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INTRODUCTION 



What is source apportionment? 

Source Apportionment (SA) is the practice of deriving information 

about pollution sources and the amount they emit from ambient 

air pollution data. 
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Atmospheric processes 

SOURCES 

AIR 

CONCENTRATIONS AT THE RECEPTOR 

PHYSICAL  AND CHEMICAL PROCESSES 

TO THE ATMOSPHERE 

METEOROLOGY 

C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 



2. CHEMICAL TRANSPORT MODELS 

DISPERSION MODELS 

SOURCES 

1. EMISSION 

INVENTORIES 

3. RECEPTOR MODELS 

INVERSE MODELS 

AIR 

CONCENTRATIONS AT THE RECEPTOR 

METEOROLOGY 

PHYSICAL  AND CHEMICAL PROCESSES 

TO THE ATMOSPHERE 

Source estimation methods 

METEOROLOGY 

C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 



2. CHEMICAL TRANSPORT MODELS 

DISPERSION MODELS 

1. EMISSION 

INVENTORIES 

3. RECEPTOR MODELS 

INVERSE MODELS 

Required for reporting obligations 
Do not consider atmospheric processes 
Official data could be sketchty/inconsistent 

Consider atmospheric procesess 
Provide high resolution spatial and temporal estimations 
Intensive computing resources and good parametrization needed 
Simulation for short time windows 
Output depends on input data quality 

Derive directly from data collected at the point of interest 
Have good uncertainty estimation 
Require field work and chemical analyses 
Not applicable to all pollutants 

Source estimation methods 
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Receptor Models 

Use chemical composition of the pollutant 
measured at the receptor 

 
 
Equations refers to the chemical mass 

balance principle 
 
 
Adjustments are needed for extremely non 

conservative species 
 
Are based on statistical analysis (multivariate 

analysis) 
 
 
At the first step do not consider physical and 

chemical processes but evolved hybrid 
models can process additional information 
to constrain results 

 
 
  

Ae +Be  Ar+Br 
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Receptor Models 

Do not depend on the quality of Emission 
Inventories 

 
 
 
 
 
Do not require complex meteorological 

and chemical processors 
Low computational  intensity 
 
 
 
Mainly used in the apportionment of PM, 

gaseous hydrocarbons and PAHs 
 
 
 
Suitable for urban and regional scales 
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Receptor Models 

Assumptions 

 

1) source profiles do not change significantly over time or do so in a 
reproducible manner so that the system is quasi-stationary.   

 

2) that receptor species do not react chemically or undergo phase 
partitioning (solid/gas or solid/ liquid) during transport from source 
to receptor (i.e., they add linearly). 

 

3) that data are representative of the studied geographical area and 
consistent with the conceptual model and  

 

4) that comparable/equivalent analytical methods are used for the 
receptor site(s) throughout the study as well as for the 
characterization of the source profiles 
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Source and receptor models derive from the same 
physical construct 

Cikl = ΣjΣmΣnFijTijklmnDklnQjkmn 

i = pollutant 

j = source type 

k = time period  

l = receptor location  

m = source sub-type, a specific source or groups of  
  emitters with similar source compositions and/or 
  locations   
n = location of emitter m of source type j 

Cikl = ambient concentration 

Fij = fractional quantity of pollutant i in source j 

Tijkmn = transformation of pollutant i during transport 

Dkln = dispersion and mixing between source and receptor 

Qjkmn = emissions rate 
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Source oriented Model 
 

Cikl = ΣjΣmΣn TijklmnDklnFijQjkmn   

 

MEASURED 
AT SOURCE 
(INVENTORY) 

CALCULATED 
BY MET MODEL 

CALCULATED 
BY CHEMICAL 
MODEL 

CALCULATED 
AT RECEPTOR 

Receptor oriented Model 

Cikl = ΣjTijklFijΣmΣn DklnQjkmn   

 

Gijkl, SOURCE  
CONTRIBUTION 
ESTIMATE 

MEASURED AT 
SOURCE 
(T=1 OR ESTIMATED 
BY OTHER METHOD) 

MEASURED 
AT RECEPTOR 

Source and receptor models are complementary 
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RECEPTOR MODELING 

C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 
original slide from P. K Hopke 
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Basic mass balance equation ijj
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Recpetor Models 

Type of receptor model Examples 

Exploratory methods 
Enrichment factor, tracer method, 

Lenschow approach, APEG 

Chemical Mass Balance EPA CMB 8.2 

Eigenvector based models PCA, UNMIX 

Factor analysis without 

constraints 
FA, APCFA 

Positive matrix factorization PMF2, EPA PMF v3, v4, v5 

Hybrid  trajectory based models CPF, PSCF 

Hybrid expanded models PMF solved with ME-2, COPREM 



European RM studies published between 
2001 and 2011 
 

35% (PMF, ME), 
24% (CMB),  
21% (PCA, APCA), 
8% (FA, APCFA), 
12%  APEG model, 
COPREM, Lenschow, 
UNMIX and Mass 
Closure (MC). 

