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RESUMO 

 
Este trabalho compreende um estudo multidisciplinar sobre a metalurgia antiga no sul de Portugal, 

sendo analisados 241 vestígios metalúrgicos e artefactos pertencentes maioritariamente ao Bronze 

Final (BF) e 1ª Idade do Ferro (1ª IF). A composição elementar foi determinada por espectrometria 

de fluorescência de raios X dispersiva de energias, sendo a caracterização microestrutural e dureza 

obtidas por microscopia óptica, microscopia electrónica de varrimento com microanálise por raios 

X e ensaios de dureza de Vickers. 

 

Os resultados incluem a caracterização de escórias heterogéneas e imaturas (BF) contendo óxidos 

de estanho e inclusões metálicas (cobre e bronze) com teores reduzidos de ferro. A presença de 

minerais relíquia indica a co-redução de minérios de cobre, provavelmente, com cassiterite. A 

atmosfera pouco redutora destes processos resulta nos teores de ferro reduzidos dos artefactos do 

BF (<0.05%) face aos da 1ª IF (0.15-1.3%). A composição elementar distingue igualmente as 

colecções indígenas (bronzes binários, 10.0 ± 2.5% Sn) das Orientalizantes (bronzes binários, 5.1 ± 

2.1% Sn, ternários e cobres). O teor de estanho reduzido dos bronzes tardios deverá resultar da 

utilização de sucata. As cadeias operatórias incluem ciclos de martelagem e recozimento, 

terminando com martelagem para aumentar a dureza. Os artefactos com teores elevados de estanho 

não foram trabalhados e não requerem uma resistência mecânica elevada, revelando a triagem de 

ligas. Determinados exemplares tardios apresentam uma dureza superior devido a operações de 

martelagem e recozimento mais eficientes, sugerindo que o teor reduzido de estanho seria 

compensado por um elevado conhecimento tecnológico. 

 

Os artefactos em ouro Calcolíticos apresentam teores reduzidos de prata, enquanto os exemplares 

do BF e 1ª IF são maioritariamente constituídos por ligas com teores superiores de prata e cobre. A 

martelagem e recozimento de ouros Calcolíticos, bem como a soldadura por fusão parcial/difusão 

em fase sólida durante a 1ª IF encontram-se igualmente identificadas. 
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ABSTRACT 

 
This work provides an integrated study of the ancient metallurgy in southern Portugal comprising 

the characterisation of 241 production remains and artefacts, mostly belonging to the Late Bronze 

Age (LBA) and Early Iron Age (EIA). Analytical studies involve energy dispersive X-ray 

fluorescence spectrometry (EDXRF) and micro-EDXRF to determine elemental composition, 

together with optical microscopy, scanning electron microscopy with X-ray microanalysis and 

Vickers microhardness testing for microstructural characterisation and hardness determination. 

 

Main results include identification of heterogeneous and immature LBA slags containing tin oxides 

and metallic prills (copper and bronze) with low iron contents. Additionally, relic mineral 

inclusions indicate co-smelting of copper ores, probably with cassiterite. Poor reducing conditions 

shall be responsible by lower iron contents of LBA artefacts (<0.05%) when compared with EIA 

artefacts (0.15-1.3%). Further features distinguish these clusters – indigenous collection is 

composed mostly by binary bronzes (10.0  2.5% Sn), while Orientalising collection also presents 

copper and leaded bronzes. Furthermore, latter binary bronzes exhibit lower tin contents (5.1  

2.1% Sn) probably due to the increased use of scrap. Operational sequences usually include cycles 

of forging and annealing, often completed with a final hammering that hardens the artefact. Higher 

tin content artefacts with typologies that do not require high mechanical strength were often left as-

cast evidencing some selection of alloys. Despite being poorer in tin, some EIA artefacts exhibit 

higher hardness due to a more efficient use of hammering and annealing cycles, suggesting that low 

tin contents were not a problem for this type of artefacts. 

 

Gold metallurgy analyses allow the identification of Chalcolithic gold with minor amounts of 

silver, while LBA and EIA gold present increased silver and copper contents, indicating the use of 

alloyed gold. Forging and annealing during the Chalcolithic, besides welding with partial 

melting/solid state diffusion during the EIA is also established. 
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1. INTRODUCTION 

The archaeometallurgical research presents a considerable importance in the archaeological field 

due to the relevant significance of metallurgy in the social and cultural organization of ancient 

cultures (Craddock, 1995). The study of this important component of the ancient material culture 

should incorporate different areas of knowledge, connecting analytical studies with the historical 

and cultural background revealed by archaeological contexts from which the artefacts and 

production remains were recovered. 

 

The multidisciplinary study of these ancient materials should begin by identifying the different 

metallurgical issues evidenced by each chronological period, in order to significantly contribute to 

establish the metallurgical evolution of the studied region. Pre-historic and proto-historic times can 

be divided into different stages that imply progressively higher metallurgical knowledge. 

Generally, these phases comprise the use of native metals, the reduction of metallic ores and the 

production of alloys. Each one of these consecutive stages corresponds to a different chronological 

period that can differ from one region to another. However, the metallurgical issues involving each 

stage are common to virtually all regions of the Ancient World. 

 

Metallic elements exploited during ancient times usually occur in the form of minerals, especially 

oxides and sulphides. Gold constitutes an exception since it is almost always present in the native 

form. Moreover, copper and silver can also be found in the native form often associated with their 

respective ores (e.g. cuprite (Cu2O) and malachite (Cu2CO3(OH)2) or cerargyrite (AgCl) and 

argentite (Ag2S), respectively). Pre-historic communities in the Middle East start to use native 

metals during a premature phase of the Neolithic period. The earlier copper artefacts known are 

some beads, awls and fish-hooks from Çayönü Tepesi (Turkey), belonging to the end of the 8th 

millennium BC (Maddin et al., 1991). 

 

However, it is usually considered that the metallurgy only started with the exploitation of metallic 

ores, whose reduction significantly increased the amount of raw materials available to produce 

metallic artefacts. Copper obtained by early metallurgical processes presents an elemental 

composition similar to native copper, whereas it is often complicated to distinguish between 

smelting and melting slags. Consequently, it is very difficult to clearly identify the initial stages of 

the exploitation of metallic ores. According to the work of Renfrew (1983), smelting started in the 

Middle East during the 6th-5th millennia BC, but it was only during the 4th millennium BC that it 

began to present a real importance to those ancient communities. The 6500 BC slags from Çatal 

Höyök (Turkey) are probably the first evidence of ore smelting in the Middle East (Hauptmann, 
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2007). In Europe, a recent work (Radivojevic et al., 2010) documents the earliest evidence of 

copper smelting at Belovode (Serbia), a Vinca culture site from the end of the 6th millennium BC. 

 

In the Iberian Peninsula, the first evidence of the exploitation of copper ores belongs to the contexts 

from the first half of the 5th millennium BC of Cerro del Virtud, SE Spain (Ruíz-Taboada and 

Montero-Ruíz, 1999). However, this find is more than a millennium older than any other secure 

evidence of smelting in the region, so it is probable that copper ore smelting only occurred during 

the late 4th millennium BC (Roberts, 2008). The early sites with evidences of metallurgy in the 

Portuguese territory belong to the transition of the 4th to the 3rd millennium BC (Soares and 

Cabral, 1993), whereas the Copper Age or Chalcolithic (CA) corresponds to most of the 3rd 

millennium BC, namely around 3000-2250 BC. 

 

The production and use of alloys was the following step within metallurgical evolution. Some of 

the metallic elements exploited during ancient times are commonly associated with others in 

nature. Native gold often presents high amounts of silver – a natural alloy called electrum, whereas 

copper ore can be found associated with arsenic (Mohen, 1990). Electrum was certainly one of the 

first alloys to be used during the pre-history. Similarly, arsenical coppers are present among the 

earlier contexts with evidences of metallurgy in some regions of the Iberian Peninsula (Ruíz-

Taboada and Montero-Ruíz, 1999). However, in other regions such as the southern Portuguese 

territory these arsenical coppers only seem to appear by the end of the CA (Soares et al., 1996). 

 

The innovation of an alloy is related with the fact that it exhibits enhanced characteristics when 

compared with their individual metals. The possibility of attaining higher hardness or different 

colours was certainly among the first characteristics that were recognized by ancient metallurgists 

when producing copper-based or gold alloys. However, other characteristics such as lower melting 

temperature or higher castability of certain alloys were also exploited over time. 

 

The bronze was certainly the more commonly utilised alloy during pre-historic times. The earlier 

bronze artefacts do not belong to a specific culture, instead being isolated discoveries from 3rd 

millennium BC sites at Bulgaria and Romania (Craddock, 1995). Consequently, the discovery of 

bronze alloy seems to be the outcome of an unintended reduction of polymetallic copper ores with 

significant amounts of tin. In the Iberian Peninsula, these mixed Cu-Sn ores are not as scarce as 

initially accepted (Hunt-Ortiz, 2003), being present in several mining areas (e.g. Toledo, Murcia 

and Sierra Morena) and displaying evidences of being used at a few pre-historic sites from central 

and southeastern regions (Rovira and Montero-Ruíz, 2003). 
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Bronze alloys were progressively introduced in the Portuguese territory during the Bronze Age 

(BA ~2250-800 BC), which is usually divided into the Early Bronze Age (EBA ~2250-1800 BC), 

Middle Bronze Age (MBA ~1800-1200 BC) and Late Bronze Age (LBA ~1200-800 BC). The 

EBA/MBA period did not introduce significant alterations among the copper-based metallurgy. 

Metallic artefacts maintain the tradition inherited from the end of the Chalcolithic, being composed 

of copper or arsenical copper (Soares et al., 1996). The bronze artefacts only start to occur during 

the MBA but are still somewhat scarce among the archaeological record (Rovira, 2004). 

 

The metallurgical background changes dramatically with the full adoption of bronze alloys during 

the LBA. This implementation coincides with a significant increase of typologies and number of 

metallic artefacts present in the archaeological record. During this period the Portuguese territory 

presents relations with other regions belonging to the Atlantic and Iberian traditions (Figure 1.1). A 

cultural regional tradition defines an area within which regular production and exchange of 

metalwork and pottery creates a stylistic regularity (Kristiansen, 2003). The Atlantic tradition 

includes the Northwestern Iberia, Western France and British Isles, which regarding the copper-

based metallurgy are characterised by a significant use of leaded bronzes. However, the metallurgy 

at the Portuguese territory, as most of the Iberian Peninsula (Rovira, 2004), comprises mainly 

binary bronze alloys (Vilaça, 1997; Valério et al., 2006; Figueiredo et al., 2010). 

 

 

Figure 1.1. Schematic outline of regional traditions in LBA Europe (adapted from Kristiansen, 2003). 



INTRODUCTION 

4 

 

During the earliest centuries of the first millennium BC, the rich metallic resources of the Iberian 

Peninsula seem to have attracted people from the eastern Mediterranean region. The Phoenician 

trade routes include several intermediate regions along the Mediterranean Sea, such as Sardinia, 

North Africa, Italy and Sicily (Figure 1.2A). The increasingly stronger contacts with the Iberian 

Peninsula culminated with the establishment of Phoenician colonies along the southern and western 

seaboard during the late 9th and early 8th centuries BC (Figure 1.2). This occurrence initiated the 

Early Iron Age (EIA ~800-400 BC), a period characterised by introduction of new cultural and 

technological traditions brought by Mediterranean people, often called the Orientalising period. 

