trimethyl 2,2′,2”-(10-2(3-(tritylthio)propamido)ethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-trityl)triacetate), and functionalized with BBN analogue peptides
for specific tumor targeting. These studies proved that the DOTA-containing AuNPs functionalized
with a BBN thioctic derivative are the most promising ones, allowing for a fast complexation of trivalent
radiometals (e.g. 67Ga3+) and showing high in vitro/in vivo stability, along with a favorable cellular
internalization in GRPr-positive cells and significant tumor uptake [52,53]. Herein, we describe our
efforts to assess the capacity of these BBN-containing AuNPs to anchor, at the same time, trivalent
metal ions adequate for MRI (e.g., Gd3+) and for radioimaging (e.g., 67Ga3+), taking advantage of the
favorable coordination properties of the DOTA-based chelator towards Gd3+ and Ga3+, yielding a
bimodal MRI/nuclear imaging reporter. This study encompassed the determination of the total amount
of Gd3+ that can be loaded into the AuNPs, while still allowing for the possibility of having free DOTA
unities available for further coordination of radiometals. The physico-chemical characterization of the
resulting Gd-AuNPs, including their relaxometric properties, is also described. Cell uptake studies in
PC3 human prostate cancer cells were performed to confirm that the inclusion of the Gd3+ ions did not
compromise the GRPr-mediated cellular uptake. The biodistribution was assessed in tumor-bearing
mice and healthy animal models, through 67Ga3+ measurements in main organs. As proof of the
principle, the potential for radiosensitization of these gadolinium-loaded AuNPs was also evaluated.
These studies will contribute to a better understanding of the biological performance of these AuNPs
as potential bimodal MRI/nuclear imaging probes, and of their relevance as novel nanomaterials for
cancer theranostics.

2. Materials and Methods

2.1. General Procedures

All chemicals and solvents were of reagent grade and were used without further purification,
unless stated otherwise, and were commercially acquired from Aldrich Chemical Co. (Saint Louis,
MO, USA). Solvents for high-performance liquid chromatography (HPLC) were HPLC-grade. For the
preparation of aqueous solutions and for rinsing of gold nanoparticles, Milli-Q (DI) water (ρ < 18 MΩ)
was used. The amino acids used in this work were acquired from Novabiochem. Anhydrous GdCl3
was obtained from Alfa Aesar. AuNP-TDOTA and thioctic acid terminated bombesin peptide (TA-BBN)
were synthesized according to previously published methods [53]. 67GaCl3 was prepared from
67Ga-citrate (acquired from Mallinckrodt) following a protocol previously described [54]. The PC3 cell
line was obtained from ATCC, Manassas, VA, USA.

Ethics statement. Animal studies were carried out under the supervision of authorized researchers
in laboratory animal facilities licensed by the National Authority in compliance with the principles of
laboratory animal science on animal care, protection and welfare and are properly accredited by the
respective National Authorities according to the national (DL 113/2013) and EU (Directive 63/2010/EU)
legislation for laboratory animal experimentation. The research project was also approved by the local
ethical committee (ORBEA of IST-ID).
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2.2. Synthesis of AuNP-TDOTA

AuNPs were synthesized according to our previously described method [53]. Briefly, TDOTA·2TFA
(68 mg, 0.10 mmol) was dissolved in 10 mL of a MeOH/H2O solution (7:3), and added to 4.5 mL of a
solution of HAuCl4·3H2O (1 mM) in MeOH. The mixture was stirred at room temperature for 5 min
and then 0.3 mL of a solution of NaBH4 (0.295 M) was added while vigorously stirring. There was an
immediate formation of a dark precipitate. The reaction was stirred for an additional hour at room
temperature. The solution was centrifuged at 1000 rpm for 20 min and the pellet obtained was washed
two times with MeOH and two times with H2O. The nanoparticles were then lyophilized and stored
until further use.

2.3. Synthesis of AuNP-Gd

To 5 solutions of AuNP-TDOTA (600 µL, 5 mg/mL) different amounts of GdCl3 were added: 3.7 mg
(14.0 × 10−3 mmol), 0.37 mg (1.4 × 10−3 mmol), 0.185 mg (7.0 × 10−4 mmol), 0.074 mg (2.8 × 10−4 mmol),
and 0.037 mg (1.4 × 10−4 mmol) in 1 mL of H2O. The mixtures were stirred overnight at room
temperature and then ultra-centrifuged using an Amicon 10k, washed with H2O, lyophilized, stored at
−20 ◦C, and restored in H2O prior to use.