(AMS) data, mostly 
oriented to the 
apportionment of the 
PM1 organic particulate 
(9 studies).  

Karagulian&Belis, 2012  IJEP  
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80 studies – 224 (243) records 
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RECEPTOR MODELS USED IN 
EUROPE 



Incremental or Lenschow Approach 

 

• Regional background is the split of total regional background in μg/m³ . 

• Urban background increment represents the concentrations arising from 

emissions within towns or agglomerations, which are not direct local 

emissions (in μg/m³). 

• Local increment identifies contributions from sources in the immediate 

vicinity of the exceedance situation. 

Guidance to Decision 2011/850/EU 

Lenschow et al., 2001 AE 
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o In studies carried out in a single urban background 

site no increment can be calculated 

o Satisfactory results for estimation of traffic 

contributions 

o The contribution of sources to primary and 

secondary pollution is assumed to be proportional 

to their emission estimations derived from 

emission inventories  

o There are situations where this approach would 

lead to negative increments 
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Po Valley 2007 (Larsen et al, 2012):  
 
SIA – aged higher in rural bkg. than urban bkg. 
Soil resuspension higher in urban bkg than 
kerbside  

Incremental Approach 
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Receptor Models 

Enrichment factor 
(Dams and DeJonge, 1976; Lawson and Winchester, 1979)  
 
The EF is the ratio between elemental ratios in the measured 

sample to that of a reference material (e.g. particle 
composition vs crustal abundance) 

 
 
 
 
 
A simple application of EF analysis for PM source indication may be the study of heavy 

metals (e.g. brake-metals) at a road site. For those metals not emitted by traffic, the 

ratio between EF of ambient PM and the EF for mineral dust (crust) remains close to 

unity, while this ratio will be significantly higher than one for species like Cu 
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Receptor Models 

Mass Balance methods   
The simplest mass balance is the: 
 
Tracer approach one species for each source (Miller et al., 

1972; Winchester & Nifong, 1971) 
 
-APEG model 
 

x =a. [NOX] + b.[SO4
-2] + c  

 
where x is the measured PM10 , [NOX], [SO4

-2] are measured nitrogen oxides and sulphate, and a, b  c 

are the fitted MLR coefficients (µg m-3) 

the fulfilment of the intrinsic assumptions cannot easily be verified 

 
-macrotracer or organic-tracer approach for SA of OC 
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Receptor Models 

Mass Balance methods   
(known source number and composition ) 
solution of mass balance equation by multiple regression 

 
 
CMB approach: Effective variance least square (Watson, 

1979; Dunker, 1979) 
 

the weighting is inversely proportional to the square of the uncertainty in the source 

profiles and ambient data for each species  
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CMB characteristics 

• CMB relies strongly on the availability of source profiles, which ideally 

must be from the region where the receptor is located and that should be 

contemporary to the underpinning ambient air measurements.  

• CMB requires a good knowledge of the emissions in the study area in 

order to assure that all relevant sources are included and to evaluate their 

uncertainty.  

• CMBs is sensitive to collinearity of the source profiles, which impedes the 

mathematical solution of the mass balance, often it is necessary to merge 

sources into groups of source types in order to produce composite profiles. 

This exercise automatically builds in intrinsic assumptions into the CMB 

model.  

• From the mathematical point of view, CMB can be carried out with one 

single sample. In general more samples are needed but less than those 

required by factor analytical methods. for a limited number of samples.  

• However, small data sets may not fully characterize the source-receptor 

relationships at a given site.   
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CMB application and validation steps 

(1) assessing the general applicability of the CMB model to the situation under study; 

(2) configuring the model with appropriate sources, source profiles, and chemical species 

concentrations at receptor sites; 

(3) examining model statistics and diagnostics; 

(4) determining agreement with model assumptions; 

(5) identifying problems, changing the model configuration and rerunning; 

(6) testing the consistency and stability of model results; and 

(7) evaluating the validity of model results by comparing them with other receptor or 

dispersion model results.   

 

There are four main categories of situations that can be addressed to improve model 

performance. These are: 

(1) incorrect ambient data, 

(2) incorrect source profiles,  

(3) incorrect source list, and  

(4) profile uncertainty collinearity.   

(Thomson and Watson, 1987) 
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Identification of relevant sources and 
selection of source profiles (CMB) 

Source Identification  

(1) include ubiquitous area sources, such as motor vehicle exhaust, residual 

oil combustion, and resuspended dust. These sources are almost universally 

present in all urban areas; 

(2) include natural sources, such as sea salt, if the receptor is in an area 

likely to be affected by such sources; 

(3) include point sources which have been identified from an emissions 

inventory; and 

(4) include "single constituent source types" in cases where substantial 

amounts of secondary nitrate, sulfate, and organic carbon are expected. 