Metallurgy was among those innovations, including new practices, such as the lost wax method or 

the exploitation of silver through cupellation (Neville, 2007). However, studies regarding the EIA 

bronze metallurgy in the Iberian Peninsula are still rather scarce. In the southwestern region, the 

collections from the Orientalising settlements of Medellin and El Palomar already reveal a 

significant usage of leaded bronzes (Rovira et al., 2005), but no comparable data is currently 

known concerning the Portuguese territory, except from a preliminary study concerning the 

Orientalising settlement of Quinta do Almaraz (Almada), which identified binary and leaded 

bronzes among the artefacts studied (Araújo et al., 2004). The increased use of leaded bronzes was 

also recorded in the southeastern Iberian region (Montero-Ruíz, 2008), so it seems that this 

tendency might be widespread among areas with strong Orientalising influence. 

 

 

Figure 1.2. (A) Mediterranean trade routes on the basis of Ibero-Phoenician ivories and double-spring fibulae (adapted 

from Morgenroth, 1999); (B) Location of Phoenician and Orientalising settlements, together with trade routes at the 

Iberian Peninsula during the 8th-6th centuries BC (adapted from Pellicer-Catalán, 2000). 
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In fact, significant metallurgical studies regarding the pre-historic and proto-historic times at the 

Portuguese territory are very scant. Elemental compositions were obtained from the earlier study of 

gold artefacts by Hartmann (1982), in addition to the studies of Junghans et al. (1968; 1974) and 

Cofynn (1985) regarding copper-based artefacts. However, the chronology of metallic artefacts 

studied is often unreliable since it was obtained from typological comparisons and not from 

absolute dating. Moreover, the territory studied is too broad and regional differences were not taken 

into account. During the last decades several compositional studies were conducted regarding the 

copper-based metallurgy from the CA to the LBA (e.g. Cardoso et al., 1992; Soares et al., 1996; 

Vilaça, 1997; Cardoso, 2000; Melo, 2000; Araújo et al., 2004; Sousa et al., 2004; Gonçalves, 2005; 

Soares et al., 2005; Valério et al., 2006; Canha et al., 2007; Figueiredo et al., 2007; Valério et al., 

2007). However, the materials studied are mainly metallic artefacts and the few production remains 

present were only studied macroscopically. The study of ancient gold metallurgy at the Portuguese 

territory is even scarcer, with only a few studies regarding the elemental composition of artefacts 

(Alves et al., 2002; Soares et al., 2004). Despite some early microstructural analyses involving 

copper-based materials (Paço, 1955; Cardoso and Braz Fernandes, 1995; Soares et al., 1996), it 

was only very recently that integrated studies involving the elemental composition and operational 

sequences of artefacts start to introduce more significant results concerning the metal production at 

the Portuguese territory (Figueiredo et al., 2010). 

 

However, integrated studies regarding the southern region of the Portuguese territory have been 

absent. Despite some general idea about the evolution of the metallurgy in this region (Soares et 

al., 1996) additional studies involving artefacts are needed to answer more precise and essential 

questions: What was the arsenic content of copper-based artefacts before the full adoption of 

bronze alloys? What was the evolution of the bronze alloys from the LBA to the EIA? There was 

any compositional difference between different typologies and functionalities? Which were the 

manufacturing operations involved? What was the evolution of the operational sequence? Did those 

operational sequences were able to produce harder materials? The present work intends to 

contribute to increase the knowledge regarding these and other important metallurgical issues. 

 

A valuable collection of copper-based artefacts belonging to the southern region of the Portuguese 

territory was studied using a multiproxy approach comprising non-invasive and microanalytical 

techniques. The collection selected for study comprises mostly LBA and EIA artefacts, but some 

examples from the EBA/MBA were also studied. The elemental composition was determined by 

Micro-Energy Dispersive X-Ray Fluorescence (micro-EDXRF) analyses in minute cleaned areas of 

the metallic artefacts. This allows establishing the alloy composition with an insignificant 

interference to these cultural artefacts. The microstructural characterisation involved Optical 

Microscopy (OM) observations in the same cleaned areas, supported by Scanning Electron 
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Microscopy with X-Ray Microanalysis (SEM-EDS). This allows the identification of different 

phases, inclusions and casting defects, together with the manufacturing operations used to produce 

the artefacts. Finally, the hardness was determined by Vickers Microhardness Testing on selected 

artefacts to establish the effectiveness of the operational sequence. 

 

Additionally, the elemental and microstructural characterisation of a significant number of LBA 

production remains (crucibles, tuyeres, moulds, metallic nodules and, especially, slags) contribute 

to resolve additional questions, such as: How was bronze alloy made? What were the operational 

conditions during smelting and casting operations? Did metallurgical operations were confined to a 

few locations or were commonly used in most settlements? This is an innovative approach 

concerning the metallurgy at the Portuguese territory. It will allow connecting the different 

metallurgical operations with the characteristics of the finished artefacts. 

 

This work also includes the study of a collection of gold artefacts mainly belonging to the EIA, 

together with some examples from the LBA and the CA. The characterisation of these artefacts 

intends to determine the use and evolution of gold alloys at this southern region of the Portuguese 

territory, especially from the LBA until the EIA. Additionally, some microstructural analyses on a 

few selected artefacts intend to identify manufacturing procedures and welding operations during 

those ancient times. 

 

The main contribution of this work is related with the recognition of the evolution of the copper-

based metallurgy from the LBA to the EIA in the southern region of the Portuguese territory. The 

integrated study of production remains and metallic artefacts aims to provide a broad approach to 

different metallurgical issues, enabling a new insight into the Phoenician colonisation, especially 

about its influence on the indigenous metallurgy. Comparisons with coeval neighbouring regions 

will characterise intra-regional contacts and cultural exchanges among those ancient populations 

during the initial steps of the so-called Orientalising period. 
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2. MATERIALS AND METHODS 

2.1. Materials 

Ancient metallurgical materials can be divided into production remains and metallic artefacts. 

Production remains comprise all materials (e.g. crucibles, tuyeres, moulds, metallic nodules, ingots 

and slags) that resulted from the sequential steps involved in the production of artefacts. Generally, 

artefacts are finished products (ornaments, tools or weapons) that were used by ancient people in 

their daily life. Artefacts are often recovered in a fragmented state that can prevent the 

identification of its original functionality. Similarly, the accurate functionality of certain 

multipurpose artefacts, such as rings, hardly is attributable. 

 

The following sections constitute an outline of the production remains, copper-based and gold 

objects studied in the present work. Special emphasis is given on the location of the archaeological 

sites, relevant chronologies, number and type of metallurgical materials. 

 

 

2.1.1. Production remains 

This collection is composed of 30 production remains, including crucibles, tuyeres, moulds, 

metallic nodules and slags, which belong to several LBA archaeological sites located at the 

southern region of the Portuguese territory (Figure 2.1). 

 

 

 Chronology LBA 
 

 Site                       (BC) 1200-800  

5 Salsa 3 (Serpa) 2  

6 Casarão da Mesquita 3 (Évora) 1  

7 Casarão da Mesquita 4 (Évora) 6  

10 Martes (Redondo) 2  

12 Entre Águas 5 (Serpa) 18  

13 Castro dos Ratinhos (Moura) 1   

 total 30  

    

Figure 2.1. Number of production remains studied and location of each archaeological at the southern Portuguese 

territory. 

 

 

 



MATERIALS AND METHODS 

8 

 

2.1.2. Copper-based artefacts 

The collection of 142 copper-based artefacts studied belongs to several archaeological sites located 

at the southern region of the Portuguese territory (Figure 2.2). These copper-based objects 

comprise 4 chronological periods (EBA, MBA, LBA and EIA), consequently covering a time span 

from the end of the 3rd millennium BC until the middle of the 1st millennium BC. 

 

 

 Chronology EBA/MBA LBA EIA 
 Site                       (BC) 2250-1200 1200-800 800-400 

1 Anta do Malhão (Alcoutim) 2   

2 Soalheironas (Alcoutim) 2   

3 Horta do Folgão (Serpa) 6   

4 Monte da Cabida 3 (Évora) 6   

5 Salsa 3 (Serpa)  2  

6 Casarão da Mesquita 3 (Évora)  2  

8 Santa Margarida (Serpa)  1  

9 Quinta do Marcelo (Almada)  2  

11 Baleizão (Beja)   19        

12 Entre Águas 5 (Serpa)  13  

13 Castro dos Ratinhos (Moura)   47 

14 Quinta do Almaraz (Almada)   30 

15 Palhais (Beja)   10 

 total 16 39 87 

Figure 2.2. Number of copper-based artefacts studied by chronological period and archaeological site, including its 

location at the southern Portuguese territory (chronology of the period more significant regarding the metallurgical 

materials studied). 

 

 

2.1.3. Gold artefacts and ingots 

The collection of 69 gold objects mainly belongs to the period with strong Mediterranean 

influences (Figure 2.3). However, some examples that belong to earlier periods, namely the CA and 

LBA, were also studied in order to ascertain about the evolution of gold alloys at this southern 

region of the Portuguese territory. 
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 Chronology CA LBA EIA 
 Site                       (BC) 3000-2250 1200-800 800-400 

a Perdigões (Reguengos M.) 12   

b Baleizão (Beja)  11  

c Castro dos Ratinhos (Moura)   8 

d Quinta do Almaraz (Almada)   1 

e Outeiro Cabeça (Torres Vedras)   31 

f Fortios (Portalegre)   5 

g Fonte Santa (Ourique)   1 

 total 12 11 46 

 

Figure 2.3. Number of gold artefacts and ingots studied by chronological period and archaeological site, including its 

location at the southern Portuguese territory (chronology of the period more significant regarding the metallurgical 

materials studied). 

 

 

2.2. Methodology 

The methodology involved in this work comprises non-invasive and microanalytical techniques 

due to the archaeological and museological significance of the samples studied. The analytical 

techniques selected intent to determine elemental compositions, microstructural characteristics and 

hardness values of archaeological copper-based and gold artefacts. Initially, the production remains 

were analysed by EDXRF to identify significant elements that eventually could point out to the 

type of metal or alloy produced (Figure 2.4). Selected samples were further characterised by SEM-

EDS, OM and micro-EDXRF to ascertain the type of metallurgical operation associated with each 

one, for instance smelting, alloying or recycling. 