2.4. Synthesis of AuNP-Gd-BBN

200 µL of MeOH was added to a solution of AuNP-Gd (200 µL, 5 mg/mL, prepared using 1:0.25
Au/Gd ratio), followed by the addition of a TA-BBN solution (2 mg (0.0018 mmol)) in 400 µL of MeOH.
The mixture was stirred overnight at room temperature and then ultra-centrifuged using an Amicon
10k and washed with MeOH and finally with H2O. The nanoparticles were lyophilized and stored at
−20 ◦C.

2.5. Determination of the Amount of Conjugated TA-BBN

Determination of TA-BBN payload was performed using a HPLC procedure previously
reported [53]. Solutions of TA-BBN were prepared, and split into equal parts, one part of the
peptide solution was used for the reaction with AuNP-Gd and the other part used to prepare a
control solution. The control solution was diluted in order to have the same volume as the reaction
mixture. The control solution and the supernatant of the reaction mixtures were analyzed by HPLC
using identical equipment parameters. The difference in the area under the curve was used to
determine the amount of conjugated peptide (Area (control, µV/s) = 2874925.66; Area (supernatant,
µV/s) = 1724932.98). 0.8 mg of TA-BBN was conjugated to 1 mg of AuNP-Gd.

HPLC analyses were performed in a Perkin-Elmer LC200 pump with a UV-Visible Shimadzu
LC290 and a Berthold LB-507A γ-detector, using a Macherey-Nagel EC 250/4 Nucleaosil 100-10 C18 (or
100-5 C18) with a flow rate of 1.0 mL/min (or 0.5 mL/min for column 100-5 C18).

2.6. Determination of Gadolinium and Gold Content by Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP-OES)

Spectrometric (ICP-OES) measurements were performed in a Jobin Yvon ULTIMA2 Spectrometer
(Longjumeau, France). Both Gd and Au standard solutions were prepared in 5% HNO3 matrix. The NP
samples were digested in conc. HNO3 for 48 h at room temperature followed by 18 h at 65 ◦C. The
resulting solutions were then diluted 1:12, to reach a 5% HNO3 concentration. The quantitative
determinations were performed using the most accurate band: 310.050 nm for Gd and 242.795 nm for
Au. All the measurements were done in triplicate.

2.7. Dynamic Light Scattering (DLS) and Zeta Potential Determination

DLS measurements were performed with a Malvern Zetasizer Nano ZS (Malvern Instruments
Ltd., Worcestershire, UK) equipped with a 633 nm He-Ne laser and operating at an angle of 173◦.
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The software used to collect and analyze the data was the Dispersion Technology Software (DTS)
version 5.10 from Malvern. 600 µL of each sample was measured in low volume semi-micro disposable
sizing cuvettes (Fisher Scientific, USA) with a path length of 10 mm. Triplicate measurements were
made at a position of 4.65 mm from the cuvette wall with an automatic attenuator. For each sample,
15 runs of 10 s were performed. The size distribution, the Z-average diameter and the polydispersity
index (PDI) were obtained from the autocorrelation function using the “general purpose mode” for all
nanoparticle samples. The default filter factor of 50% and the default lower threshold of 0.05 and upper
threshold of 0.01 were used. Zeta potential measurements were performed in triplicates using water as
a dispersant and the Huckel model. For each sample, 20 runs were performed in auto analysis mode.

2.8. Transmission Electron Microscopy

Transmission electron microscope images were obtained on a JEOL 1400 transmission electron
microscope (TEM), JEOL LTD., Tokyo, Japan. TEM samples were prepared by placing 5 µL of gold
nanoparticle solution on the 300-mesh carbon coated copper grid. Excess solution was removed
carefully and the grid was allowed to dry for an additional five minutes. The average size and size
distribution of the nanoparticles were determined by processing the TEM image Adobe Photoshop
with Fovea plug-ins.

2.9. Radiolabeling with 67Ga3+

20 µL of NP solutions (5 mg/mL in DI water) was mixed with 350 µL of 0.4 M ammonium acetate
(pH ≈ 7). To this mixture, 250 µL of 67GaCl3 (0.1 M HCl) was added, followed by heating at 70 ◦C for
30 min. After cooling to room temperature, the reaction mixture was then filtered through a Millipore
Amicon Ultra 0.5 mL 10k. The collected gold nanoconstructs were diluted in 150 µL of H2O and their
radiochemical purity assessed by ITLC-SG, using 6M HCl/MeOH (5:95) as an eluent. All nanoparticles
were obtained with a final radiochemical purity >95%.