These are profiles which represent only a single compound such as sulfate. 
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Identification of relevant sources and 
selection of source profiles (CMB) 

 

Source profile representativeness and uncertainty 

- review wind direction data and eliminate sources downwind 

- eliminate those source types which are not likely to be emitting during the 

period of time being studied (e.g. woodsmoke emissions during hot summer 

months) 

- eliminate those sources or source categories that are minor contributing 

sources 

-select only one source profile per source type, it must also represent the 

range of variability expected from a number of individual emitters in the same 

source type category.  

- this variability must be reflected in the uncertainties 
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CMB related methods 

Methods related to CMB are: 

•  Non Negative Least Squares (Wang and Hopke, 1989) and 

•  Partial Least Squares Regression, which is a generalization of Multiple 

Linear Regression (MLR) suitable for analysing data with collinear, noisy, 

and numerous x-variables (Vong et al., 1988).    
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Receptor Models 

Factor Analysis methods  
(source number and composition unknown) 
 

-eigenvector methods  PCA (Blifford and Meeker, 1967) 
    UNMIX (Henry and Kim, 1989) 

 
 
 
 
 

 
 
 
 
 
 
 
 

Eigenvector analysis is an implicit least squares 

analysis.  

Scaling to normalize data led to distortions in the 

analysis 

Principal component Analysis (PCA) is based on singular value decomposition. 

It estimates X that gives the lowest possible value for: 
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PCA characteristics 

• PCA is to convert a set of observations of possibly correlated variables into 

a set of values of linearly uncorrelated variables called principal 

components (PCs) 

•  In analyses with PCA the first principal component accounts for as much 

of the variability in the data as possible, and each succeeding component 

in turn has the highest variance possible under the constraint that it be 

uncorrelated with the preceding components .  

• PCA is sensitive to the relative scaling of the original variables and is 

based upon the intrinsic assumption that the data set jointly is normally 

distributed. 

• The artificial positioning of variance into the first few components can be 

partially solved by orthogonal rotations (e.g., varimax).  
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PCA characteristics 2 

• To uncenter PCs a zero-valued pseudosample is subtracted and then 

regressed against the total PM mass ( Absolute Principal Component 

Scores, APCS (Thurston and Spengler, 1985), Absolute Principal 

Component Analysis, APCA (Swietlicki and Krejci, 1996) and PCA-MLR 

(Tauler et al., 2008).   

 

• PCA does not perform explicit data uncertainty treatment. Therefore, noise 

deriving from the uncertainty structure of the datasets is incorporated by 

PCA into the PCs  

 

• the basic assumption for PCA of orthogonal component does not reflect 

the structure of real world data (many source profiles have a degree of 

collinearity)  
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UNMIX characteristics 

• Uses eigenvalue analysis to reduce the dimensionality of the dataset 

without centring the original data  

 

• The number of PCs is estimated by the NUMFACT algorithm (Henry, 1997) 

relying on the signal to noise ratio of PCs in advance.  

 

• An edge-finding algorithm based on Self-Modelling Curve Resolution 

(SMCR) techniques is applied.  

 

• Edges are hyperplanes determined by points in which a source profile is 

absent or has a very low relative contribution.  

 

• Edges are used as explicit physical constraints to define a region of the 

real solution where source contributions are greater than or equal to zero. 

 

• UNMIX does not incorporate errors into the analysis and suffers from some 

of the same concerns as PCA.   
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Ratios 

C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 
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Factor analysis and PCA 

• PCA and FA are similar in the way they operate linear transformation of 

the original variables to create a new set of variables, which better explain 

cause-effect patterns  

• PCA aims to maximize the variance by minimizing the sum of squares, FA 

relies on a definite model including common factors, specific factors and 

measurement errors. 

•  PCA has a unique solution while factors in FA are not exact linear 

functions of x.  

• In PCA, variables are almost independent from each other while common 

factors (communalities) contribute to at least two variables  

• One of the key features of PMF is that the rotations are part of the fitting 

process and are not applied after the extraction of the factors, as is done 

in eigenvector-based methods. 

• FA is considered more efficient than PCA in finding the underlying 

structure of data (Joliffe, 2002). However, PCA and FA produce similar 

results when there are many variables and their specific variances are 

small.    
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Receptor Models 

Factor Analysis methods 2 
(source number and composition unknown) 
 
- unconstrained FA 
 
- Positive constraints  
 explicit least squares fit PMF (Paatero, 1997) 
 
 
 
 
 
 
 
 
-multivariate curve resolution alternating least squares  

 MCR-ALS (Tauler et al.,1995; Tauler et al.,2009) 
 
 
 
 
 
 

PMF points to minimize Q with respect to g and f  

with the constraints that each of the elements 

of g and f  is to be non negative 

However there is still rotational ambiguity 

Positive Matrix Factorization (PMF) scales each data individually, more precise data have more 

influence 
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Positive Matrix Factorization characteristics 

Strengths 

•No need for a priori assumptions of 

sources with source profiles 

•Good at isolating minor contributors 

to mass 

•Gives a range of solutions for 

interpretation (analyst can inspect the 

range to determine robustness of 

solutions) 

•No need to select “relevant” species 

• Accounts for uncertainty in every 

sample 

Weaknesses 

•Requires large data matrix 

•Depends on source profiles which may 

vary with time 

•Often “secondary” factors that are not 

true sources are isolated 

•Gives a wide range of solutions for 

interpretation (need to determine which 

solutions make sense within the 

conceptual model) 

•Highly collinear sources are difficult to 

isolate  

Brown and Hafner, 2005 

Outputs profiles and factor strengths which must be processed and 
interpreted by the user 
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Positive Matrix Factorization characteristics 

• In PMF non negativity constraints are set to avoid solutions without 

physical meaning (negative contributions).  

