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IMPACT OF SAHARA DUST TRANSPORT ON CAPE VERDE ATMOSPHERIC
ELEMENT PARTICLES
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The objectives of this study were to (1) conduct an elemental characterization of airborne
particles sampled in Cape Verde and (2) assess the influence of Sahara desert on local sus-
pended particles. Particulate matter (PM10) was collected in Praia city (14◦94’N; 23◦49’W) with
a low-volume sampler in order to characterize its chemical composition by k0-INAA. The filter
samples were first weighed and subsequently irradiated at the Portuguese Research Reactor.
Results showed that PM10 concentrations in Cape Verde markedly exceeded the health-based
air quality standards defined by the European Union (EU), World Health Organization (WHO),
and U.S. Environmental Protection Agency (EPA), in part due to the influence of Sahara dust
transport. The PM10 composition was characterized essentially by high concentrations of ele-
ments originating from the soil (K, Sm, Co, Fe, Sc, Rb, Cr, Ce, and Ba) and sea (Na), and low
concentrations of anthropogenic elements (As, Zn, and Sb). In addition, the high concentra-
tions of PM measured in Cape Verde suggest that health of the population may be less affected
compared with other sites where PM10 concentrations are lower but more enriched with toxic
elements.

The Sahara Desert is the most impor-
tant source of mineral dust, contributing more
than 1900 million tons per year (Goudie,
2009; Goudie and Middleton, 2006; Prospero,
1996; D’Almeida, 1986) and responsible for
almost half of all the Aeolian material pro-
vided to the world’s oceans (Miller et al., 2004;
Goudie and Middleton, 2001). The most severe
dust events globally occur in Sahara Desert
(D’Almeida, 1986), which is responsible for the
introduction of mineral dust into the atmo-
sphere and transported long distances over the
Mediterranean, Europe, North Atlantic Ocean
and South America (Remoundaki et al., 2011;
Rodríguez et al., 2001; Prospero, 1996; Swap
et al., 1992). The Bodélé Depression, located
at the southern edge of the Sahara Desert, is
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considered one of the largest global sources
of mineral aerosols due to its unique char-
acteristics (Washington et al., 2006; Prospero
et al., 2002). However, other investigators con-
sider the Sahel the major source of mineral
dust, attributed to a sequence of 20 dry years
that occurred in this area (Prospero, 1996;
Mbourou et al., 1996). In the southern Sahara,
the contribution of these sources is more fre-
quent during the dry season (November to
March) and defined as Harmattan (Goudie and
Middleton, 2006; Kaufman et al., 2005).

Mineral dust transport has implications on
the local, regional, and global climate and
environment through the following processes:
(1) direct effect on the shortwave and long-
wave radiating flux through scattering and
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SAHARA DUST IMPACT 241

absorption; (2) indirect influence on radiation
budget through interfering in cloud formation;
(3) semidirect effect on relative humidity, verti-
cal stability, and precipitation and (4) physical
parameters such as visibility (Knippertz and
Todd, 2012; Klüser and Holzer-Popp, 2010;
Goudie and Middleton, 2006). In addition, it is
also important to study the Saharan dust events
because they may exert significant effects upon
air quality and, consequently, on human health
and well-being (Goudie, 2009; Samet and
Krewski, 2007; Cohen et al., 2005; Krewski
et al., 2004; Pope et al., 2002).

Several epidemiological studies showed an
association between air PM and an increase in
morbidity and rate of mortality (Cohen et al.,
2005; Krewski et al., 2004; Pope et al., 2002).
However, the impact of Sahara dust events on
human health is not well documented, and the
findings are inconsistent. Studies developed in
Greece, Italy, and Spain revealed an increase
on adverse respiratory syndromes and higher
daily mortality rate during Saharan dust events
(Nastos et al., 2011; Sajani et al., 2010; Perez
et al., 2008). In addition, several investigators
demonstrated that PM-induced adverse health
effects depend not only on PM mass concentra-
tion, but also on size and chemical composition
(Valavanidis et al., 2008).

Epidemiologic data support the hypothe-
sis that coarse particles derived from natu-
ral sources may be less toxic than particles
generated by combustion processes and, con-
sequently, are associated with fewer human
health illnesses (Fromme et al., 2008; Janssen
et al., 2005). It is also well known that Saharan
dust is characterized by coarse particles with
Earth crustal material in their composition. For
this reason, further investigations are determin-
ing whether Saharan dust concentration has
human health consequences.