2.10. NMRD Profile

The r1 nuclear magnetic relaxation dispersion (NMRD) profiles of the Gd3+ containing particles
were recorded on a Stelar SMARtracer FFC fast-field-cycling relaxometer covering magnetic fields from
2.35 × 10−4 T to 0.25 T, which corresponds to a proton Larmor frequency range of 0.01–10 MHz. The
relaxivity at higher fields was measured using a Bruker WP80 adapted to variable field measurements
and controlled by the SMARtracer PC-NMR console. The temperature was controlled by a VTC90
temperature control unit, fixed by a gas flow, and calibrated with a Pt resistance temperature probe.
The concentration of the samples was determined by ICP-OES.

2.11. MRI Phantoms

MR images of tubes containing PBS, AuNP-Gd and AuNP-Gd-BBN were acquired on a BioSpec
9.4 T horizontal magnet (94/21 USR, Bruker BioSpin, Wissembourg, France) equipped with B-GA06S
gradient system (950 mT/m maximal strength and 35 mm inner diameter) and Paravision 5.0 software
(Bruker BioSpin, Wissembourg). Images were acquired using rapid spin echo sequence (RARE
sequence, factor 8) with TE = 10 ms; 30 ms; 50 ms; 70 ms; and 90 ms and TR = 2.5 s; 1.5 s; 1.0 s; 0.8 s; 0.5 s;
and 0.2 s. The resolution was 156 × 156 µm2 with a matrix of 256 ×256. Slice thickness was 1.0 mm. T1

and T2 maps were generated with Paravision software, and T1 and T2 values were calculated from
these maps. The Gd3+ concentrations were assessed by ICP-OES.

2.12. Cytotoxicity Studies

PC3 cells were plated in 96-well plates at a density of 3 × 105 cells per well. Twenty-four hours
after plating, the cells were incubated with 1, 2.5, 5, 10, 20, 40, 80, and 160 µg/mL solutions of AuNPs
(solutions prepared in RPMI complete medium). Cell viability was measured after 4 or 24 h using the



Materials 2020, 13, 513 6 of 17

modified Alamar Blue colorimetric assay [55]. Cell viability was presented relative to the percentage of
untreated cells (control cells) considered as 100%. Data represent the mean ± SD of four independent
experiments (Figure S1).

2.13. Cellular Internalization Studies

Internalization assays of the radiolabeled AuNPs were performed in PC3 cells seeded at a density
of 2 × 105 cells in 0.5 mL of culture medium per well in 24 well-plates and were allowed to attach
overnight. The cells were incubated at 37 ◦C for a period of 15 min to 3 h with about 400,000 cpm of
the 67Ga-AuNPs in 0.5 mL of culture medium. Incubation was terminated by washing the cells with
ice-cold medium. Cell surface-bound radioactivity was removed by two steps of acid wash (50 mM
glycine, HCl/100 mM NaCl, pH 2.8) at room temperature for 4 min. The pH was neutralized with
cold PBS, and subsequently the cells were lysed by 10 min incubation with 1 M NaOH at 37 ◦C to
determine the internalized compound. The radioactivity associated to each fraction in the cells was
measured in a gamma counter (LB2111, Berthold, Germany) and were expressed as the percentage of
the total activity added to the cells and presented as an average plus the standard deviation of three
independent experiments.

After radioactive decay of the 67Ga (10 half-lifes), samples of the cells incubated for 3 h with the
different 67Ga-labelled AuNPs were digested and their Gd amount was determined by ICP-OES (see
the detailed ICP protocol above).

2.14. Irradiation Setup

PC3 cells were seeded in 96-well plates at a density of 3 × 104 cells per well. The next day, the
cells were incubated with 0.6, 4.6, 18.7, 37.5, and 75 µg/mL solutions of AuNPs in RPMI complete
medium for 3 h. Cells were then irradiated with gamma-rays (1530 keV) using a 60Co irradiator (AECL
Medical Products) at a cumulative dose of 2 Gy with a field size of 20 × 20 cm. After irradiation, the
medium was removed and replaced by fresh medium. Cell viability was measured by the colorimetric
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after 72 h incubation in
fresh medium. At the end of incubation, the medium was discarded and the cells were incubated
with 200 µL of an MTT solution in PBS (0.5 mg/ml). After 3 h at 37 ◦C, the medium was removed
and 200 µL of DMSO were applied to each well to solubilize the purple formazan crystals formed.
The absorbance at 570 nm was measured using a plate spectrophotometer (Power Wave Xs, Bio-Tek,
Winooski, VT, USA). Cell viability was presented as a percentage of untreated cells and non-irradiated
cells (control cells) considered as 100%. Data represent the mean ± SD of four independent experiments.
GraphPad Prism 7.0 (GraphPad Software, Inc., La Jolla, California, USA) was used for the statistical
analysis. A comparison of values was performed with a non-parametric t test with Welch’s correction;
p-values < 0.05 were used to define statistical significance.