• PMF incorporates the measurement uncertainties in the model. Every 

single value is scaled 

•  The original version used the alternating least squares iterative method 

(Paatero and Tapper, 1993), but convergence was very slow and a faster 

algorithm was developed by computing G and F matrices simultaneously 

(PMF2). In version 3 the PMF problem is solved using the Conjugate 

Algorithm.  

• FPEAK is used to test the rotational ambiguity 

• Fkey is used to introduce small additional constraints 

• Uncertainty and stability of the solution is estimated with bootstrapping 

• The new method of displacement has been recently developed to furhter 

explore the rotational ambiguity 
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Receptor Models 

Two categories of hybrid methods have been used for SA of 
PM:  

i) Constrained or expanded receptor models;  
ii) Trajectory based receptor models.  
 
Hybrid methods (sources partially known) 

(three way least squares) 
-Conjugate gradient algorithm  PMF with ME (Paatero, 
1999) 

 
 
 
 

 
-Weighted least square methods: COPREM (Wåhlin, 2003)  

 

Multilinear Engine (ME) is a flexible programme used to further 

develop the PMF approach by applying the conjugate gradient 

algorithm (three way least squares) . 
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Extended Factor Analysis Models 

• Classical factor analysis is performed on a two dimensional matrix (two 

way model)  

• This approach was extended to solve “n way” models applying the 

conjugate algorithm. 

• The Multilinear Engine platform is  suitable to deal with this kind of 

approach. 

• Extended models  further reduce the rotational ambiguity by adding 

additional constraints (e.g. known source contributions, known source 

profiles, etc.) 
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Least squares minimization solutions are often referred to as “the 
CMB” model, but PMF and UNMIX are also solutions, not separate 
models 

EV-CMB: ϰ2 =minΣi [(Ci-ΣjFijSj)
2/(ϭCi

2+ΣjϭFij
2Sj

2)]  

Effective Variance, Watson et al., (1984), single sample 

OWLS-CMB:  ϰ2 =minΣi [(Ci-ΣjFijSj)
2/ϭCi

2)]  

Ordinary Weighted Least Squares, Friedlander (1973), single sample 

PMF-CMB: ϰ2 =minΣi Σk [(Cik-ΣjFijSjk)
2/ϭCik

2)]  

Positive Matrix Factorization, Paatero (1997), multiple samples 

TRACER-CMB:  Sj=Ci/Fij 

Tracer solution, Hidy and Friedlander (1971), Winchester and Nifong 
(1971), single sample 

original slide from J. Watson C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 



 Common Protocol: Driving elements 

• The main objective is to promote the best 

available operating procedures and to harmonize 

their application across Europe. 

• Promote implementation of the protocol in new 

studies 

• Establish a feed-back mechanism from users in Ms 

• Schedule dissemination and capacity building 

activities 
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 Common Protocol: Driving elements 

• The main objective is to promote the best available operating procedures 

and to harmonize their application across Europe. 

• There are sections targeted to customers interested in source 

contribution estimations for abatement measures design 

• The text is structured in different levels of complexity according to the 

reader skills 

• Contains tutorials, technical recommendations and check lists 

• It is not meant to report all the information but to orient the reader to 

the relevant information sources 
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PART B: STANDARD RECEPTOR MODEL TECHNICAL PROTOCOL 
 
Is the core of the document. Contains description of the steps required in the 
most traditional and widespread Receptor Modelling techniques with particular 
reference to CMB and Factor Analysis 
  
 
 
PART C: ADVANCED TOOLS 
 
This section contains innovative and advanced methods most of which under 
continuous development. Also methods on trajectories that although have 
been available for long time their potentials have not been completely 
exploited 

 
PART A: INTRODUCTION TO SOURCE APPORTIONMENT WITH RECEPTOR 
MODELS 
 
Presents the work and provides the unskilled reader with basic elements on 
Source Apportionment and Receptor Modelling 
  

Common Protocol Outline 

COMMON PROTOCOL 
COMMON RM  PROTOCOL 

C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 



 Common Protocol: 

structure 

COMMON PROTOCOL 
COMMON RM  PROTOCOL 
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PART B: STANDARD RECEPTOR MODEL TECHNICAL PROTOCOL 
  

1. PRELIMINARY EVALUATION OF THE STUDY AREA 

2. DEFINING A METHODOLOGICAL FRAMEWORK 

3. EXPERIMENTAL DESIGN 

  