The objectives of this study were to (1) con-
duct an elemental characterization of airborne
particles sampled in Cape Verde and (2) assess
the influence of Sahara Desert dust on compo-
sition of local suspended particles. This study
was performed within the ongoing project
Atmospheric aerosol in Cape Verde region:
Seasonal evaluation of composition, sources
and transport (CV-Dust), which aims to assess

transport of dust from Sahara Desert by using
an integration of measuring and modeling tools.

MATERIALS AND METHODS

Sampling
This study was carried out in Santiago’s

island, the largest island of Cape Verde
Archipelago. Cape Verde is an archipelago
composed of 10 islands, located offshore of
Western Africa coast. Santiago’s island has an
area of 991 km2 (Figure 1), and more than
200,000 inhabitants. The localization is directly
on the route of Saharan dust transport to the
Atlantic Ocean, and thus an ideal place to
quantify and characterize the African aeolian
aerosol.

One Tecora sampler, which is a low-volume
particle sampler, operating at an average flow
rate of 16.3 L/min1, was installed in Praia
city (14◦94’N; 23◦49’W) during the year 2011.
The sampler collected PM with an aerody-
namic diameter lower than 10 µm (PM10),
on Nuclepore polycarbonate filters with a
diameter of 47 mm, in order to characterize
their chemical composition. The sampling time
ranged between 6 to 96 h, decreasing during
Saharan dust episodes. Therefore, the average
values presented in this study are considered
according to the sampling time of each filter.

Chemical Analysis—INAA
The collected filters were weighed in a con-

trolled clean room (class 10,000) at 20 ± 1◦C
and 50 ± 5% relative humidity, and filters were
kept for 24 h in the same environment to equi-
librate before weighing (EN12341:1998). Filter
mass before and after sampling was obtained
as the mean of three measurements, when
observed variations were less than 1%. One
quarter of the filters were rolled up, put into
aluminum foil, and irradiated at the Portuguese
Research Reactor (RPI-ITN; nominal power:
1 MW) for 5 h. After the irradiation, filters
were removed from the aluminum foil and
inserted in polyethylene containers; samples
were measured for 5–7 h, 2–5 d, and 4 wk
in a high-purity and high-resolution germanium
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242 M. ALMEIDA-SILVA ET AL.

FIGURE 1. Localization of the Cape Verde Islands (color figure available online).

detector, with an ORTEC automatic sampler
changer, in order to determine several natural
and anthropogenic elements including Ba, Ce,
Co, Cr, Fe, K, Na, Rb, Sc, Sm, As, Sb, and Zn,
respectively. For comparison, Al–0.1% Au alloy
disk with a thickness of 125 µm and a diameter
of 0.5 cm was co-irradiated with the samples
for the application of the k0-INAA methodology
(De Corte, 1987).

Quality control was ensured with the use of
20–30 mg of the reference material NIST-SRM
1633a “Coal Fly Ash.” The reference material
was co-irradiated with each batch of samples
and measured, for 60 min after 2–5 d and 4 wk
of decay, in the same detector. The agreement
was reliable, with deviations from certified and
consensus elements (Roelandts and Gladney,
1998) below 15%. All results obtained in were
considered for 1 yr of sampling campaign to
allow for comparison with standard values.

Data Analysis
Correlation between aerosols constituents

were assessed by means of a Pearson
correlation, considering 95% of confidence
level and using the STATISTICA software.

Enrichment factor (EF) analysis is a tool that
could be used to evaluate the strength of the
crustal and noncrustal origin of the elements.
Enrichment factors, using Fe as a crustal ref-
erence element (EFFe), were calculated based
on Eq. (1) and using Saharan dust composition
determined by (Reguigui et al., 2002):

EFFe =
([

X
]
/
[
Fe

])
air

([
X
]
/
[
Fe

])
soil

(1)

If the estimated value for EFFe is approximately
1, the dominant source is the soil. In con-
trast, the anthropogenic sources are dominant
for estimated values higher than 1. An equiva-
lent formulation could be used to assess other
aerosol source contribution, since a reference
element and average chemical composition are
known for a specific source.

Air Mass Back Trajectories—HYSPLIT
Model
The HYSPLIT (Hybrid Single-Particle

Lagrangian Integrated Trajectory) model was
used to perform 3-day backward trajectories,
ending in Santiago Island. The software was
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SAHARA DUST IMPACT 243

run for each sample at 1000 m height, starting
a new trajectory every 24 h, and using the
vertical velocity option.