2.15. Biodistribution Studies

Biodistribution of 67Ga-labelled AuNPs was evaluated in CD1 mice (obtained from Charles River,
Barcelona, Spain). Animals were intravenously (i.v.) injected in the tail vein with the nanoparticles
(1.5–6.0 MBq) diluted in 100 µL of NaCl 0.9%. Mice were sacrificed in groups of 3, by cervical dislocation
at 1 h and 4 h after injection. The dose administered and the radioactivity in the sacrificed animals was
measured using a dose calibrator (Capintec CRC25R). The difference between the radioactivity in the
injected and sacrificed animals was assumed to be due to excretion. Tissues of interest were dissected,
rinsed to remove excess blood, weighed, and their radioactivity was measured using a γ-counter
(LB2111, Berthold, Germany). The uptake in the tissues was calculated and expressed as a percentage
of the injected radioactivity dose per gram of tissue. The results are expressed as mean ± SD.

To assess the ability of the 67Ga-labelled AuNPs to be retained by tumors an additional set of
experiments was carried out in 10–12 weeks old Balb/c-Nude mice with PC-3 xenografts, weighing
approximately 16–20 g. A 150 µL bolus containing a suspension of approximately 7 × 106 freshly
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harvested human PC-3 cells in Matrigel:PBS buffer 1:1 was subcutaneously injected in the right flank of
each female nu/nu mouse. The animals were kept under aseptic conditions and 2 weeks later developed
well-palpable tumors at the inoculation site. Xenograft-bearing animals were intratumorally injected
with the 67Ga-labelled AuNPs in a small volume (20–30 µL of NaCl 0.9%) and were sacrificed at 1 h
and 24 h after injection and tissue distribution was evaluated, as described for CD1 mice.

3. Results

3.1. Synthesis, Characterisation and Radiolabelling of the AuNPs

The AuNPs have been synthesized according to a previously described method [53]. Briefly, the
4–5 nm AuNP core, stabilized with TDOTA units, was complexed with GdCl3. The maximum Gd3+

coordination capacity was assessed by studying different Gd:AuNP ratios. After the complexation
reactions, the resulting Gd-containing particles were purified by ultra-centrifugation. The AuNPs
were washed with Milli-Q water until no free Gd3+ ion could be detected by colorimetric titration with
xylenol orange [56]. Their Au and Gd3+ contents were determined by ICP-OES and it was found that
the maximum content of gadolinium that could be incorporated into the nanoplatform corresponds
to the ratio Au:Gd3+ 1:0.25 (Table 1). Thereafter, Gd-containing AuNPs (obtained using this ratio)
were reacted with the thioctic acid bombesin derivative to obtain AuNP-Gd-BBN. The amount of BBN
payload was determined by HPLC analysis, as detailed in the experimental section.

Table 1. Gd and Au content of the NP corresponding to different complexation ratios, measured
by ICP-OES.

Ratio AuNP:Gd [Au] (mM) [Gd] (mM)

1:0.05 0.452 0.025
1:0.10 0.442 0.042
1:0.25 0.467 0.245
1:0.50 0.068 0.229
1:5.00 0.045 0.183

The particles AuNP-DOTA (without Gd3+ and without BBN), AuNP-Gd (with Gd3+ and without
BBN) (using the AuNP:Gd 1:0.25 ratio) and AuNP-Gd-BBN (with Gd3+ and decorated with BBN) have
been characterized by dynamic light scattering (DLS, Figure S2) and their zeta potential and molar
ratios Au/Gd and Au/BBN determined (Table 2). Transmission electron microscopic (TEM) images
were obtained for AuNP-DOTA and AuNP-BBN (Figure S3).

Table 2. Hydrodynamic size and zeta potential (pH 6), Gd/Au, and BBN/Au ratios of the AuNPs.

Compound Hydrodynamic
Size (PDI) (nm)

Zeta Potential
(mV) Ratio (M) Au/Gd Ratio (M) Au/BBN

AuNP-DOTA 30.9 (0.6) −43.7 ± 13.1 — —
AuNP-Gda 47.3 (0.4) −35.1 ± 14.1 1.9 —

AuNP-Gd-BBNa 78.8 (0.9) −10.9 ± 5.1 3.2 4.1
a AuNPs obtained using the AuNP:Gd 1:0.25 ratio.

