

RECEPTOR MODELS FOR PARTICULATE MATTER MANAGEMENT

K. Eleftheriadis N.C.S.R. "Demokritos"

Implementation of source apportionment techniques to Policy making for air quality

Development of a Cost Efficient Policy Tool for reduction of Particulate Matter in Air (**ACEPT-AIR**) is a LIFE+ project demonstrating this application

It aims to enable Authorities

- to assess the reduction of key environmental pollutants, as well as their interdependencies centered around PM levels
- to respond in a competent way to environmental issues, specific to particulate matter atmospheric concentrations.
- to target this response to specific sources allowing efficient reduction of PM where it matters

ACEPT-AIR Project – Objectives

Create a Policy Tool which will:

- Contain a database of PM concentrations, source apportionment studies results and emission inventories
- Create a historical record of control measures / changes in emissions and provide results in measured concentration reductions apportioned to changes in every accounted source
- Allow the policy makers to evaluate the effects of control measures applied on specific emission sources as well as plan new ones.

National Authorities will have to re-evaluate the present environmental policies and measures and develop new ones.

Historical PM concentrations database

Long term trends show improved levels but still around target values

2nd March

26th February

27th February

Can we relate emissions and emission reductions to corresponding concentration levels and trends?

Table 2

Linear best fit equation for NOx, NO2 and NO concentration and emission variations, average yearly change (%) and correlation coefficients.

	Linear best fit equation		Average yearly cha	Average yearly change (%)		
	Emissions	Concentrations	Emissions	Concentrations	coefficient	
NO _x CO PM ₁₀	-859.26 * x + 46,500 -12,049 * x + 365,195 -40.868 * x + 1376	-2.2106*x + 135.46 -0.1438*x + 3.6847 -1.4824 + 50.737	- 1.79% - 3.24% - 2.72%		0.95 0.96 0.91	

Long term emission trends in Athens for the previous decade (Progiou &Ziomas, 2011) Science of the Total Environment 410-411 (2011) 1–7

Source apportionment first principles

Current state of the art knowhow on source identification and contribution to air pollution

From "European guide on air pollution source apportionment with receptor models" C. Belis et al., 2014

Concept and functions for the ACEPT-AIR Policy Tool Operational Platform

Why is ACEPT – AIR a project with high impact

Project kick off at September 2010, Call round October 2009

At the 3rd FAIRMODE plenary in Kjeller, on 16th September 2010, it was agreed that FAIRMODE would compile the recent experiences from Member States when applying modelling tools for reporting purposes under the <u>2008/50/EC Air Quality Directive</u>.

FAIRMODE Work Group 2 on Quality Assurance of models Sub Group 2 – Contribution of natural sources and source apportionment

1st Workshop - Nov 2010

Agenda

Initiative on Harmonization of Source Apportionment with Receptor Models

1st Workshop - Nov 2010

12/10/2012 <u>Recomendations</u> ON THE USE OF MODELS FOR REGULATORY F

ON THE USE OF MODELS FOR REGULATORY PURPOSE AND TO SUPPORT AIR QUALITY POLICY

Source apportionment modeling: There is an increasing need to demonstrate whether and to what extent exceedances of limit values can be attributed to natural sources, human practices (road salting and sanding), and transboundary pollution. In the context of the preparation and implementation of air quality plans and short-term action plans, there is also a need to identify and quantify the contribution of the main pollution sources in order to efficiently design abatement measures and assess their effectiveness.

> Main challenges:

- Unravel the relative contribution of the multiple anthropogenic and other sources to the observed PM air concentrations,
- Verify representative coverage of the source apportionment studies in time and space or quantify the limitations
- Document the relative contribution of secondary aerosol particles to those from primary emissions, by taking into account the atmospheric processes which contribute secondary and primary PM at a given receptor site.