 

 

Figure 2.4. Methodology used to characterise the production remains studied in this work. 
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The archaeological copper-based artefacts that remained usually buried in the soil for a long period 

present a noteworthy corrosion layer enriched in specific elements. This enrichment results from 

selective corrosion processes originated by the different elemental electrochemical potentials and 

diverse stabilities of the corrosion products formed (Robbiola and Portier, 2006). For that reason, 

the elemental composition of copper-based archaeological artefacts can only be determined by the 

analysis of a surface previously cleaned from the corrosion layer. The majority of the copper-based 

artefacts included in this study were analysed by micro-EDXRF spectrometry (Figure 2.5). Since 

this technique is able to analyse merely a minute area (<100 m), only a small area of the artefact 

must be cleaned from the superficial corrosion layer. Consequently, the elemental composition can 

be determined with an insignificant disturbance to the artefact. The few artefacts that could not be 

cleaned were analysed by EDXRF, but these results can only be considered semi-quantitatively due 

to the significant influence of the superficial corrosion layer. Additionally, the majority of the 

copper-based artefacts was characterised by OM observations to identify different phases, 

inclusions and operational sequences. The microstructural characterisation was assisted by SEM-

EDS analyses of a few selected artefacts. Finally, the hardness of a significant number of copper-

based artefacts was determined by Vickers Microhardness testing. 

 

 

Figure 2.5. Methodology used to characterise the copper-based artefacts studied in this work (box dimensions are related 

with the significance of each analytical technique). 
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To avoid additional corrosion of the copper-based artefacts studied, the small cleaned areas were 

stabilised and sealed using a conventional conservation treatment applied after finishing the 

analytical study (Williamson and Nickens, 2000). 

 

The analytical study of the archaeological gold artefacts had to rely on a completely non-invasive 

approach due to the extraordinary museological and archaeological significance of these artefacts. 

Despite archaeological gold artefacts exhibit a shallow surface layer depleted of less noble 

elements (Tate, 1986), it has been shown that the results from EDXRF analyses can be considered a 

good approximation to the composition of the original alloy (Araújo et al., 1993). Finally, a few 

artefacts that were already fragmented could be sampled for OM and SEM-EDS characterisation to 

resolve particular issues, such as manufacturing and welding processes (Figure 2.6). 

 

 

Figure 2.6. Methodology used to characterise the gold artefacts studied in this work (box dimensions are related with the 

significance of each analytical technique). 

 

 

2.2.1. Energy Dispersive X-Ray Fluorescence Spectrometry 

EDXRF analyses were conducted in a Kevex 771 spectrometer installed at Instituto Tecnológico e 

Nuclear (ITN). The spectrometer is equipped with a Rh X-ray tube as the primary excitation 

source. In addition, it comprises different secondary excitation targets and respective radiation 

filters to optimize the detection limits. The characteristic X-rays emitted by chemical elements 

present in the excited area of the sample (circular like outline with a diameter of about 2.5 cm) are 

measured in a liquid nitrogen cooled Si(Li) detector with a resolution of 175 eV at 5.9 keV (Mn-

K). The samples are measured in a closed chamber with rather large dimensions (approximately, 

353510 cm
3
), allowing the analysis of sizeable artefacts (Figure 2.7). The quantification 

procedure involves fundamental parameters and experimental calibration factors (Kevex, 1992). 

The experimental calibration factors were calculated through the analysis of certified reference 
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materials, whose composition should be similar to the composition of the sample to optimize the 

accuracy of the method. Artefacts and production remains included in this work were analysed 

using two experimental conditions in order to optimize detection limits (Table 2.1). 

 

  

Figure 2.7. EDXRF spectrometer installed at ITN, including detail of the sample chamber with tray for large artefacts. 

 

Table 2.1. Experimental conditions for EDXRF analyses of copper-based and gold samples (copper-based includes 

artefacts and production remains*; gold comprises artefacts and ingots). 

Excitation Tube voltage 

(kV) 

Current intensity 

(mA) 

Live time 

(s) 

Elements of interest 

(with respective X-ray peak) 

Copper-based     

Ag secondary target 35 0.5 (up to 3.0)* 300 Cu-K, Pb-L, As-K and Fe-K 

Gd secondary target 57 1.0 (up to 3.0)* 300 Sn-K 

Gold     

Ag secondary target 35 0.5 300 Au-L and Cu-K 

Gd secondary target 57 2.0 300 Ag-K 

 

 

A certified reference material (Phosphor Bronze 551 Spectroscopic Standard from British 

Chemical Standards) was analysed using the same experimental conditions, to calculate the 

experimental calibration factors for the elements of interest of copper-based alloys. Moreover, the 

standard gold alloys 90Au-10Ag and Au90-Cu10 (Araújo et al., 1993) were measured to calculate 

the experimental calibration factors for the elements of interest in gold alloys. These reference 

materials were used to calculate the quantification limits for the EDXRF analyses of copper-based 

and gold alloys (Table 2.2 and Table 2.3). The quantification limit for arsenic could not be 

accurately calculated due to spectral interferences among the As-K and Pb-L. The value 

attributed was estimated using elements with similar absorption and enhancement effects in the 

copper-based matrix. 
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Table 2.2. Quantification limits for EDXRF analyses of copper-based alloys (values in %; calculated as 

10background0.5/sensitivity (IUPAC, 1978) using the certified reference material Phosphor Bronze 551). 

Sn Pb As Fe 

0.02 0.10 0.10 0.05 

 

Table 2.3. Quantification limits for EDXRF analyses of gold alloys (values in %; calculated as 

10background0.5/sensitivity (IUPAC, 1978) using the standard alloys 90Au-10Ag and Au90-Cu10). 

Ag Cu 

0.07 0.10 

 

The accuracy of the EDXRF results of gold alloys was estimated through the quantification of the 

gold standards 80Au-20Ag and Au80-Cu20 (Table 2.4). The relative errors of the quantification of 

these two standards are below 6%, evidencing a good overall accuracy for the EDXRF method. 

However, relatively higher errors can be expected due to the non-flat geometry and slightly gold 

enriched surface of the gold artefacts studied. 

 

Table 2.4. Accuracy of the EDXRF quantitative analyses of gold alloys (values in %; * mean value and standard 

deviation of 3 independent measurements). 

Standard Element Certified Obtained* Relative error 

80Au-20Ag Au 80.2 81.0  0.4 1% 

 Ag 19.8 19.0  0.4 4% 

80Au-20Cu Au 80.1 81.0  1.2 1% 

 Cu 19.9 19.0  1.2 5% 

 

 

2.2.2. Micro-Energy Dispersive X-Ray Fluorescence Spectrometry 

Micro-EDXRF analyses were made in an ArtTAX Pro spectrometer belonging to the Departamento 

de Conservação e Restauro (DCR-FCT/UNL). This spectrometer is equipped with a low-power Mo 

X-ray tube, focusing polycapillary lens and silicon drift detector with a resolution of 160 eV at 5.9 

keV (Mn-K). The polycapillary optics, CCD camera and accurate positioning system (Figure 2.8) 

enable an optimal lateral resolution that corresponds to a minute area of primary incident radiation 

in the sample ( < 100 m) (Bronk et al., 2001). The quantitative procedure was made through the 

WinAxil software, comprising fundamental parameters and experimental calibration factors 

(Canberra, 2003).   
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Figure 2.8. Micro-EDXRF spectrometer installed at DCR, including image of minute analysed area of artefact (red dot).  

 

The preparation of the artefacts for micro-EDXRF analyses involved the cutting of a small section, 

which was mounted in epoxy resin, polished with SiC papers (P1000, P2500 and P4000) and 

finished with 1 m and 1/4 m diamond pastes. Alternatively, if the artefact cannot be sampled, it 

was prepared with a minicraft equipped with a rotary point of cotton impregnated with a diamond 

paste (7 m and 1 m). This process permits to remove the superficial corrosion layer in a small 

area (~3×3 mm
2
) thus allowing the analysis of a clean metal surface of the artefact (Figure 2.9). 

The prepared areas of each artefact were analysed in 3 different spots using a tube voltage of 40 kV 

and a current intensity of 0.5 mA during 300 s of real measuring time (X-ray peaks of elements of 

interest: Fe-K, Cu-K, As-K, Pb-L and Sn-L). 

 

   

Figure 2.9. Some examples of copper-based artefacts prepared for micro-EDXRF analyses. 

 

The experimental calibration factors for the elements of interest of copper-based alloys were 

calculated through the analysis of the certified reference material Phosphor Bronze 551. Moreover, 

the Phosphor Bronze 551 was used to calculate the quantification limits for the micro-EDXRF 

analyses of copper-based alloys (Table 2.5). 
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Table 2.5. Quantification limits for micro-EDXRF analyses of copper-based alloys (values in %; calculated as 

10background0.5/sensitivity (IUPAC, 1978) using the certified reference material Phosphor Bronze 551). 

Sn Pb As Fe 

0.50 0.10 0.10 0.05 

 

The accuracy of the micro-EDXRF results of copper-based alloys was estimated using the 

quantification of the certified reference material Phosphor Bronze 552 from British Chemical 

Standards (Table 2.6). The micro-EDXRF technique exhibits a very good accuracy, presenting low 

relative errors regarding the elements of interest. The higher relative error obtained for iron, zinc 

and nickel is due to contents close to the quantification limit of the technique and spectral 

interferences (besides, zinc and nickel are usually bellow detection limits in the studied ancient 

metallic artefacts). 

 

Table 2.6. Accuracy of the micro-EDXRF quantitative analyses of copper-based alloys (values in %; * mean value and 

standard deviation of 3 independent measurements). 

Standard Element Certified Obtained* Relative error 

BCS 552 Cu 87.7 88.3  0.8   1% 

 Sn    9.78   9.9  0.4   1% 

 Pb    0.63   0.62  0.05   2% 

 Fe    0.10   0.11  0.01 10% 

 Ni    0.56   0.63  0.02 12% 

 Zn    0.35   0.48  0.02  39% 

 

 

2.2.3. Optical Microscopy 

OM observations were made in a Leica DMI 5000M optical microscope installed at Centro de 

Investigação de Materiais (CENIMAT-FCT/UNL). This optical microscope is equipped with 

several objectives that allow a wide range of magnifications (50 to 1000) under bright field 

illumination (BF), dark field illumination (DF) and polarised light (Pol). Dark field illumination 

helps to recognize pores and cracks, while polarised light allows distinguishing among different 

components (e.g. copper oxides from copper sulphides). The microscope includes a motorized z-

focus with parfocal function (automatic compensation of different focus level) that allows 

obtaining an image of slightly irregular areas. This is very important in the observation of artefacts 

that cannot be sampled, since the preparation of this type of materials always leaves a somewhat 

irregular surface. Furthermore, the optical lenses are set in an inverted position that facilitates the 

observation of large sized artefacts (Figure 2.10). 
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Figure 2.10. Leica DMI 5000M optical microscope installed at CENIMAT (the inverted design allows observation of 

artefacts with larger dimensions).  

 

The preparation of the metallic artefacts for OM observations is equal to the used for the micro-

EDXRF analyses. In fact, the same prepared area was almost always used for both techniques. The 

preparation comprises cutting of a small fragment, mounting in epoxy resin, polishing with SiC 

papers (P1000, P2500 and P4000) and finishing with 1 m and 1/4 m diamond pastes. Instead, a 

small area (~3×3 mm
2
) was cleaned from corrosion products using a minicraft equipped with a 

rotary point of cotton impregnated with diamond pastes (7 m and 1 m). Initially, all samples 

were observed without etching, being afterwards etched with an aqueous ferric chloride solution to 

enhance the microstructural features, such as grain boundaries, annealing twins and slip bands. 