4. DATA COLLECTION / FIELD WORK/ CHEMICAL ANALYSES 

 

5. KNOWING YOUR DATASET: BASIC STATISTICS 

6. PRELIMINARY DATA QUALITY CHECK  

7. INPUT DATA UNCERTAINTY CALCULATION 

 

8. CHEMICAL MASS BALANCE MODELS 

 

9. FACTOR ANALYSIS I: SELECTION OF THE NUMBER OF FACTORS 

10. FACTOR ANALYSIS II: EVALUATION OF SCE AND MODEL  

PERFORMANCE INDICATORS 

11. FACTOR ANALYSIS III: CRITERIA FOR FACTOR LABELLING 

  

12. OTHER MODEL PERFORMANCE TESTS 

13. REPORTING RESULTS 

 

DATA PRE-TREATMENT 

FIELD AND LAB WORK 

PRELIMINARY ACTIVITIES 

COMPLEMENTARY TESTS AND REPORTING 

RECOMMENDATIONS 
SPECIFIC FOR 
FACTOR ANALYSIS 

RECOMMENDATIONS SPECIFIC FOR CMB 

COMMON PROTOCOL 
COMMON RM  PROTOCOL 
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These models represent the new frontier of RM since 
make it possible to combine different type of data and 
make advanced data treatment 

Combination of trajectories and wind direction 
analysis with receptor models makes it possible to 
evaluate the geographic provenience of sources. These 
techniques are also useful for RM output validation. 

Thanks to the application of (PMF) to find factors this 
methodology has many analogies with the traditional 
RMs. The experience gained by the community 
working with these tools may be useful for RM experts 
and viceversa. 

This is a promising technique that opens the 
opportunity for mutual validation with traditional RMs. 

 
PART C: SPECIFIC TOPICS 
 

1. TRAJECTORY ANALYSIS 

IN SOURCE 

APPORTIONMENT 

 

2. CONSTRAINED AND 

EXPANDED MODELS IN 

FACTOR ANALYSIS 

 

3. THE USE OF PMF IN AMS 

DATA PROCESSING 

 

 

4. THE AETHALOMETER 

MODEL 

 

5. CARBONACEOUS 

FRACTION: 

RADIOCARBON AND 

TRACER ANALYSIS 

 

COMMON RM  PROTOCOL 

Radiocarbon analyses allow the distinction betweeen 
fossil and recent sources of carbon, macrotracers can 
be used to distinguish primary, secondary, biogenic 
fractions 

carbonaceous organic/elemental primary/secondary 
fossil, biomass, 

burning, biogenic 
How is it  estimated? 

Total 

carbon 

(TC) 

Elemental 

carbon (EC) 
(only primary) 

Fossil fuel (ECFF) 
by subtracting ECBB from 

measured elemental carbon 

Biomass burning 

(ECBB) 

from OCBB and the OC/EC 

emission ratio for wood burning 

Organic carbon 

(OC) 

Primary 

organic carbon 

(POC) 

Fossil fuel (OCFF) 
from ECFF and the OC/EC ratio 

for fossil-fuel combustion 

Biomass burning 

(OCBB) 

from levoglucosan and the 

OC/levoglucosan ratio for wood 

burning 

Biogenic (OCBIO) 
derived from cellulose and the 

OC/cellulose emission ratio 

Secondary 

organic carbon 

(SOC) 

Fossil fuel (SOCFF) 

using the radiocarbon 

measurement on total carbon Biomass burning 

(SOCBB) 
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SA studies can be considered as being consistent with the present protocol if : 

1.The results are described according to the steps proposed in sections B1- B12. 

2.Expert decisions are described and evidence of the objective information that support them is 

provided. (essential for critical steps). 

3.The documentation includes the references of the source profiles used as input or to validate 

factor assignment. 

4.The model and version used are clearly reported.  

5.The quantitative uncertainty of the output is estimated and reported. 

6.Estimation of overall uncertainty and validation is achieved by comparing outputs from 

independent models on the same dataset and/or using Monte Carlo permutation and/or 

displacement analysis techniques. 

7.Sensitivity analysis is performed to demonstrate that there are no substantial deviations from the 

mass conservation assumption. 

8.Only solutions that implement the quality assurance steps described in this guide can claim state-

of-the-art performance supported by community-wide intercomparison exercises. 

 

 

COMMON PROTOCOL 
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 B. R. Larsen, F. Amato, O. Favez, I. El Haddad, R.M. Harrison, A.S.H. 

Prévôt, S. Nava, U. Quass, R. Vecchi, M. Viana, P. Paatero 

European common protocol for receptor models: 

THANKS TO ALL THE COLLEAGUES WHO CONTRIBUTED TO THIS INTIATIVE 
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FACTOR ANALYSIS  
SPECIFIC PROCEDURES IN 
THE COMMON PROTOCOL FOR 
RECEPTOR MODELS 
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SELECTION OF THE NUMBER OF FACTORS  

Examining the Q-value 

• The Q-value is a goodness of fit parameter, the evaluation of which may 

give useful indications when the data-point uncertainties are well 

determined. 