The final step to achieve multimodal imaging probes based on the AuNP-Gd and AuNP-Gd-BBN
nanoplatforms involved their labeling with 67Ga, which was done by a reaction with 67GaCl3 at 70 ◦C
within 30 min (>95% radiochemical yield).

The radiochemical stability of the 67Ga-radiolabeled AuNP-Gd was studied in 0.9% NaCl and in
the presence of apo-transferrin, at 37 ◦C. The amount of radiolabeled nanoparticles was measured by
ITLC radiochromatography at different time points (Figure S4).
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3.2. Relaxometric Studies

The 1H nuclear magnetic relaxation dispersion (NMRD) profile of particles with and without BBN
has been studied and phantoms of their solutions were imaged at a 9.4 T MRI scanner (Figure 1). The
particles containing BBN were only analyzed at higher fields (20–400 MHz).

Figure 1. Relaxometric and MRI studies of AuNP-Gd and AuNP-Gd-BBN particles: (a) 1H NMRD
profiles of AuNP-Gd (•) and AuNP-Gd-BBN (•) (25 ◦C); (b) T1- and T2-weighted MRI phantom images
obtained at 9.4T (25 ◦C): [Gd]AuNP-Gd = 0.25 mM and [Gd]AuNP-Gd-BBN = 0.22 mM.

The NMRD profiles of AuNP-Gd and AuNP-Gd-BBN present a hump at a magnetic field around
40 MHz, typical of nanoparticles, as can be verified in Figure 1. r1 and r2 relaxivities at 400 MHz were
estimated from the image analysis of phantoms acquired at a 9.4 T MRI scanner.

3.3. Cellular Internalization Studies

The cellular uptake of the 67Ga-labeled AuNPs was studied by the internalization rate in human
prostate cancer PC3 cells (Figure 2) determined by a gamma-counting measurement of the radioactivity.
The internalization of 67Ga-AuNP-Gd-BBN in PC3 cells was 6.5± 0.5, 10.6± 2.1, 10.3± 1.5, and 9.3 ± 2.0%
of the total activity per million of cells at 15 min, 30 min, 1 h, and 3 h, respectively. Nonetheless, the
internalization of 67Ga-AuNP-Gd in the same experimental conditions was 0.71 ± 0.08, 1.05 ± 0.08,
1.07 ± 0.02 and 0.81 ± 0.09% of the total activity per million of cells at the same time points.

Figure 2. Cellular internalization studies of 67Ga-AuNP-Gd and 67Ga-AuNP-Gd-BBN in PC3 cells at
37 ◦C at different incubation times, determined by γ-counting. Results are expressed as the percentage
of the total radioactivity internalized by the cells (mean ± SD; n = 3) and normalized per million of cells.
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3.4. Radiosensitization Studies

The radiosensitizing capabilities of AuNP-DOTA, AuNP-Gd, and AuNP-Gd-BBN were evaluated
in human prostate cancer PC3 cells, using the MTT colorimetric assay before and after γ irradiation of
cells treated with the different nanoconstructs at different concentrations (0.6 to 75 µg/mL). Concerning
the non-irradiated cells, no significant toxicity was observed after 72 h of incubation for all the
concentrations tested (see Figure S5 and Table S1). As shown in Figure 3 (which displays results for cells
incubated with 37.5 µg/mL), the exposure to γ radiation of the PC3 cells incubated with AuNP-DOTA
induced a decrease in cellular viability of about 35% compared to control (irr) (58.2 ± 4.4 vs 93 ± 7%,
P = 0.0002), whereas a slightly enhanced radiosensitizing effect was observed for AuNP-Gd (52.2 ± 4.0%)
and AuNP-Gd-BBN (50.2 ± 2.0%), about 40% relative to the control (irr), but no significantly difference
between them. While preliminary, these results indicate that the presence of Gd, another high Z
element as Au, could contribute to the slight enhancement of the radiosensitizing effect (58.2 ± 4.4
vs. 52.2 ± 4.0%, P = 0.0444). Overall, the presence of both Gd and BBN upon irradiation induced a
significant difference in cell viability: 58.2 ± 4.4 vs. 50.2 ± 2.0%, P = 0.0137.

Figure 3. Cellular viability of PC3 cells treated with the different AuNPs (37.5 µg/mL) and γ-irradiated
at 2 Gy (total dose). Cellular viability was determined by the MTT assay, 72 h after irradiation. Results
are expressed as mean ± SD (n = 4).