 

 

2.2.4. Scanning Electron Microscopy with X-Ray Microanalysis 

The SEM analyses were made in a Zeiss DSM 962 scanning electron microscope belonging to 

Centro de Investigação de Materiais (CENIMAT-FCT/UNL). This equipment is a conventional 

tungsten filament scanning electron microscope with secondary electron (SE) and backscattered 

electron (BSE) imaging modes. The equipment comprises also an Oxford Instruments INCAx-sight 

EDS spectrometer with an ultra-thin window to detect low atomic number elements (Z < 5). The 

semi-quantifications are made using the ZAF (atomic number, absorption and fluorescence) 

correction factors. 

 

The selected artefacts and production remains were analysed with a gold coating, a carbon 

conductive bridge or copper tape bridge to prevent charge accumulation (Figure 2.11). The 

experimental conditions were 20 kV of accelerating voltage, approximately 3 A of filament current, 

70 μA of emission current and a working distance of 25 mm. Most images were collected using 

BSE mode due to its high atomic number contrast, which allowed a better recognition of different 

phases, including non-metallic inclusions. The EDS analyses were also especially important to 
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identify the different elemental components in SEM-BSE observations, sometimes with the support 

of preceding OM images. 

 

 

Figure 2.11. Zeiss DSM 962 SEM-EDS installed at CENIMAT. 

 

2.2.5. Vickers Microhardness Testing 

The microhardness was determined in a Zwick-Roell Indentec testing equipment installed at 

CENIMAT. The hardness of a material is defined by its resistance against the penetration by a 

harder material and in metals it is usually given by the Vickers Hardness number (HV), which is 

calculated by the load applied (F) over the surface area of the indentation (A) of a diamond 

pyramid into the metallic sample (Figure 2.12). Mounted copper-based archaeological artefacts 

were polished with 1 m diamond paste and indented for 10 s with a low force of 0.2 kgf thus 

determining the microhardness (HV0.2). At least 3 indentations were made, being considered the 

average value of several measurements with a relative standard deviation better than 5%. 

 

 

 

 

 

 

 

   

 

(where d is the average of d1 and d2) 

 

Figure 2.12. Vickers test scheme and calculation procedure (adapted from wikipedia.org/wiki/Vickers_hardness_test). 

 



MATERIALS AND METHODS 

18 

 

2.2.6. Minimizing the impact of analytical studies 

The copper-based artefacts that were prepared for elemental and microstructural characterisation 

were later restored to avoid the increase of the corrosion processes. This was especially important 

for artefacts that exhibit an significant amount of chlorine – the outer corrosion layers of malachite 

(Cu2CO3(OH)2) and cuprite (Cu2O) are protective and stable, such as the more interior layer of 

cuprous chlorine (CuCl) under dry conditions (Walker, 1980). However, the removal of the outer 

corrosion layers facilitates the contact of moisture with the cuprous chlorine layer thus initiating the 

autocatalytic reaction known as bronze disease, which leads to the formation of 

paratacamite/atacamite (4CuCl+4H2O+O2 2Cu2Cl(OH)3+2HCl). 

 

The conservation treatment was applied to the areas of the artefacts that were previously cleaned 

for study, comprising the application of a corrosion inhibitor (benzotriazol dissolved in ethanol; 3% 

m/v), followed by an acrylic protector (Paraloid B-72 dissolved in acetone; 3% m/v). Afterwards, a 

mixture of pigments dissolved in the Paraloid B-72 solution was applied to replicate the coloration 

of the surrounding patina. The final protection of the area consisted of a microcrystalline wax 

dissolved in a paraffin-derived “white spirit”. The artefacts were returned to the museum with an 

individual report consisting of the location of the interventioned area and the conservation 

treatment applied (Figure 2.13). 

 

 

Figure 2.13. Examples of conservation treatment reports regarding archaeological copper-based artefacts. 
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3. PRODUCTION REMAINS 

3.1. Introduction 

The significant spread in the production of copper-based artefacts throughout the LBA is also 

noticeable in the number of production remains discovered among the archaeological record. The 

present introduction will summarize the most relevant technological characteristics of the 

production remains studied in this work, namely crucibles, tuyeres, moulds, metallic nodules and 

slags. 

 

According to the archaeological record, ancient crucibles were usually made with non-refractory 

ceramic materials (Bayley and Rehren, 2007). These crucibles present thick walls in order to 

withstand the high firing temperatures used during metallurgical operations. Apart from being 

mechanically more resistant, thicker clay walls also reduce the heat transfer, thus inhibiting the 

heating from below. Consequently, early crucibles were covered with a pile of charcoal or wood 

and heated from above. This promotes an extensive vitrification and bloating of the inner and edge 

surfaces of the crucible, while the outer surface remains almost unchanged. Ancient metallurgical 

crucibles present two distinct technological functions – smelting and melting. The metallurgical 

residues that sometimes are still present in the crucibles result from the reaction of ore/metal with 

crucible fabrics and wood ash used for heating. The study of these metallurgical residues often 

allows classifying the type of metallurgical operation present in archaeological sites. 

 

The introduction of forced air through blow pipes or bellows increases the furnace temperature thus 

improving the efficiency of the metallurgical process. Forced air enters the reaction zone through 

clay tubes – tuyeres. Unfortunately, these artefacts are often recovered in a very fragmented state 

that prevents the knowledge of its complete shape and size. Most known examples correspond to 

fragments that include the tip of the tuyere closer to the furnace. This end of the tuyere is more 

resilient since it becomes vitrified by heat. Sometimes it still exhibits residues of slagged material 

that permits to identify the type of metallurgy. 

 

Ancient casting operations were conducted in open, bivalve or multiple moulds. Open moulds 

originate the loss of metal through oxidation and metal castings with flat upper surfaces (i.e. 

without reliefs), while multiple moulds can be used to cast several artefacts at once. The lost wax 

method was applied to cast more complex and, sometimes, finely decorated artefacts (Coghlan, 

1975). Moulds were made of stone, clay or metal. Stone moulds were carved out of solid stone, 

while clay ones require the use of a wooden pattern of the artefact to be wrought. In the lost wax 

method this pattern was made of bees-wax and later melted down or burnt out. Stone moulds are 

more usual than clay moulds in the archaeological record probably because the first are more 
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resistant to the casting operation and can be used several times. By the other hand, metallic moulds 

are scarcer than the other two materials because they were more costly and, especially, since the 

metal mould could be recycled at the end of its useful life, thus disappearing from the 

archaeological record. A recent experimental study has determined that the proportions of metallic 

elements remaining in the moulds are systematic but impossible to predict (Kearns et al., 2010). 

The propensity of an element to left traces in a mould is related with thermochemical properties, 

such as volatility, free energy of oxidation and chemical reactivity with the mould fabric. 

Generally, it was established that zinc exhibit the higher tendency to be enriched, being followed 

by lead and tin. By the contrary, copper was found to be present in relative proportions much lower 

than in the original alloy. Arsenic was not considered in this study but it is known to be highly 

volatile thus also exhibiting a higher tendency to become more enriched than copper (Craddock, 

1995). 

 

Metallic nodule is used as a broad term comprising melting and casting drops, as well as small 

droplets of metal found trapped in slag or crucible linings as result of two liquids immiscibility in 

certain temperature/composition ranges. Metallic nodules often contain useful information about 

the metallurgical process. The elemental composition gives indications about the type of metal 

being worked, while the cooling rate of the metallic nodule can be suggested by its microstructure. 

The latter provides additional information about the type of metallurgical operation that originated 

the nodule. A melting or casting drop will necessarily presents a high cooling rate, while a smelting 

nodule that remained attached to the slag in the crucible will exhibit a slow cooling rate. 

 

Slags are mainly composed by complex silicates that resulted from reactions between ore/metal 

with crucible fabric and wood ash used for heating during smelting and melting operations. 

Generally, smelting slags tend to be richer in iron silicates while the melting slags are richer in non-

ferrous silicates and wood ash (Tylecote, 1992). Furthermore, ancient smelting slags are very 

heterogeneous, containing all transitional stages between the thermal decomposition of ores up to 

the formation of metal phases (Hauptmann, 2007). The poor reducing conditions and low 

temperatures attained within the reaction vase during the earlier smelting operations prevent the 

formation of a fayalitic slag. Generally, the high viscosity of this immature slag causes the 

entrapment of numerous metallic nodules resulting in a high retention of metal. The study of LBA 

copper-based slags intends to identify the raw materials and process used in the production of 

bronze alloys, namely the co-smelting of copper ores with tin ores, smelting of tin ores with molten 

copper (cementation) or melting of metallic copper and tin in suitable proportions. 

 

The following sections present the study of the several metallurgical debris recovered during 

archaeological excavations at the southern of the Portuguese territory. 
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3.2. Entre Águas 5
1
 

Archaeological field works conducted during 2008 in the framework of the mitigation measures 

taken during the building up of the Serpa Dam led to the identification of Entre Águas 5 (Serpa). 

This archaeological site includes 3 hut floors and 6 pits, from where it was recovered a large 

collection of ceramic and lithic artefacts, in addition to metallic artefacts and metallurgical debris 

(Rebelo et al., 2009). The typological characteristics of the negative structures and material culture 

recovered are familiar to the LBA. The radiocarbon dating of the context containing the above 

mentioned production remains point to the 10th-9th centuries BC. 

 

The existence of a metallurgical workshop at this settlement is testified by the recovery from a 

single hut of several crucible fragments, a tuyere and numerous small clay fragments – “moulds?” 

(Figure 3.1). The crucibles 1374A and 1391A contain an handle with a quadrangular socket, in 

which a rod would be inserted to facilitate the handling of the crucible during metallurgical 

operations. This technological improvement is common in crucibles from the Eastern 

Mediterranean region since the beginning of metallurgy, but it is an unusual find in the 

archaeological record of the Iberian Peninsula (Urbina et al., 2007). The collection from Entre 

Águas 5 contains another crucible (316) that might also have presented this innovation, but the 

handle is fragmented, not showing any sign of the socket. 

 

The crucible 1374 presents a triangular shaped rim with a pouring lip that, eventually, will facilitate 

the transfer of the molten metal. The remaining set of crucibles comprises an edge (165) and three 

indistinct clay fragments (1373, 1374A1 and 1374A2). All crucibles exhibit heavily vitrified and 

slagged inner surfaces, sometimes with evident presence of metal oxides, which promptly indicate 

their use. Furthermore, their thick clay walls (up to ~2 cm) suggest that the heating was done from 

above, as it was common in these ancient metallurgical operations (Rovira, 2004). 

 

A small chip of charcoal entrapped in the slagged material of the crucible 1374 was radiocarbon 

dated, Beta 26318: 2710±40BP – 980-810 cal BC (2). Considering also the chronology obtained 

from radiocarbon dating of other materials from the same context, it seems certain that this 

metallurgical workshop belongs to the later stages of the LBA. 