RESULTS AND DISCUSSION

PM10 Concentration
Figure 2 presents the seasonal variation of

the PM10 concentrations measured during the
sampling campaign performed in 2011 and
shows that the highest PM10 values were
registered for the dry months: December to
March. This is in agreement with Goudie and
Middleton (2006), who suggested that in the
south of the Sahara Desert the higher num-
ber of days with blowing dust/sand occur
between November and March. A recent study
developed in Canary Islands showed that the
most intense dust events occurred during the
dry season, between December to March,
and reached a total suspended particles con-
centration of 5586 µg/m3 (Gelado-Caballero
et al., 2012). This dry period is typically named
Harmattan (Simonson, 1995). The PM10 mean
concentration measured during the sampling
campaign was 60 µg/m3. This concentration
is above (1) the annual PM10 limit value of
40 µg/m3 defined by the European Directive
2008/50/EC (EU, 2008), (2) the World Health
Organization PM10 annual standard of 20
µg/m3 (World Health Organization, 2000), and
(3) the U.S. Environmental Protection Agency
health-based air quality PM10 annual standard
of 50 µg/m3.

PM10 Element Characterization
INAA was used in order to determine the

chemical elements in PM10. Figure 2 presents
the mass concentration for the measured ele-
ments and demonstrates that As, Ba, Sm, Ce,
Cr, Co, Fe, K, and Sc presented a similar behav-
ior throughout the sampling period. This sea-
sonal trend is also comparable with seasonal
variation of PM10 evidenced by two high peaks
in February 2011. The element As showed an
additional peak in September and an average
throughout the sampling campaign of 0.5 ng

m−3. This value does not exceed the annual
arsenic limit value of 6 ng m−3, defined by the
European Directive 2004/107/EC (EU, 2004).

Table 1 presents the Pearson correlation
coefficients for the total PM10 and element
mass concentration. The coefficients with sta-
tistical significance at 95% confidence level are
shown in bold. Results confirmed that referred
elements are correlated, suggesting their associ-
ation with a common source, which is probably
the soil. The elements Na, Zn, and Sb did
not present a correlation, neither with previous
elements nor between themselves. This find-
ing indicates their origin from other sources,
probably sea salt for Na and anthropogenic
emissions for Zn and Sb (Almeida et al., 2005;
2006a).

Table 2 aimed to compare PM10 total
and element concentrations measured in Cape
Verde with the concentrations measured in
other sites of the globe. Results showed that
PM10 concentrations in Cape Verde were
higher than concentrations measured in Europe
and America, but lower than the concentrations
measured in a suburban area in Ghana (Aboh
et al., 2009); in Agra (India), which is bounded
by the Thar Desert of Rajasthan (Kulshrestha
et al., 2009); and in Hangzhou, an industrial-
ized and urbanized region (Cao et al., 2009).
A similar behavior was found for Fe. This ele-
ment is commonly associated with soil, and
therefore it was expected there would be a link
between the highest concentrations and the
sites characterized by dry climates and urban
areas where resuspension of the road dust is a
significant source.

Sodium concentrations in Cape Verde pre-
sented the highest concentrations, and this
is concordant with the geographical position
of the island, where sea salt is the predom-
inant source of Na in atmospheric aerosols.
Potassium concentrations were higher in Cape
Verde compared with concentrations measured
in Europe and America but lower than con-
centrations measured in Pakistan, Ghana, and
China (von Schneidemesser et al., 2010; Aboh
et al., 2009; Cao et al., 2009). Almeida and
coworkers (2006b) indicated this element is
associated with soil (insoluble coarse fraction),
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FIGURE 2. Seasonal variation of PM10 mass and element concentrations (ng.m−3). The black line shows the average value for each
element.

sea (soluble coarse fraction), and combustion
(fine fraction), a common tracer of biomass
burning (Mkoma et al., 2009). The higher con-
centrations of this element measured in the
Cape Verde are explained by the fact that the

natural sources (soil and sea) are predominant
in the island. K-feldspar is ubiquitous in mineral
dust. The probable influence of the biomass
burning from the African Continent needs to be
studied further.
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TABLE 1. Pearson Correlation Coefficients of all the Chemical Elements Determined