• The theoretical Q-value is approximately equal to the number of degrees 

of freedom or to the total number of good data points in the input data 

array minus the total number of fitted factor elements  

• Each good (not weak) data point, contributes a value of approximately 1 

to the Q-value 

• The theoretical Q-value can be approximated by the user as 

 nm – p(n+m),  

where n is the number of species, m is the number of samples in the dataset, 

and p is the number of factors fitted by the model (Paatero and Hopke, 

2009). 
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SELECTION OF THE NUMBER OF FACTORS  

Examining the Q-value (cont) 

• Q(robust) is calculated excluding outliers 

• Q(true) includes all points 

 A good fit of the data is characterised by values for Q(robust) and Q(true) 

that are near to the theoretical Q-value calculated by the user. 

Solutions where Q(true) is 1.5 times greater than Q(robust) may indicate that 

the model is inconsistently modelling the data 

It is useful to look at the changes in the Q-value as additional factors are 

calculated.  

After an appropriate number of factors are included in the fit, additional 

factors will not result in further significant improvements in the Q-value. 
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SELECTION OF THE NUMBER OF FACTORS  
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SELECTION OF THE NUMBER OF FACTORS  

Examining the regression parameters 

 

• If in the original dataset there is a good mass closure (i.e. the sum of the 

mass of the single chemical components is close to the gravimetric mass), 

the “external mass” method - i.e. where the PM mass is not included in 

the data array analysed by PMF - can be applied.  

 

• The measured mass is regressed against the estimated source 

contribution values. 

 

•  If the regression produces negative parameters, then too many factors 

have been included in the solution (Kim et al., 2003), or a strong source 

does not emit any of the measured species and hence is not represented 

in any factor but only in PM mass. 
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SELECTION OF THE NUMBER OF FACTORS  

Examining the species/mass reconstruction 

 

• The appropriateness of the chosen solution can be also assessed by 

looking at the mass/species reconstruction, which should improve when 

approaching the best solution. 

 

• In the EPA-PMF, there is a regression analysis of the variable with its 

reconstructed values that provides some measure of the fit to the 

measurements.  

• However, these regressions are unweighted and, thus, values that are 

below the detection limit or are missing have a large influence on the 

results and can produce degraded r2 values .  

• To overcome this issue, regressions with weighted values should be 

calculated manually 

C.  Belis – Unit Air and Climate - RTC 3-4/6/2014 



SELECTION OF THE NUMBER OF FACTORS  

Examining multiple solutions 

 

• It is essential to perform the PMF analysis several times (typically 20) to 

be certain that the same solution is obtained.  

 

• A test for the best selection of the number of factors is that one does not 

obtain multiple solutions or obtains at most one alternative solution. With 

greater or fewer factors than the optimum, multiple solutions are more 

often obtained. 
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SELECTION OF THE NUMBER OF FACTORS  

Rotational Ambiguity 

 

Solutions with reduced RA are likely those with the proper number of factors  

 

Controlling rotations by the FPEAK value 

 

• FPEAK is a parameter used to explore the rotational ambiguity of a PMF 

solution ‘a posteriori’.  

• Assigning positive or negative FPEAK values produces rotations of which 

the suitability is assessed by observing the changes of the Q-value and the 

G and F factors.  

• The mathematically optimum solution in PMF is FPEAK=0.0.  

• In the absence of any other consideration such as G-space, and unless 

there is a substantial improvement in the interpretability of the profiles, 

the best fit is given by FPEAK = 0.0.  
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SELECTION OF THE NUMBER OF FACTORS  

Rotational Ambiguity 

Controlling rotations by imposing external information 

 

• PMF rotations can also be controlled by imposing external information on 

the solution.  

• Fkey and Gkey constraints consist of binding individual elements of the F 

and G matrices, respectively, to zero.  

• If specific values of profiles or time series are known to be zero, then it is 

possible to force the solution toward zero for those values through 

appropriate settings of the rotational tools Fkey and Gkey values in PMF2. 

•  Controls can be applied through modifying the script in Multilinear Engine-

2 (ME-2) applications.  

• Additional flexibility in applying external constraints are available in the 

new version of the EPA PMF. 
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SELECTION OF THE NUMBER OF FACTORS  

Rotational Ambiguity 

Controlling rotations by examining G-space plots 

 

• G-space plots are source contribution scatter plots for pairs of factors 

(Paatero et al., 2005).  

• When factors are plotted in this way, unrealistic rotations appear as 

oblique edges that define correlation between the factors.  

• Edges are well-defined straight borders between regions that are densely 

populated with points and regions where no points occur. With a correct 

rotation, the limiting edges usually coincide with, or are parallel to, the 

axes.  

 

• It must be also emphasised that the presence of aligned edges in G-plots 

of factors does not necessarily guarantee that a unique rotation has been 

found.  
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CRITERIA FOR FACTOR ASSIGNMENT 

The most subjective and least quantifiable step in applying PMF for source 

apportionment is the assignment of identities to the factors chosen as the 

final solution.  