 

                                                      
1
 Part of the content from this section was previously published (Valério et al., 2009). 
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Figure 3.1. Production remains from Entre Águas 5 (crucibles: 1374A; 1391A; 316; 1374; 165; 1373; 1374A1 and 

1374A2; tuyere: 1374B and moulds: 1432A; 1432B1-2; 1342C1-10). 
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The tuyere 1374B from Entre Águas 5 is made of clay and exhibits a cylindrical typology that is 

very common among BA tuyeres at the Iberian Peninsula (Urbina et al., 2007). Cylindrical tuyeres 

continue to be utilised during the EIA, but quadrangular tuyeres become increasingly more 

common among archaeological contexts of this period. The latter seem to result from the 

Phoenician colonisation because they are unknown at earlier archaeological records. Furthermore, a 

recent study involving a large collection of tuyeres recovered from the Phoenician settlement of La 

Fonteta, SE Spain (8th-7th centuries BC), established that quadrangular tuyeres predominate in 

contexts of iron production, whereas they are also present among copper-based metallurgical 

contexts (Renzi, 2007). The area closer to the air outlet of the tuyere 1374B is heavily vitrified and 

displays traces of slagged material and metal oxides, which prove that it was actually used in some 

type of metallurgical operation. 

 

The mould fragments (1432A, 1432B1-2 and 1432C1-10) display thin clay walls and, in most 

cases, their inner surfaces are clearly scorched from contact with the molten metal during casting. 

However, these moulds are highly shattered, which prevents the recognition of the artefacts to be 

produced. None of the inner surfaces of these mould fragments present any sign of slagged material 

or metal oxides. The thin walls and highly shattered state of these mould fragments might be an 

indication of the use of the lost wax method, thus being an evidence of premature contacts of local 

communities with technology brought by Mediterranean people. 

 

 

3.2.1. Crucibles 

The slagged and clay surfaces of the crucibles were analysed by EDXRF to establish the elements 

that are enriched in the areas affected by the metallurgical operation (some examples in Figure 3.2). 

The results from the comparison of EDXRF spectra of slagged and clay surfaces of all crucibles 

from Entre Águas 5 are summarised in Table 3.1.  

 

Table 3.1. Significant elements enriched in the slagged surfaces of crucibles from Entre Águas 5 (+: enriched element; 

the more discriminating elements are shaded). 

Artefact Type Reference Cu Zn As Pb Sn Sb 

crucible socketed handle 1374A + +  + + + 

crucible socketed handle 1391A + +  + + + 

crucible socketed handle (?) 316 +    + + 

crucible triangular rim 1374 +      

crucible edge 165 + + + + +  

crucible unknown 1373 +   + +  

crucible unknown 1374A1 +    + + 

crucible unknown 1374A2 +   + + + 
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The enrichment of some elements in the slag depends on the highly heterogeneous nature of the 

metallurgical process. Wood ash is mainly composed of C, Mg, P, K and Ca (Etiégni and 

Campbell, 1991), consequently the enrichment observed of some of these elements results from 

reactions involving wood ash. Considering the elements that usually are present in ancient copper-

based artefacts (Cu, Zn, As, Pb, Sn and Sb), it is important to mention that the significant volatility 

and high free energy of oxidation of Zn, in addition with its high reactivity with silicates of the 

clay, result in a high tendency to become enriched even if it is only present at trace level (Kearns et 

al., 2010). Copper and tin are more indicative of the type of metallurgy involved with these ancient 

production remains despite presenting different tendencies to become enriched in the slagged 

material. 

 

socketed handle crucible 1374A 

 

triangular rim crucible 1374 

 

Figure 3.2. EDXRF spectra of slagged and clay surfaces of socketed handle crucible 1374A and triangular rim crucible 

1374 from Entre Águas 5 (spectra of Ag and Gd secondary targets). 

 

EDXRF results evidence that nearly all crucibles from Entre Águas 5 are testimonies of the 

practice of the metallurgy of bronze at the settlement. The triangular rim crucible is the exception, 

since it is only enriched in copper. The presence of a tip in this crucible suggests that the crucible 
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charge is supposed to be completely liquefied during pouring. By the contrary, the smelting of 

metallic ores hardly beneficiates from a crucible with a tip, given that ancient smelting produce 

high viscosity slags. It is feasible that this crucible results from a different operation in the bronze 

production process, e.g. melting the copper nodules obtained from a previous smelting of copper 

ores. 

 

 

3.2.2. Slags 

3.2.2.1. Slag 1374A-s 

The sampling of the slag 1374A-s included the cutting of a complete segment of the socketed 

handle crucible 1374A, exposing the crucible fabric and slag layer cross-section from the base to 

the top of the reaction vase. The initial observation of the cross-section of the slag 1374A-s at low 

magnifications readily evidences its highly heterogeneous and porous nature including numerous 

globular inclusions of metals and oxides (Figure 3.3). 

 

 

Figure 3.3. Crucible 1374A from Entre Águas 5 (detail of cross-section evidencing the crucible fabric and slag layer). 

 

SEM-EDS and optical microscopy characterisation identified a very heterogeneous slag composed 

by a vitreous matrix of aluminium silicates with Na, Mg, K, Ca, Mn and Fe (Figure 3.4). This 

matrix is the result of reactions between metal and oxide melts with crucible fabric and charcoal 

ash. The abundant presence of magnetite (chemical formula: Fe[II]Fe[III]2O4) was also 

acknowledged, indicating an iron-rich slag under local oxidising conditions. This evidences the 

poor reducing atmosphere attained in the reaction vase during the metallurgical operation. 

Additionally, numerous globules of oxidised copper (cuprite and malachite), most likely formed 

from re-oxidising metallic copper indicate the limited control over the redox conditions. The 
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presence of metallic copper globules readily eliminates the possibility of bronze recycling. Bronze 

appears in metallic nodules that are sometimes partially or totally oxidised. 

 

 

Figure 3.4. SEM-BSE image and EDS spectra of slag 1374A-s from Entre Águas 5 (mag: magnetite; cup: cuprite; mal: 

malachite; phases identified by approximate stoichiometry given by EDS). 

 

A different region exhibits a similar vitreous matrix, numerous magnetite precipitations and small 

globular Cu-S formations with some iron (Figure 3.5). Cu-S inclusions evidence the existence of 

molten metal sulphide – matte. Smelting experiments conducted with copper oxides and carbonate 

ores with a significant amount of sulphides observed the presence of matte among the smelting 

remains (Hanning et al., 2010). The presence of sulphides can be understood as a natural 

association with oxides and carbonates among the copper ores used. 

 

 

Figure 3.5. SEM-BSE image and EDS spectra of slag 1374A-s from Entre Águas 5 (mag: magnetite; cup: cuprite; phases 

identified by approximate stoichiometry given by EDS). 
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Further analysed areas are composed by a similar matrix (complex aluminium silicate) containing 

numerous tin oxide inclusions as globular and euhedral needles (Figure 3.6). Some regions present 

aluminium silicate crystallites (dark needles). The euhedral tin oxide inclusions are a secondary 

product resulting from the oxidation of tin in the molten phase. However, the copper nucleus 

present in some of these tin oxide inclusions suggests that both elements were present as metals in 

an oxidising environment, i.e. tin was oxidised leaving a metallic core of copper (Dungworth, 

2000). The considerable abundance of tin oxide inclusions, together with the absence of metallic 

tin, is often seen as an evidence of the use of cassiterite instead of metallic tin to produce the 

bronze alloy (Rovira, 2004). 

 

 

Figure 3.6. SEM-BSE images and EDS spectra of slag 1374A-s from Entre Águas 5 (cup: cuprite; phase identified by 

approximate stoichiometry given by EDS). 

 

Metallic nodules are quite abundant in the slag 1374A-s, presenting variable dimensions (from a 

few micra up to 1mm) and different morphological characteristics (Figure 3.7). The high retention 

of metal in the slag is a common characteristic of primitive metallurgical processes that operate 

with the formation of immature slags. The high retention of metal derives from the high viscosity 

of these immature slags. 
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Figure 3.7. OM-BF images of metallic nodules entrapped in the slag 1374A-s from Entre Águas 5. 
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Generally, the microstructures of these nodules evidence the rather slow cooling rate of the slagged 

material – coarse granular microstructures (e.g. nodule M6, Figure 3.7). Occasionally, coarse 

microstructures facilitate the observation of coring (nodule M1, Figure 3.7). Another significant 

characteristic of the metallic nodules is their highly variable elemental composition, ranging from 

pure copper (copper nodule, Figure 3.4) to bronze with low or very high tin contents (Table 3.2). 

This variability is another evidence of the reasonably changeable conditions (T and pO2) attained 

along the reaction vase. Additionally, the low iron content of these metallic nodules is very 

significant, since it evidences the poor reducing environment attained during this metallurgical 

operation. In the same manner that copper nodules, the presence of bronze nodules with very high 

tin contents (~25%) indicates that this slag was not produced by a bronze recycling operation 

because coeval alloys with such high tin contents are very uncommon. Additionally, a recent 

experiment involving the co-smelting of copper ores with cassiterite also originated a slag with 

numerous metallic inclusions showing particularly variable compositions, i.e. from pure copper up 

to bronzes with ~80% Sn (Rovira et al., 2009). 

 

Table 3.2. Results of SEM-EDS and micro-EDXRF analyses of metallic nodules from Entre Águas 5                             

(rem - remainder; nd - not detected) 

Metallic nodule 
 SEM-EDS  micro-EDXRF 

Cu (%) Sn (%)  Sn (%) Pb (%) As (%) Fe (%) 

M1 rem 3.1  2.4 nd <0.1 <0.05 

M2 rem -  5.8 0.7 nd <0.05 

M4 rem 24.6  - - - - 

M7 rem 3.8  3.5 0.6 0.2 <0.05 

M9 rem 12.0  9.9 1.0 nd <0.05 

M10 rem 25.8  - - - - 

 

The SEM-EDS characterisation of these metallic nodules evidences the  phase with coring, 

together with numerous Cu-S and lead-rich inclusions (nodule M2, Figure 3.8). Some of the darker 

regions are copper oxides due to corrosion that is advancing from the outer rim to the interior of the 

nodule. Furthermore, bronze nodules that are richer in tin exhibit the characteristic + eutectoid 

(e.g. nodule M3, Figure 3.8). 
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Figure 3.8. SEM-BSE images of metallic nodules entrapped in slag 1374A-s from Entre Águas 5. 

 

3.2.2.2. Slag 1391A-s 

The sampling of the slag 1391A-s included the cutting of a small segment of the socketed handle 

crucible 1391A, exposing the crucible fabric and slag layer cross-section in an area close to the top 

of the reaction vase (Figure 3.9). 

 

 

Figure 3.9. Crucible 1391A from Entre Águas 5 (detail of the cross-section evidencing crucible fabric and slag layer). 



PRODUCTION REMAINS 

31 

 

SEM-EDS characterisation of the slag 1391A-s evidences a highly heterogeneous slag composed 

by a vitreous matrix (aluminium silicate with Na, Mg, K, Ca, Mn and Fe) with abundant copper 

inclusions, together with copper oxide and tin oxide precipitates (Figure 3.10). The weak reducing 

conditions attained during this metallurgical operation are quite obvious from the numerous 

magnetite inclusions spread all over the different iron-rich areas. 

 

  

Figure 3.10. SEM-BSE images of slag 1391A-s from Entre Águas 5 (Si-O: silica nodule from crucible fabric; mag: 

magnetite; cup: cuprite; phases identified by approximate stoichiometry given by EDS). 