Potential Secondary PM formation

Pollutant	Aerosol Formation Potential*
Primary PM	1
SO ₂	0.54
NOx	0.88
NH ₃	0.64
NMVOCs	0.02

*According to the methodology of de Leeuw (2002) Values on European level

Development of A Cost Efficient Policy Tool for reduction of Particulate Matter in AIR

Results from Source apportionment studies in Greece

	Area / (PM) <u>f</u> raction	<i>S1</i>	<i>S2</i>	<i>S3</i>	<i>S4</i>	S 5	S6	SA Model
	Thes 1994 TSP*	4-9	4-5	21-42			44-70	APCA
	Thes 1994 TSP*	7-11	4-5	25-33			54-66	FA/MR
	Thes 2002 fine	28	38	14			20	APCA
	Thes 2002 coarse	57	9	26			8	APCA
	Thes 2003 PM10*	18-22	45-65	10-35				CMB
	Thes 2007 PM10*	20-25	23-39	20-38	1-4	1	13-15	CMB
/	Thes 2011-12			ACEPT	AIR			
	Athens 2002 fine	19	30	14	11	19	7	PMF
/	Athens 2002 coarse	54	8			16	22	PMF
	Athens 2009			Other	study			
	Athens 2011-12			ACEPT	AIR			
	Volos 2001 fine	30		27		20	23	PMF
	Volos 2008 PM10*	3-12	28-40	15-39	22-27	1-2	2-9	CMB
	Volos 2011-12			ACEPT	AIR			

Major sources:

- S1: Road/Urban dust,
- ➢ S2: Traffic,
- S3: Oil Combustion, Industry
- S4:Biomas burning/ waste
- ➤ S5: Marine,
- S6: Secondary/ Unidentified

Mass Concentration apportioned to Sources at a decadal SA interval

			PM2.5			
			ug/m3	41	15	
	2002	2012	2	2002	2012	
Road dust	8.4	10.3		3.4	1.6	45%
Traffic	22.0	4.1		9.0	0.6	7%
Fossil fuol						
combustion	0 2	4.2		2.4	0.6	100/
Piomoss	0.5	4.2		5.4	0.6	10%
biomass	12.0	22.0		F 2	F 4	070/
burning	12.8	33.6		5.2	5.1	9/%
Sea salt	3.6	5.4		1.5	0.8	55%
Soil		3.7			0.6	
Secondary	41.1	38.8		16.8	5.8	35%
Industrial	3.9			1.6		

Annual mean PM₁₀ - Athens

Data Presentation Scenarios Build-up Source Apportionment Data Info Year: 2008 Pollutant: PM10 Data recall Region: Volos ¥ ~ ¥ GroupBox2 Source Apportionment categories legend SA (%) Category Details Road Transport (Total - Exhaust) + Natural (Soil) **S1 S**2 Road Transport (Exhaust) **S**3 Residential + Industrial Natural (Sea salt) **S**5 130 530 S3 S5 S1 S2 Data Export Filename: Change folder in: Save

Close

ACEPT-AIR			
Data Presentation Scenarios Build-up			
Emissions - Time series			
Data Info Region: Thessaloniki 🗸 Sourc Pollutant: PM10(exhaust) V SubSourc	e: Road transport 👻	 All years Monthly variation for year: 	V Data recall
GraphResults			
10 All years		Thessaloniki_ transport_Pase	PM10(exhaust)_Road senger Cars
8			
tn/year			
2			
	2003 2004 2005	2006 2007 2008	2009 2010 2011
	Year	2000 2007 2000	2000 2010 2011
Data export			
Filename:			
in:			Change folder Save

🖁 ACEPT-AIR						
Data Presentation	Scenarios Build-up					
Emissions Di Data Info Region	stribution (PM) Change Scenarios		✓ Pollutant:	PM2.5	~	
Scenario build-up Annual ave	rage pollutant concentration (μg/m3): 30	Results	New annual average po	llutant concentration (μg/m3):	29,84 ✓ SA avail	
% change in [((+) for increase / (-) for decrease)]: total kilometers driven (R11): -10 traffic (R21): 0 residential (R31): +5 industrial (R32): 0		New Emis	isions (%) [Changes + SA] 148 241		
Category De S11 Ro. S12 Na. S21 Ro. S31 Re S32 Ind S51 Na.	tails ad Transport (Total - Exhaust) fural (Soil) ad Transport (Exhaust) sidential fustrial fural (Sea salf)		352 S11 S12	207 S21 S31 S32	551	
Data export Filename: So in: F:	cenario_Ath_PM2.5_2002.dat \LIFE+MANAGEMENT\Action 5\ACEPT-AIR Tool			Change folder) Save	