It is important for the data analyst to know what types of sources are present 

in the study area.  

However, even in cases where there are good emission inventories, there can 

be situations where a source cannot be identified. 

 In addition, atmospheric processes may result in multiple factors such as 

summer and winter secondary sulphate, or in producing sufficiently 

collinear sources that an irresolvable mixture of source profiles is 

obtained.  

Factor profiles have to be interpreted with both knowledge of the study area 

and a background in atmospheric science.  

For that reason, any choice concerning the correspondence between source 

categories and factors must be supported by objective and quantitative 

tests 
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CRITERIA FOR FACTOR ASSIGNMENT 

Proposed steps to support factor assignment 

 

Compare the obtained factor profiles with those reported in previously 

published PMF studies; 

Search the literature for measured PM source profiles with characteristics 

similar to the factor profiles in the F-matrix; 

Search for measured PM source profiles in relevant databases (e.g. 

SPECIATE); 

Identify the source by comparing certain species ratios (also referred to as 

“enrichment factors”) in PMF source/factor profiles to the same ratios in 

measured PM source profiles; 

Perform local and/or regional source sampling along with the ambient PM 

sampling to develop source profiles needed to identify PMF profiles; 
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CRITERIA FOR FACTOR ASSIGNMENT 

Proposed steps to support factor assignment (cont) 

 

Look at temporal patterns for “expected” behaviours (e.g. the largest 

contributions of a source believed to be residential wood burning should 

likely occur during winter months); plots of contributions over time can be 

inspected in order to look for daily, weekly, seasonal, and yearly 

oscillations of source contributions.  

Mean source contributions by season and by day of the week (weekend 

versus weekday) should also be examined (see also section B12). 

It should be noted that when source profiles are not independent (i.e. there is 

severe collinearity) it is difficult to separate their contributions.  

In this case, additional chemical/physical information is needed to improve 

source segregation.  

Nevertheless, sources can clearly be separated for a sufficiently level of 

precision in the input data.  

In spectrochemical problems, good factors can be obtained despite quite 

severe collinearity.  However, the collinearity inflates the uncertainties of 

the values.  
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TESTS FOR MODEL PERFORMANCE VALIDATION 

The fundamental, natural physical constraints that must be fulfilled in any 

source apportionment study are as follows: 

 

• The original data must be reproduced by the model; the model must 

explain the observations; 

• The predicted source compositions must be non-negative; a source cannot 

have a negative elemental concentration (slightly negative values are 

acceptable provided zero is in the confidence interval); 

• The predicted source contributions to the aerosol must all be non-

negative; a source cannot emit negative mass; 

• The sum of the predicted elemental mass contributions for each source 

must be less than or equal to the total measured mass for each element; 

the whole is greater than or equal to the sum of its parts. 
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Ratios 

 

• Unique source tracers are rare 

• Elemental and/or molecular ratios have often been used to trace similar 

sources, such as combustion processes or mineral sources, for example. 

•  In factor analysis techniques, the resolved factor profiles are often 

evaluated by comparing relative amounts of elements/compounds with 

those expected in relevant sources.  

• the ratio of marker species in a source profile, when compared with those 

from the same and/or different source types and from ambient samples, 

helps to interpret the source variability and identify the most important 

sources in a region.  

• However, one should bear in mind that the two assumptions of unique 

ratios among sources and conservative ratios in the atmosphere are not 

always met in reality. 
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Ratios (cont) 

 

The species examined should have similar reactivity with respect to 

atmospheric oxidants and solar radiation 

Also particle size distributions is important to exclude differences in particle 

scavenging by precipitation or particle dry deposition. 
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Ratios (examples) 

 

• One of the first uses of the elemental ratio was proposed by Juntto and 

Paatero (1994) who compared the Na/Cl ratio in PMF factors with sea-

water composition. Liu et al. (2003) showed that their long-range 

transported dust profiles correlated well with standard reference Chinese 

desert dust, with the exception of enrichment in sulphate.  

• Hien et al. (2005) used different Ca/Si ratios to separate coal fly ash from 

soil dust.  

• Lanz et al. (2007) calculated ratios of the modelled primary organic 

aerosols (POA) and measured primary pollutants such as elemental carbon 

(EC), nitrogen oxides (NOx), and carbon monoxide (CO), finding good 

agreement with literature values.  

• Organic and inorganic ratio evolutions have been also examined as a 

function of photochemical age of aerosols (DeCarlo et al., 2010). 

. 
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Residuals 

 

• A well-modelled species instead shows normally distributed residuals 

within the range +3 and -3.  

• Many large-scaled residuals or displays a non-normal curve, may be an 

indication of a poor fit.  

• In weighted ‘least squares’ analysis, weighted residuals must be used in 

graphical residual analysis, so that the plots can be interpreted as usual. 

(not available in EPA PMF v3 default residual graphs).  