 

The most valuable information is given by some relic mineral inclusions whose stoichiometry 

identified as mixed copper sulphides and oxides (Figure 3.11).  

 

  

Figure 3.11. SEM-BSE images of slag 1391A-s from Entre Águas 5 (mag: magnetite; mal: malachite; phases identified 

by approximate stoichiometry given by EDS). 

 

The morphology of these mineral inclusions is quite different from the more abundant globules of 

malachite, which most likely resulted from re-oxidising of metallic copper. During the 

metallurgical process, malachite minerals decompose into tenorite that is later reduced to cuprite. 

However, a particular high abundance of magnetite in these micro domains suggests a rather 
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oxidising atmosphere that seems to have prevented the complete reduction of these mineral 

inclusions. The presence of these relic copper minerals strongly suggests the smelting of copper 

oxide/carbonate ores with a significant amount of copper sulphides. 

 

3.2.2.3. Slag 316-s 

The sampling of the slag 316-s comprised the cutting of a small segment of the socketed handle 

crucible 316, exposing the crucible fabric and slag layer cross-section in the top area of the reaction 

vase (Figure 3.12). 

 

 

Figure 3.12. Crucible 316 from Entre Águas 5 (detail of the cross-section evidencing crucible fabric and slag layer). 

 

The SEM-EDS characterisation of the slag 316-s identified a complex vitreous matrix of 

aluminium silicate with Na, Mg, K, Ca, Mn and Fe (Figure 3.13). This slag is highly 

heterogeneous, comprising many different phases and inclusions, namely euhedral tin oxide 

needles, copper prills and dendritic magnetite. The enlarged image evidence tin oxide and metallic 

copper converging into a bronze nodule. 

  

  

Figure 3.13. SEM-BSE images of the slag 316-s (mag: magnetite; phase identified by approximate stoichiometry given 

by EDS). 
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These results are comparable to the obtained from the other two socketed handle crucibles (i.e. 

euhedral needles of tin oxide, metallic and copper oxide inclusions and abundance of magnetite 

inclusions) suggesting that all these socketed handle crucibles were involved in a similar 

metallurgical operation. 

 

 

3.2.2.4. Slag 1373-s 

The slag 1373-s was obtained by cutting of a small segment of the crucible 1373 to expose a small 

cross-section the crucible fabric and slag layer. This slag comprises a thin layer of a complex 

vitreous matrix (aluminium silicate with Na, Mg, K, Ca, Mn and Fe) with a few globular inclusions 

of bronze (Figure 3.14). 

 

  

Figure 3.14. SEM-BSE images of the slag 1373-s. 

 

 

3.2.2.5. Slag 1374A2-s 

The characteristics of the slag 1374A2-s, obtained by cutting of a small segment of the crucible 

1374A2, are very similar to the slags previously identified in the socketed handle crucibles. It is 

composed by a vitreous matrix (aluminium silicate with Na, Mg, K, Ca, Mn and Fe) with abundant 

magnetite inclusions, copper and copper oxide inclusions, globular and euhedral needles of tin 

oxide (Figure 3.15). This image shows a large copper prill with a bronze halo (oxidised) being 

surrounded by many tin oxide inclusions. 
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Figure 3.15. SEM-BSE images of the slag 1374A2-s (mag: magnetite; mal: malachite; phases identified by approximate 

stoichiometry given by EDS). 

 

 

3.2.2.6. Slag 1374-s 

The slag 1374-s was obtained by removing a small fragment of the slagged material present in the 

tip of the triangular rim crucible 1374. This slag is composed by a copper oxide/carbonate matrix 

with copper sulphide inclusions (Figure 3.16).  

 

  

Figure 3.16. SEM-BSE images of the slag 1374-s (mal: malachite; cup: cuprite; phases identified by approximate 

stoichiometry given by EDS). 

 

An uncommon silver inclusion was also identified, contrary to tin that was not detected (similarly 

to the results from the EDXRF analyses of this crucible). An interesting result was the 

morphological identification of the charcoal inclusion as belonging to the Erica sp. (heather)
2
. This 

species is very common in the southern Portuguese territory. According to a recent study (García-

Martínez and Ros-Sala, 2010), Erica sp. presents one of the highest calorific powers among the 

                                                      
2
 The taxonomic identification of the charcoal inclusion was made by Paula Queiroz (Terra Scenica) 
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woods usually used as fuel in ancient metallurgical operations. The pouring tip of this crucible 

suggests that it supposed to handle some kind of liquefied material. Additionally, the charcoal 

inclusions are more commonly found in completely liquefied slags (Hauptmann, 2007). Therefore, 

these evidences seem to suggest that this crucible was used to melt copper, probably copper 

nodules previously obtained from the smelting of mixed oxide/sulphide copper ores. 

 

 

3.2.3. Tuyere 

EDXRF analyses of the slagged and clay surfaces of the tuyere 1374B identified some enrichment 

in Mn, Cu, Sn and Sb in the slagged area (Figure 3.17). The significant enrichment in copper and 

tin readily connects this tuyere with the metallurgy of bronze implemented within the crucibles 

recovered from the “metallurgical” hut at Entre Águas 5. 

 

 

Figure 3.17. EDXRF spectra of slagged and clay surfaces of tuyere 1374B from Entre Águas 5 (spectra of Ag and Gd 

secondary targets). 

 

 

3.2.4. Moulds 

The comparison of the EDXRF spectra of inner and outer clay surfaces of mould fragments from 

Entre Águas 5 indicated that only some of them are slightly enriched in significant elements (Table 

3.3). It is not surprising that the mould fragments exhibit less evidences of a metallurgical element 

since the casting operation usually originates fewer residues than smelting or melting/refining. The 

increased presence of tin over copper results from the lower tendency of copper to become 

enriched during the casting operation. Nevertheless, the enrichment of these elements in some of 

fragments clearly indicates that these moulds were used to cast bronze alloys. Regarding the Pb, it 
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should be noted that its higher vapour pressure and reactivity with mould fabric should produce 

more “residues” if these mould were related with the casting of leaded bronze alloys. 

 

Table 3.3. Significant elements enriched in the inner surfaces of mould fragments from Entre Águas 5                             

(+: enriched element; the more discriminating elements are shaded). 

Artefact Type Reference Cu Zn As Pb Sn Sb 

mould unknown 1432A     +  

mould unknown 1432B1       

mould unknown 1432B2     +  

mould unknown 1432C1       

mould unknown 1432C2       

mould unknown 1432C3       

mould unknown 1432C4       

mould unknown 1432C5       

mould unknown 1432C6       

mould unknown 1432C7 +    +  

mould unknown 1432C8    + +  

mould unknown 1432C9       

mould unknown 1432C10       

 

 

3.3. Casarão da Mesquita 3 and 4
3
 

During 2006, emergency archaeological excavations at Casarão da Mesquita 3 (Évora) exposed 49 

pits, whose radiocarbon dating and ceramic typology integrate into the Middle/Late Bronze Age 

(Santos et al., 2008). The material culture recovered at this site includes a mould for flat axes. In 

the following year, another 68 pits were identified during emergency archaeological excavations 

conducted at Casarão da Mesquita 4, Évora (Nunes et al., 2007). This site is located only several 

hundred meters to west of Casarão da Mesquita 3, thus both locations are probably part of a much 

larger one. Artefacts recovered inside some of the negative structures from Casarão da Mesquita 4 

comprises two small crucibles and two metallic nodules that can be ascribed to the BA. 

 

The mould for flat axes from Casarão da Mesquita 3 (QC4/F8/C1) was carved in steatite stone. The 

recovered fragment corresponds to part of one valve, whose carved region match with the cutting 

edge of a flat axe (Figure 3.18). A black greasy powder sticking to the carved surface of the mould 

was identified as an organic dressing, which was probably obtained using a smoky flame from 

burning bones, i.e. bone black (Soares et al., 2007). The “so-called” bone black used in old 

paintings contain as little as 10% carbon – more or less the same percentage determined for this 

dressing – the remainder being mainly calcium phosphate with a little calcium carbonate (Plesters, 

                                                      
3
 A preliminary work with some content from this section was previously published (Soares et al., 2007). 



PRODUCTION REMAINS 

37 

 

1956). The presence of this dressing material attached to the mould after the long burial period is 

an exceptional circumstance. It allows a better knowledge of the materials used to protect the 

mould from high temperatures of casting during those ancient times. 

 

 

Figure 3.18. Steatite mould from Casarão da Mesquita 3 (A: outline of the flat axe blade with ~4cm width). 

 

The crucibles recovered at Casarão da Mesquita 4 are made of clay and exhibit relatively thick 

walls (Figure 3.19). The crucible 2600 belongs to a very shallow typology with a vitrified inner 

surface that clearly evidences the heating from above. Furthermore, both crucibles exhibit slagged 

inner surfaces with relics of metal oxides.  

 

  

Figure 3.19. Crucibles from Casarão da Mesquita 4 (including detail of slagged inner surface from crucible 2600). 

 

 

3.3.1. Crucibles 

The comparison of the EDXRF analyses of the slagged and clay surfaces of the crucibles from 

Casarão da Mesquita 4 evidences the enrichment in Ca, Mn, Cu and Sn (Figure 3.21 and Figure 

3.21). Additionally, the slagged surface of the shallow crucible 2600 seems to be enriched in iron 

(iron-rich slag?). The enrichment in calcium probably results from the reactions between wood-ash 
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and metal/oxides/crucible fabric, while the enrichment in copper and tin clearly indicate the 

relation of these crucibles with the metallurgy of bronze. This fact ascribes these metallurgical 

materials to the last centuries of the BA since the introduction of bronze in the southern region of 

the Portuguese territory was rather late, namely around 1400-1200 BC (Senna-Martinez, 2007). 

 

 

Figure 3.20. EDXRF spectra of slagged and clay surfaces of shallow crucible 2600 from Casarão da Mesquita 4 (spectra 

of Ag and Gd secondary targets). 

 

 

Figure 3.21. EDXRF spectra of slagged and clay surfaces of crucible edge 469 from Casarão da Mesquita 4 (spectra of 

Ag and Gd secondary targets). 

 

 

3.3.2. Slags 

3.3.2.1. Slag 2600-s 

The sampling of the slag 2600-s included cutting a segment of the crucible 2600 to expose a cross-

section of the slag layer. SEM-EDS characterisation identified a heterogeneous slag composed by a 
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complex vitreous matrix (aluminium silicate with Na, Mg, K, Ca, Mn and Fe) with abundant 

magnetite inclusions (Figure 3.22). 

 

  

Figure 3.22. SEM-BSE images of slag 2600-s from Casarão da Mesquita 4 (mag: magnetite; cup: cuprite; del: delafossite; 

phases identified by morphology and approximate stoichiometry given by EDS). 

 

Magnetite inclusions among this iron-rich slag evidence the oxidising conditions present at certain 

regions of the reaction vase. The shallow typology of the crucible 2600 makes more difficult to 

achieve a proper reducing atmosphere. Copper is present in various forms that evidence the 

different reactions among ore, metal, crucible fabric and wood ash, namely copper oxide, and 

metal. Additionally, copper is present as long needles of an iron rich phase, i.e. delafossite 

(chemical formula: Cu[I]Fe[III]O2). Delafossite, cuprite and magnetite are usually present among 

ancient iron-rich slags formed under rather oxidizing conditions (Hauptmann, 2007). Tin could not 

be detected by SEM-EDS characterisation despite being slightly enriched in the slagged surface of 

the crucible (see EDXRF spectra, Figure 3.20). 