3.5. Biodistribution Studies

Biodistribution studies of 67Ga-AuNPs-Gd have been performed in CD1 mice, 1 h and 4 h after
intravenous administration, to compare the tissue distribution profile (Figure 4, Table S2). To assess the
ability of 67Ga-AuNP-Gd-BBN to be retained into the tumor mass, biodistribution studies were also
performed in PC3 xenograft Balb/c mice, at 1 h and 24 h after intratumoral administration (Figure 5,
Table S3). The main features of the tissue distribution profile of both 67GaAuNP-Gd preparations
are the relatively fast blood clearance (2.4 ± 0.4 and 1.4 ± 0.5% ID/g at 1 and 4 h, respectively, for
67GaAuNP-Gd; 2.7 ± 1.2 and 1.6 ± 0.1% ID/g at 1 and 4 h, respectively, for 67GaAuNP-Gd-BBN) via
both the hepatic and the renal pathways. Hepatic and splenic uptake was also found for both 67Ga
labelled AuNPs. The overall rate of radioactivity excretion was moderate (< 65% for 67GaAuNP-Gd
and < 55% for 67GaAuNP-Gd-BBN).
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Figure 4. Biodistribution of 67Ga-AuNP-Gd and 67Ga-AuNP-Gd-BBN in CD1 mice, 1 h and 4 h after
intravenous administration. Results are expressed as mean ± SD (n = 3).

Figure 5. Biodistribution of 67Ga-AuNP-Gd-BBN in PC3 xenograft Balb/c mice, after 1 h and 24 h
intratumoral administration. Results are expressed as mean ± SD (n = 3).

Biodistribution assessment of 67Ga-AuNP-Gd-BBN in PC3 xenograft Balb/c mice, at 1 h and 24 h
after intratumoral administration, indicated a very low uptake in the main organs and a high tumor
retention (96.5 ± 26.0 and 76.8 ± 23.3% ID/g at 1 and 24 h, respectively) (Figure 5).

To confirm the targeting ability of our 67Ga-AuNP-Gd-BBN, the tumor uptake and tumor retention
was also assessed in the same animal model after intravenous administration. In Figure 6, we compare
the tumor uptake versus liver, spleen, kidney, and lung uptake 24 h after intratumoral and intravenous
administration for a better understanding of the biodistribution profile of our AuNPs.

Data from this study clearly indicated that the AuNPs keep the ability to reach the tumor target.
However, the radioactivity ratios of tumor to organs of the reticuloendothelial system (RES) highly
depend on the route of administration.
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Figure 6. Comparison of tissue distribution of 67Ga-AuNP-Gd-BBN in PC-3 xenograft Balb/c mice, 24 h
after intratumoral and intravenous administration. All data are expressed as % ID/g (mean ± SD, n = 3).

4. Discussion

Gd-containing AuNPs were prepared by complexation of Gd3+ with AuNP-DOTA using different
AuNP/Gd3+ ratios. This study revealed that the 1:0.25 ratio corresponds to the saturation of Gd3+

complexation (Table 1). Thus, the AuNP:Gd3+ obtained with the 1:0.25 ratio were further functionalized
with a BBN thioctic acid derivative. Both types of AuNPs, carrying or not carrying the BBN derivative,
have been fully characterized by different physico-chemical techniques. The results showed that the
coordination of Gd3+ does not have a large influence on the hydrodynamic size nor on the zeta potential,
but the presence of BBN does (Table 2, Figure S2). Indeed, the AuNP-Gd-BBN particles are bigger and
have a less negative zeta potential. TEM images revealed a similar core size for AuNP-DOTA and
AuNP-BBN (Figure S3), similar to our previously reported AuNPs [53].

The particles were then characterized regarding their potential application as MRI CAs. Their
NMRD profile presents a hump at magnetic fields around 40 MHz, typical of nanoparticles with
longer rotational correlation times (τR) due to their slow mobility [12]. The presence of BBN has only
a small influence on the relaxivity regardless of the 1.7-fold higher hydrodynamic diameter of the
AuNP-Gd-BBN compared with the AuNP-Gd congeners.

At 20 MHz, we have measured r1 values of 13.17 and 13.95 mM−1
·s−1 for AuNP-Gd and

AuNP-Gd-BBN, respectively (25 ◦C). At 400 MHz (9.4 T), r1 values of 4.2 and 5.9 mM−1
·s−1 and r2

values of 27.4 and 29.7 mM−1
·s−1, were obtained for AuNP-Gd and AuNP-Gd-BBN, respectively.