• Species with residuals beyond +3 and -3 need to be further evaluated by 

comparing the observed vs modelled concentrations by means of scatter 

plots and/or time series. 

•  Large positive scaled residuals may indicate that the model is not fitting 

the species or that the species is present in an infrequent source.  

• Species that do not have a strong correlation between observed and 

modelled values or have poorly modelled peak values should be evaluated 

by the user to determine if they should be downweighted or excluded from 

the model.  
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Residuals (cont) 

 

• The Kolmogorov-Smirnoff test can be used to determine whether the 

residuals are normally distributed. If the test indicates that the residuals 

are not normally distributed, the user should visually inspect the 

histogram for outlying residuals.  

• A very narrow (leptokurtic) distribution of residuals suggests that species 

are fitted too well and may be an indicator of “ghost factors”, which can 

explain most of the variation of one species (Amato and Hopke, 2012). 

• Residuals can also be compared between different runs of one model 

(different starting points). The sum of squared difference between 

residuals of a pair of runs can be used (as in EPA PMF v3) as a diagnostic 

of different solutions (rather than mere rotations of the same solution).  
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Time trends 

 

• Source strengths are often time-dependent due to the influence of  

• atmospheric processes (nucleation, volatilisation, transport, etc.),  

• meteorological parameters (solar radiation, humidity, precipitation, etc.), and  

• variation in human activity (intra-day, day-to-day). 

•  As a result, the source contributions will also change over time, and this 

variation is a suitable diagnostic for evaluating interpretations of factor 

profiles. 

• Some programs such as EPA PMF v3 already implement tools for a quick 

check of the seasonal and weekday/weekend variation of factor 

contributions. 

•   
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Time trends 

 

• The user can further explore their time variability in relation to 

concentrations of  

• gaseous pollutants such as SO2, CO and NOx for combustion sources 

(Zhou et al., 2005; Yue et al., 2008; Brown et al., 2012), 

•  Ox (O3+NO2) for secondary sources (Huang et al., 2010), and  

• NH3 for agricultural activities (Eatough et al., 2010).  

• In some cases, factor analysis can couple different pollutant categories in 

a unique dataset; for example, Pey et al. (2009) combined the size 

distribution of aerosols, meteorological parameters, gaseous pollutants 

and chemical speciation of PM2.5 to carry out a PCA analysis. 
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TESTS FOR MODEL PERFORMANCE VALIDATION 

A posteriori wind direction and trajectory analysis  

 

• A simple but reliable method is to plot source contributions in a polar 

scatter plot in such a way that wind direction determines the angle and 

source contribution determines the radius of each plotted point.  

• Such a plot shows at a glance the general behaviour of wind-directional 

dependence.  

• The conditional probability function (CPF; Ashbaugh et al., 1985) is a 

common tool used to analyse point source impacts from varying wind 

directions using the source contribution estimates from receptor models 

coupled with the wind direction values measured on site.  

• The nonparametric regression  analysis technique is an alternative 

that can be used to locate sources. In this technique, the relationship of 

the contribution and wind direction is determined by kernel regression and 

confidence intervals are also given (Henry et al., 2002; Henry, 2002).  
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Backward Trajectory Analysis 

 

• In a source apportionment study, back trajectories can be used either to: 

  pre-select datasets for analysis (e.g. in cases where specific sources and source 

regions are of major interest) or,  

 to check the plausibility of identified sources/processes and to get information 

about their geographical distribution and locations. 

• The HYSPLIT model can process different meteorological file types that 

may also be downloaded via the program 

• In addition to the models operated commercially by national weather 

forecast organisations, there is a variety of research-oriented models 

available in Europe which allow back-trajectory plots to be produced, e.g. 

FLEXPART (NILU); REM-CALGRID (TRUMF), EURAD (RIU). 

• Potential Source Contribution Function (PSCF)  
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TESTS FOR MODEL PERFORMANCE VALIDATION 

Backward Trajectory Analysis (example) 

 Figure C1.1. 96-hour back trajectory calculated with HYSPLIT 4.9 for a day with high mineral dust 
concentration (left, Draxler, 2012), pointing to arid source regions close to the Caspian Sea (right; Abasova, 
2010)  
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RECEPTOR MODELS IN EUROPE: 

Belis C. A., Larsen B. R., Amato F., El Haddad I., Favez O., Harrison R. M., Hopke 

P. K., Nava S., Paatero P., Prévôt A., Quass U., Vecchi R., Viana M., 2013. 

European Guide on Air Pollution Source Apportionment with Receptor Models. JRC 

Reference Report EUR 26080. Luxemburg Publication Office of the European 

Union. ISBN 978-92-79-32514-4. doi: 10.2788/9332. 

RECEPTOR MODEL COMMON PROTOCOL 
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JRC Source apportionment site : 

http://source-apportionment.jrc.ec.europa.eu/ 

http://fairmode.jrc.ec.europa.eu/index.html 

New FAIRMODE website 

MORE INFO AND DOWNLOADS AT 
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