 

 

3.3.2.2. Slag 469-s 

The sampling of the slag 469-s included cutting a segment of the crucible 469 to expose a cross-

section of the slag layer. The SEM-EDS characterisation identified a complex vitreous matrix 

(aluminium silicate with Na, Mg, K, Ca, Mn and Fe) with a few copper nodules (Figure 3.23). The 

relatively high iron content of these copper nodules (~0.8-1.2%) probably results from the superior 

reducing conditions in this micro domain. A second region was found to be especially rich in tin, 

containing both tin oxides and tin-rich nodules with a very variable composition, i.e. from copper 

to almost pure tin. The presence of metallic nodules with such different compositions, together with 

the absence of cassiterite needles, was used as an indicator of alloying of metallic copper and tin in 

EIA slags from Carmona, SW Spain (Rovira, 2005). 
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Figure 3.23. SEM-BSE images of slag 469-s from Casarão da Mesquita 4. 

 

 

3.3.3. Mould 

The steatite mould from Casarão da Mesquita 3 was analysed by EDXRF in the inner and outer 

surfaces in order to identify any significant production remains eventually present. Comparison of 

chemical elements present in both surfaces evidenced enrichment in Ca, Cu, Sn and Pb in the inner 

area (Figure 3.24). The enhanced content in Ca can result from the dressing material used. The 

presence of Cu and Sn establish that the mould was used to cast a bronze flat axe. Considering the 

chronology of this mould (i.e. ~1400-1200 BC), it probably constitutes one of the earliest known 

evidences of the practice of the bronze metallurgy at the southern Portuguese territory. 

 

 

Figure 3.24. EDXRF spectra of inner and outer surfaces of mould from Casarão da Mesquita 3 (spectra of Ag and Gd 

secondary targets). 
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3.3.4. Metallic nodules 

EDXRF analysis of the metallic nodule 41B from Casarão da Mesquita 4 indicates that it is mainly 

constituted by copper and tin, together with traces of iron. Optical microscopy observations reveal 

that the nodule is totally corroded, displaying an external layer composed mainly by malachite 

compounds (green areas) surrounding the inner core of cuprite compounds (Figure 3.25). 

Furthermore, higher magnifications disclose a relic fine dendritic microstructure that indicates a 

fast cooling rate. These characteristics are consistent with a small piece of molten bronze that fall 

from the crucible during a melting or pouring operation, thus cooling extremely fast due to the 

prompt temperature change and its very small dimension. 

 

 

Figure 3.25. Microstructure of metallic nodule 41B from Casarão da Mesquita 4 (OM-Pol, non-etched).   

 

Micro-EDXRF analysis of the metallic nodule 48A from Casarão da Mesquita 4 indicates that it is 

mainly composed by copper with traces of arsenic and iron (Table 3.4). Optical microscopy 

observations point to a microstructure of coarse Cu grains, large porosities, a small amount of twins 

and some copper oxide inclusions in the grain borders (Figure 3.26). The coarse microstructure 

evidences a slow cooling rate that is consistent with a smelting/melting nodule that was left in the 

crucible until it cools down. Copper oxide inclusions are very common among pre-historic copper 

artefacts, especially in those without a deoxidizing element, such as arsenic or tin. The somewhat 

poor reducing conditions achieved during those ancient smelting operations also originate metallic 

copper with very low iron contents (i.e. the nodule 48A presents Fe<0.05%). 

 

Table 3.4. Results of micro-EDXRF analysis of metallic nodule from Casarão da Mesquita 4 (nd - not detected). 

Sample Cu (%) Sn (%) Pb (%) As (%) Fe (%) 

48A 99.8 nd nd 0.15 <0.05 
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Figure 3.26. Microstructure of metallic nodule 48A from Casarão da Mesquita 4 (OM-BF, etched and OM-Pol, non-

etched, respectively). 

 

 

3.4. Salsa 3 

The archaeological excavations at Salsa 3 (Serpa) were carried out from 2005 to 2007, revealing 2 

hut floors and 8 pits, whose material culture can mostly be ascribed to the LBA (Deus et al., 2009). 

The material culture recovered includes two production remains, namely a large mould and a 

metallic nodule (Deus et al., 2009). The mould (Silo 4) was carved in stone and corresponds to a 

fragmented valve exhibiting the hilt section of a flat axe (Figure 3.27). The casting sprue, located at 

one end of the mould, undoubtedly indicates that this was a bivalve mould that was filled while in a 

vertical position. 

 

 

Figure 3.27. Stone mould from Salsa 3 (A: outline of flat axe with ~4cm width; B: casting sprue). 

 

 

3.4.1. Mould 

EDXRF analyses of the carved surface of this mould did not show any significant levels of metals, 

i.e. copper is only present at trace level (similar to the one found in the outer surface of mould), 

while lead and tin were not identified. 
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3.4.2. Metallic nodule 

The micro-EDXRF analyses of the metallic nodule 23 point to a bronze alloy with traces of lead, 

arsenic and iron (Table 3.5). However, these results should be considered merely indicative since 

the optical microscopy observations revealed a highly heterogeneous and corroded matrix (Figure 

3.28). The microstructural characterisation also exposes a microstructure constituted by coarse  

grains, suggesting a somewhat slow cooling rate, with coring (i.e. Cu content decreases along the 

grain section). The coarse grains are surrounded by smaller dendrites, clearly indicating that the 

final cooling rate of this nodule was much faster. Cu-S inclusions are present along regions 

between the larger grains. A possible explanation is that this metallic nodule corresponds to a 

smelting nodule that was removed from the crucible in the first stages of the cooling process, thus 

originating a much higher cooling rate. Another explanation concerns a partial remelting of the 

nodule (only the tin richer regions were melted down) with a later fast cooling rate. Finally, its low 

iron content (<0.05%) is indicative of the poor reducing conditions during the smelting of the 

copper present in this nodule. 

  

Table 3.5. Results of micro-EDXRF analysis of metallic nodule from Salsa 3. 

Sample Cu (%) Sn (%) Pb (%) As (%) Fe (%) 

23 85.4 14.5 0.10 <0.10 <0.05 

 

 

Figure 3.28. Microstructure of metallic nodule 23 from Salsa 3 (OM-BF, non-etched). 

 

 

3.5. Martes 

The archaeological site of Martes (Redondo) corresponds to a LBA settlement, possibly fortified, 

and located at the top of an hill (Calado and Mataloto, 2001). Archaeological excavations 

recovered two highly shattered production remains – a clay crucible and a stone mould. The clay 

crucible (M1) comprises half of a fragmented socketed handle and a small part of the inner wall of 

the reaction vase (Figure 3.29). This typologically more advanced socketed handle crucible must 

have been very similar to the socketed handle crucibles recovered at Entre Águas 5. 



PRODUCTION REMAINS 

44 

 

 

 

Figure 3.29. Crucible M1 from Martes (A: reaction area; B: fragmented handle; detail of the socket). 

 

The stone mould (M2) comprises a fragmented valve of a bivalve mould for casting several 

artefacts (Figure 3.30). At least 3 faces of the mould still present recognisable carved surfaces, but 

it is impossible to distinguish the complete shape of the artefacts to be produced. Face A exhibits 

one hole to insert a dowel for the correct alignment of the two valves, while face C presents a 

straight channel, which was probably carved to serve as pouring channel. 

 

   

Figure 3.30. Stone mould M2 from Martes (outline of recognisable carved surface at faces A, B and C). 

 

 

3.5.1. Crucible 

The comparison of the EDXRF analyses of the vitrified and clay surfaces of this crucible evidence 

the enrichment in K, Ca, Mn, Cu, Pb and Sn (Figure 3.31). These results indicate the relation of this 

socketed handle crucible with the metallurgy of bronze. The relatively higher enrichment in Pb 

results from the much higher propensity of this element to become enriched in this type of 

metallurgical debris than tin or copper (Kearns et al., 2010). Furthermore, the lack of slagged 

material still adhering to the clay in the reaction vase prevents a more detailed study, as the one 

conducted at the crucibles from Entre Águas 5. 
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Figure 3.31. EDXRF spectra of vitrified and clay surfaces of socketed handle crucible M1 from Martes (spectra of Ag 

and Gd secondary targets). 

 

3.5.2. Mould 

Several EDXRF analyses of the carved surfaces of this mould were unable to identify any 

production remains. Unfortunately, prehistoric moulds often do not present evidences of 

metallurgical contamination because these residues can easily be leached during the long burial 

time or removed during the discovery and cleaning of the artefact. 

 

 

3.6. Castro dos Ratinhos 

The archaeological excavations conducted from 2004 to 2007 at Castro dos Ratinhos (Moura) 

recovered a mould for “carp-tongue” swords belonging to the 12th-9th centuries BC (Berrocal-

Rangel and Silva, 2010). The mould (R1/Ic/L1) comprises a fragment of one of the two valves that 

originally should compose the mould, while the carved region corresponds to the tip section of the 

blade (Figure 3.32). The material elected to make this mould was sandstone since it is a relatively 

soft material that facilitates the carving operation. 

 

 

Figure 3.32. Sandstone mould from Castro dos Ratinhos (A: outline of leaf-shaped blade with ~2.5cm width). 
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3.6.1. Mould 

The EDXRF analyses of the inner and outer surfaces of the mould indicate that the carved area is 

enriched in K, Ca, Cu, Sn and Pb (Figure 3.33). The enrichment of K and Ca might be related with 

some kind of dressing material used to protect the mould from the high temperature of molten 

metal during pouring. The enrichment of copper, tin and lead in the carved surface indicates the 

casting of a bronze sword.  

  

 

Figure 3.33. EDXRF spectra of inner and outer surfaces of mould from Castro dos Ratinhos (spectra of Ag and Gd 

secondary targets). 

 

 

3.7. Discussion 

The integration of results obtained from the study of the production remains allows some important 

considerations about the LBA copper-based metallurgical technology at this region of the 

Southwestern Iberian Peninsula. First of all, it must be taken into account that the knowledge of 

nowadays regarding those ancient communities is often incomplete. For instance, despite the 

extensive archaeological works conducted at Castro dos Ratinhos, it is believed that only a small 

part of the site was actually excavated. Taking this into account, the obtained results seem to 

establish that the majority of the LBA sites present evidences of the practice of metallurgical 

activities (Figure 3.34). Furthermore, smelting/alloying and casting activities were often present at 

the same location (Salsa 3 presents a metallic nodule whose microstructure suggests a smelting 

origin, thus both smelting and casting activities could have been carried out at this site). The 

coordinated practice of smelting/alloying and casting activities at the same location can probably 

explain the shortage of ingots among the archaeological record since metal obtained from 

smelting/alloying could be melted down and directly poured into a mould. 
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Figure 3.34. Type of metallurgical operations among the LBA archaeological sites studied. 