Comparison with the r1 relaxivities of the typical MRI GBCAs in clinical use (3.4 to 4.6 mM−1
·s−1 at 1 T

(42 MHz), 37 ◦C) [14,17,19,57,58], highlights the potential interest of these particles as T1-weighted
MRI CAs.

Other gold NP-Gd reported in the literature have comparable r1 values: 14.6 mM−1
·s−1 for

Lip-DO3A@AuNP at 1.4 T (60 MHz) and 4.7 mM−1
·s−1 at 7 T (300 MHz) [36], 12.9–15.6 mM−1

·s−1

for the DO3A-based AuNP constructs at 1.4 T [57], 29–38 mM−1
·s−1 at 0.47 T (20 MHz) and 10–12

mM−1
·s−1 at 4.7 T (200 MHz) for the DO3A-aminopropionate-based AuNPs [59], and 14.6 mM−1

·s−1,
and an r2 of 38.5 mM−1

·s−1 DNA-Gd@AuNP has an r1 of (measured at 1.4 T and 37 ◦C) [60].
The ratio r2/r1 obtained at 9.4 T is 6.6 for AuNP-Gd and 5.0 for AuNP-Gd-BBN. Typically, probes

presenting a transverse-to-longitudinal relaxivity ratio (r2/r1) smaller than two are considered to be
positive or T1-CAs. Ratios larger than 10 imply negative or T2- agents, while 2 < r2/r1 < 10 refers to
potential dual-functional CAs [61,62]. Our nanoparticles can then be potentially used as dual MRI T1

and/or T2 agents. Figure 1b illustrates MRI T1- and T2-weighted images obtained from phantom tubes
containing AuNPs prepared with similar Gd3+ content: [Gd]AuNP-Gd = 0.25 mM and [Gd]AuNP-Gd-BBN

= 0.22 mM.
In vitro studies performed revealed that none of the AuNPs tested, in the range 1 to 160 µg/mL,

exert significant cytotoxic activity on the PC3 human prostate tumor cancer cells, up to 24 h. The
AuNPs functionalized with BBN appear slightly more cytotoxic than unmodified AuNPs, however
without significant differences (Figure S1).
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The internalization of particles containing both 67Ga and Gd was studied by gamma-counting
measurement of 67Ga (over time, 15 min to 3 h) and by ICP measurement of Gd (only after 3 h of
incubation). 67Ga-AuNP-Gd-BBN has shown a much higher level of internalization than 67Ga-AuNP-Gd
(from 7.9 times to 11.5 times more at 15 min and 3 h, respectively), pointing out that the presence of
BBN, as a targeting moiety towards the GRPr, has a strong influence on the cellular uptake of the
nanoparticles. The results also show that the presence of Gd did not affect the uptake compared
to the AuNPs previously studied [53]. Moreover, the Gd content in the cells incubated during 3 h
with AuNP-Gd and AuNP-Gd-BBN, determined by ICP-OES, is in accordance; the same trend was
observed, i.e., a higher level of Gd internalization for the AuNPs decorated with the BBN derivative.
The Gd amount measured in the cell lysate after incubation with AuNP-Gd-BBN is approximately nine
times higher than after incubation with AuNP-Gd. This allows us to conclude that the particles are
internalized as a whole, confirming the in vitro stability of this nanoplatform.

Radiosensitization studies showed that the presence of the AuNPs induce radiotoxic effects, upon
exposure of PC3 cells to a 2 Gy dose (γ-photons, 1530 keV), confirming that they have radiosensitizing
properties. Reflecting the presence of gadolinium, a slightly enhanced radiosensitizing effect was
observed for AuNP-Gd and AuNP-Gd-BBN, relative to the AuNP-DOTA and to the control. These
results are in line with the well-recognized ability of Au and Gd to induce radiosensitizing effects by
intensifying the generation of low-energy electrons (e.g., photoelectrons or Auger electrons) upon
external irradiation of cells or tissues with photon or proton beams [5,26,32]. Due to the higher cellular
internalization observed for the AuNP-Gd-BBN relatively to AuNP-Gd, promoted by the presence of
the BBN peptide analogue, it was expected that those nanoparticles would induce additional cellular
mortality [28,32,33]. However, the enhancement observed relatively to the congener AuNP-Gd was
negligible, i.e., the efficacy of the cumulative effect of Au + Gd in some way is lost. Among other factors,
the increased hydrodynamic size of the BBN-containing NPs (1.7-fold higher; Table 2) could therefore
justify the loss of the expected cumulative effect Au + Gd. The differences in charge and coating of the
NPs might also justify the effective dose enhancement induced by AuNP-Gd and AuNP-Gd-BBN. Our
results are in agreement with other studies reported in the literature [5,26,28,32,33,63,64]. Overall, both
AuNP-Gd and AuNP-Gd-BBN nanoplatforms have very promising properties as radiosensitizers.