PM10 K Na As Zn Sm Sb Co Fe Sc Rb Cr Ce Ba

PM10 1.00 0.99 0.63 0.82 0.48 0.99 −0.01 0.98 0.99 0.99 0.95 0.97 0.96 0.92
K 1.00 0.62 0.98 0.45 0.99 0.02 0.98 0.99 0.99 0.97 0.98 0.96 0.90
Na 1.00 0.51 0.46 0.60 0.27 0.51 0.58 0.62 0.49 0.65 0.65 0.69
As 1.00 0.39 0.98 0.00 0.97 0.83 0.82 0.58 0.95 0.94 0.90
Zn 1.00 0.43 0.04 0.30 0.55 0.74 0.44 0.60 0.49 0.68
Sm 1.00 −0.01 0.98 0.99 0.99 0.92 0.95 0.97 0.89
Sb 1.00 0.05 0.00 −0.06 −0.07 0.19 0.02 −0.10
Co 1.00 0.99 0.99 0.98 0.96 0.99 0.82
Fe 1.00 0.99 0.97 0.97 0.96 0.90
Sc 1.00 0.98 0.98 0.97 0.94
Rb 1.00 0.95 0.95 0.79
Cr 1.00 0.94 0.93
Ce 1.00 0.85
Ba 1.00

Note. Values in shadowed boldface have a positive correlation statistically significant at 95% confidence level.

For the elements As, Sb, and Zn an oppo-
site behavior was observed with concentrations
lower in Cape Verde compared with other
referred sites. These elements are associated
with anthropogenic sources, as combustion
processes, vehicle exhaust, and industrial pro-
cesses (Almeida et al., 2005).

Enrichment factors, presented in Figure 3,
showed the strength of the crustal and non-
crustal sources for each measured element. The
lower enrichment factors, related to Fe, were
observed for the elements Ba, Sm, Ce, Rb,
K, and Sc. Figure 4 presents the relationship
between these elements with Fe and the lines
indicate the soil composition provided from
two different references: One corresponds to
a general composition of the soil (Mason and
Moore, 1982) and the other is related to a
Saharan soil (Reguigui et al., 2002). Results not
only showed a strong correlation between the
referred elements but also indicated an asso-
ciation between these elements in the aerosol
and the soil composition. Na, Zn, and Sb pre-
sented higher enrichment factors related to the
soil, denoting the influence of other sources.
However, the enrichment factors obtained for
the elements As, Sb, and Zn in Cape Verde
were significantly lower compared with other
studies performed in Europe, and a study per-
formed in Lisbon, Portugal, registered enrich-
ment factors of 110, 2900, and 140 for As, Sb,
and Zn, respectively (Almeida et al., 2005).

Influence of Sahara dust on Cape Verde
Aerosol
The HYSPLIT model was run for 72 h

before each sample, in order to identify the
origin of the air masses that affected the region
during the sampling campaign. Results showed
that the episodes of air mass transport from
the Sahara Desert, identified by the model,
were associated with the highest concentra-
tions of PM10 and with the identified crustal
components. Figure 5 shows that the air mass
trajectories associated with the two peaks,
which occurred in February, crossed through
the Sahara Desert. The Saharan transport event
that occurred on February 5 and 28 resulted
in highest concentrations for PM10, Fe, K, Sc,
and Sm of 507,000 ng/m3, 21,800 ng/m3,
8700 ng/m3, 6.7 ng/m3, and 3.9 ng/m3,
respectively (when the average concentration
was 60,000 ng/m3, 3000 n/m3, 830 ng/m3,
0.9 ng/m3, and 0.6 ng/m3, respectively).

CONCLUSIONS

In this study an element characterization
of the Cape Verde aerosol was performed.
The main conclusions may be summarized as
follows:

• A seasonality in the PM10 concentrations
characterized by higher concentrations in the
dry season was observed.
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FIGURE 4. Relation between PM10 composition and different
types of soil. (—– Sahara Desert soil (Reguigui, Kucera, & Kraiem,
2002); —– soil Mason composition (Mason & Moore, 1982)).

• PM10 concentration in Cape Verde markedly
exceeded the health-based air quality stan-
dards defined by the European Union (EU),

World Health Organization (WHO), and U.S.
Environmental Protection Agency (EPA).

• Cape Verde PM10 composition is charac-
terized essentially by high concentrations of
elements originating from soil (Fe, Ba, Sm,
Ce, K, and Sc) and sea (Na); and low concen-
trations of anthropogenic elements (As, Sb,
and Zn).

• The analysis of the air mass trajectories indi-
cated a high contribution of Sahara dust to
the Cape Verde aerosol.

• The results obtained in this study support the
notion that Cape Verde aerosol impacts pop-
ulation health due to its high concentrations
of PM. However, the study of the aerosol
composition suggested that these high con-
centrations are mainly associated with natural
sources that are principally related with the
coarse fraction of the aerosol, which exerts
less respiratory penetration rates, and with
emission of lower toxic species. Therefore,
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FIGURE 5. Hysplit model backward trajectories for 5th February (a) and 28th February (b) 2011 (color figure available online).

further studies need to assess the strength
of the impact of the Cape Verde aerosol on
human well-being.
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