Ex vivo biodistribution studies of 67Ga/Gd containing AuNPs were performed in CD1 control mice
(1 and 4 h post injection) after intravenous administration to assess the potential of these multimodal
AuNPs. The distribution found is in agreement with the pattern found for the AuNPs without Gd,
previously reported, with little differences between preparations [53]. Uptake predominantly occurred
in the liver and spleen, organs of the RES, a well-recognized parameter of the integrity of nanoparticles,
also reported for other AuNPs, with different surface functionalization and similar core size, in control
mice [36,57,65,66]. Thus, the results clearly attest to the high stability of these nanoplatforms in vivo.
A small increase of the lung uptake was found in the biodistribution study of the 67Ga-AuNP-Gd-BBN
due to the slightly higher hydrodynamic size of these nanoparticles. The kidney uptake (> 2.5% ID/g)
and the high rate of excretion (> 50% ID at 4 h after administration) are in consonance with the small
size of our AuNPs.

The ability of the 67Ga-AuNP-Gd-BBN to be retained in GRPr expressing tumors was evaluated
in PC3-xenograft Balb/c mice at 1 and 24 h post injection (Figure 5). The high retention rate at 24 h
confirmed the targeting capability of these radiolabeled AuNPs.

Biodistribution data indicated a low uptake in major organs associated to variable tumor, hepatic
and splenic uptakes depending on the route of administration used. After 24 h post-administration, there
is still a very high tumor uptake after intratumoral injection, while in the mice injected intravenously, an
important fraction of the nanoparticles is retained in the organs of the reticuloendotelial system, in line
with results described by others for different gold nanoparticles [65–68]. Overall, our studies suggest
the potential usefulness of 67Ga-AuNP-Gd-BBN for molecular targeting of tumors expressing GRPr.
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5. Conclusions

Herein, we present the successful synthesis and full characterization of novel bimodal (T1- and
T2-) MRI/SPECT gold nanoparticles, with a high theranostic potential. In vitro studies evidence a good
internalization in PC3 tumor cells of the particles when functionalized with a bombesin derivative.
The radiosensitization studies revealed the dose enhancement potential of the combination of Au, Gd,
and the targeting capability of such nanoconstructs.

Moreover, biodistribution evaluation of 67Ga-AuNP-Gd-BBN indicated a high lung, spleen, and
liver uptake after intravenous administration in CD1 mice, which is in agreement with its high
hydrodynamic size, while the intratumoral administration showed a high retention of the radioactivity
in the tumour after 24 h post-injection.

Taking advantage of the versatility of DOTA coordination properties, our novel nanomaterial
has a high theranostic potential; apart from the radiosensitization profile described herein, the 67Ga
isotope can easily be replaced by other radiometals with therapeutic potential allowing for tuning of
the AuNPs for the desired use. Indeed, the 67Ga could be replaced by 68Ga, 90Y, 177Lu, or 165Er, thus
combining therapeutic with SPECT or PET as well as MR imaging potential of GRPr-positive tumors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/3/513/s1,
Figure S1–S5 & Tables S1–S3: Figure S1. Effect of increasing concentrations of AuNPs on PC3 cells viability;
Figure S2. DLS Size distribution diagrams of (a) AuNP-DOTA, (b) AuNP-Gd and (c) AuNP-Gd-BBN; Figure S3.
TEM images with respective size histograms of (a) AuNP-DOTA and (b) AuNP-BBN; Figure S4. In vitro stability
studies of 67Ga-AuNP-Gd under physiologic conditions and in the presence of apo-transferrin, performed by
ITLC-SG chromatography and Figure S5. Cellular viability of PC3 cells treated with the different AuNPs at
different concentrations and γ irradiated at 2 Gy (total dose). Table S1. Cellular viability of PC3 cells treated
with the different AuNPs (37.5 µg/mL) and γ-irradiated at 2 Gy (total dose). Results are expressed as mean ± SD
(n = 4); Table S2. Biodistribution results (mean ± SD, n = 3; expressed as % ID/g of organ) for 67Ga-AuNP-Gd and
67Ga-AuNP-Gd-BBN in CD1 mice, 1 h and 4 h after intravenous administration. Table S3. Biodistribution results
(mean ± SD, n = 3; expressed as % ID/g of organ) for 67Ga-AuNP-Gd-BBN in PC3 xenograft Balb/c mice, after 1 h
and 24 h intratumoral administration.
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