 

Moreover, the relatively small number of production remains among the archaeological record 

suggests a small scale production, consistent with the one established at other coeval regions, 

namely the LBA central Portuguese territory, where it is believed that copper-based metallurgy was 

conducted at a domestic scale (Senna-Martinez and Pedro, 2000). 

 

The moulds studied are commonly made of soft stones (e.g. steatite or sandstone), while most 

crucibles are composed of ceramic materials. Some of the production remains show evolved 

typologies (multipurpose mould and socketed handle crucibles) that suggest a rather skilled 

metallurgical knowledge. Almost all production remains could be directly connected with the 

metallurgy of bronze, with the exception of the triangular crucible from Entre Águas 5 that only 

exhibits traces of copper. Nonetheless, to fully understand the meaning of the obtained results, it is 

imperative to begin by establishing the current state of the art regarding the ancient bronze 

production at the Iberian Peninsula. 

 

The archaeological record indicates that smelting operations were usually conducted in open-

mouthed ceramic vessels from the CA until the Pre-roman period, whereas the only significant 

change was a general trend to increase the size of the crucibles (Rovira, 2002). These crucibles 
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were filled with succeeding charges of crushed ore and charcoal. Due to the crucible open shape 

and, sometimes, overwork of the tuyeres, the redox conditions were far from ideal. Furthermore, 

silica or iron oxides were not added to the charge as fluxes and consequently no fayalitic slag was 

formed. Therefore, the ceramic crucible must be shattered at the end of the process, to recover the 

metallic nodules formed among this immature and high viscosity slag. Metallic nodules are then 

melted inside another crucible and poured into a mould or left to cool as an ingot. The study of 

several crucibles and slags from the MBA metallurgical site of Peñalosa (SW Spain), suggests that 

smelting was done in flat ceramic vessels that present heavily slagged inner surfaces, while melting 

of metallic nodules was conducted in deeper vessels exhibiting thinner slag layers (Moreno-

Onorato et al., 2010). 

 

The emergence of bronze does not seem to introduce any technological innovation regarding the 

smelting operations at the Iberian Peninsula because bronzes can be produced by co-smelting of 

copper and tin ores. Experimental trials established that the bronze alloy can be obtained through 

the direct reduction of copper and tin ores, using a crucible, tuyeres and charcoal as fuel (Rovira et 

al., 2009). It is only during the IA that the archaeological record begin to presents some evolved 

furnaces, but this transformation is not swift nor generalized, even among the regions with strong 

Phoenician influence (Gómez-Ramos, 1999). 

 

The somewhat scarce analytical studies of slags at the Iberian Peninsula seem to indicate that the 

production of bronzes begin with co-smelting (Rovira, 2005). This process continues to be 

generally utilised at least until the transition to the EIA. An example is the LBA/EIA socketed 

handle crucible from Las Camas (Madrid), whose abundance of cassiterite and cuprite, together 

with the absence of metallic tin indicated a co-smelting process. During the transition of the LBA 

to the EIA the cementation of metallic copper with cassiterite is evident from the slags at Gusendo 

de los Oteros (NW Spain). The LBA socketed handle crucible from Cerro de San Cristobal (Central 

Spain) was also used to smelt cassiterite with metallic copper (Rodriguez-Diaz et al., 2001). At the 

present moment, the first example in the archaeological record of alloying copper with tin emerge 

in an 8th-7th centuries BC slag from Carmona, Andalusia (Rovira, 2005). 

 

The analytical evidences obtained from the metallurgical debris from Entre Águas 5 indicate the 

co-smelting of copper ores and cassiterite. The copper ores exploited were oxides and carbonates 

with significant amounts of sulphides. The source of tin is not entirely certain, but analytical and 

archaeological evidences strongly point to the use of cassiterite instead of metallic tin. However, 

the 10th-9th centuries BC triangular rim crucible containing a copper-rich slagged material with no 

tin does not seems to fit into this metallurgical scenery. It is possible that this crucible was used to 

melt copper nodules obtained from a previous reduction of copper ores. The presence of a lip 
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greatly simplifies pouring of the molten metal into the mould. The use of metallic copper implies a 

new method other than the co-smelting for the production of bronze alloys at Entre Águas 5. 

Perhaps, these dissimilar metallurgical methods belong to slightly different chronological 

occupations of the settlement, which could not be differentiated through radiocarbon dating.  

 

The analytical data obtained from slagged crucible remains from Casarão da Mesquita 4 do not 

produce conclusive results about the type of method used in production of the bronze alloy. 

However, the common feature of all these slags is their highly heterogeneous and immature nature, 

which results from the poor and changeable redox conditions attained within the reaction vase. This 

characteristic feature of LBA metallurgy from the Iberian Peninsula originates a high viscosity slag 

with a high retention of metal, e.g. an crucible slag from the BA necropolis of Valdegalaroza (SW 

Spain) exhibit ~8% of copper (Pérez et al., 2002). The majority of metallic nodules produced 

exhibit very low iron contents since the redox conditions were not sufficient to reduce the iron 

impurities present in the process. Therefore, these ancient smelting operations would produce a 

metal with very low iron content (Craddock and Meeks, 1987). Finally, an important consideration 

was to find out that none of these production remains point to the recycling of bronze artefacts. 
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4. COPPER-BASED ARTEFACTS 

4.1. Early and Middle Bronze Age – some case studies 

4.1.1. Introduction 

During the early stages of this period the copper-based artefacts still present a relatively small 

number of typologies despite being already known for about one millennium. The archaeological 

record is mostly composed by awls, axes, saws, daggers, arrows, needles and some ornamental 

artefacts. Throughout the 2nd millennium BC there are small alterations in the typological 

panorama of metallic artefacts, the major novelty being the introduction of swords. Additionally, 

ornaments become more frequent, fact that can be understood as an evidence of the increased 

importance of metal as a prestige material (Rovira, 2004). 

 

The so-called Southwestern Bronze Age corresponds roughly to 2250-1200 BC, which is usually 

divided in EBA (2250-1800 BC) and MBA (1800-1200 BC). The copper-based metallurgy from 

this period is still poorly understood. An important and still unique revision, based mostly on semi-

quantitative analyses, established that this period did not bring any technological innovation – 

copper-based artefacts with significant arsenic contents are common since the middle of the 3rd 

millennium BC, when arsenical coppers seem to substitute copper artefacts (Soares et al., 1996).  

 

The introduction of arsenical coppers (As>2%) was understood as a metallurgical innovation 

(Craddock, 1995). The addition of arsenic to copper greatly improves the mechanical properties of 

the metal (Figure 4.1), but the enhanced increase of hardness is better achieved for very high 

arsenic contents (~7%), which usually are not found in ancient artefacts (Lechtman, 1996). In 

equilibrium conditions copper can dissolve up to 8% arsenic before the formation of the arsenic-

rich  phase (Figure 4.1), but under the relatively fast cooling rates commonly used this  phase has 

been observed in alloys with only 2% As (Northover, 1989). The significant presence of the 

arsenic-rich phase will make the alloy increasingly brittle. Arsenical coppers can be produced by 

the co-smelting of copper and arsenic ores (Lechtman and Klein, 1999). A fragment of pyrite ore 

associated with arsenopyrite, recovered from the Late Copper Age contexts at Castelo Velho de 

Safara (Moura), suggests that the co-smelting process was used at this region (Soares et al., 1985). 

The study of Late Copper Age copper-based artefacts and ores from Porto das Carretas (Mourão), 

evidence that the artefacts present significant amounts of arsenic, while this element was not 

present in the ores (Valério et al., 2007). However, smelting experiments had demonstrated that it 

is possible to obtain arsenical coppers from ores with low arsenic content (Hanning et al., 2010; 

Hauptmann, 2007). The higher affinity of arsenic with metallic copper than with slag will naturally 

produce an alloy richer in this element. 
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Several other archaeometallurgical evidences seem to be pointing in a different direction regarding 

the role of arsenic in copper. Most artefacts from the MBA Argaric Culture present arsenic contents 

bellow the values that are actually required to enhance the mechanical properties of copper, 3-4% 

As (Rovira, 2004). Additionally, the Iberian archaeological sites with the earlier evidences of 

copper metallurgy present both copper and arsenical copper artefacts, suggesting that coppers do 

not precede arsenical coppers (Ruíz-Taboada and Montero-Ruíz, 1999). CA and EBA/MBA copper 

artefacts from southern Portugal analysed by the SAM project (Junghans et al., 1968; 1974) exhibit 

a lognormal distribution of arsenic contents, which resembles the natural distribution of minor and 

trace elements in minerals (Müller et al., 2007). All these evidences suggest that the arsenic content 

is not an intentional addition, instead resulting from its natural variability in the copper ores 

exploited. In addition, the increased variability of the arsenic content in the archaeological 

panorama is an outcome from the poor control over the metallurgical processes, together with the 

probable remelting of artefacts – experimental studies had demonstrated that arsenic losses during 

recycling could be up to 50% (Tylecote et al., 1977). 

 

  

Figure 4.1. The hardness increase of copper and arsenical copper alloy by cold hammering (adapted from Coffyn, 1985) 

and copper-rich section of Cu-As phase diagram in equilibrium conditions evidencing the formation of the arsenic-rich  

phase at As-richer alloys (adapted from Subramanian and Laughlin, 1988). 

 

Bronze artefacts constitute a small part of the EBA/MBA artefacts and present a considerable 

compositional heterogeneity indicating a very poor control over the metallurgical process (Hunt-

Ortiz, 2003). It is possible that this novelty was initially more appreciated by the unique appearance 

of bronze rather than due to its mechanical properties (Montero-Ruíz, 1994). One of the first 

evidences of bronze metallurgical operations in this region is the mould for flat axes from Casarão 

da Mesquita 3 presented in this work. A recent work (Senna-Martinez, 2007) based on typological 
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data, together with the belief of a diffusion of the bronze metallurgy from the north to the south 

(i.e. sources of tin are located in the northern Portugal) led to the proposal of a late introduction of 

the bronze metallurgy in the southern region of the Portuguese territory (~1400-1200 BC). 

 

In general, operational sequences of the early phase of the EBA/MBA still present a strong 

Chalcolithic influence (i.e. most artefacts are only subjected to mechanical work), while the use of 

forging and annealing cycles gradually increases, thus becoming the more frequently used 

operational sequence by the end of the MBA period (Rovira, 2004). This does not mean that the 

use of mechanical and thermal treatments to improve the resistance of metallic artefacts was an 

innovation of the EBA/MBA. In fact, the majority of the copper artefacts from the Chalcolithic site 

of Valencina de la Concepción (SW Spain) were subjected to successive levels of thermal and 

mechanical treatments, i.e. casting, forging, annealing and final forging, evidencing a direct 

relation between the complexity of the manufacturing procedure and the hardness of the product 

(Nocete et al., 2008). 

 

The results on some EBA/MBA artefacts are presented in the following sections. Despite not 

belonging to the main theme of the present work, it was considered important to characterise a few 

artefacts from a period before the full development of the bronze alloys, to identify some aspects of 

the arsenical copper metallurgy at the south of the Portuguese territory. 

 

 

4.1.2. Anta do Malhão and Soalheironas 

The archaeological works conducted during 2004 at the megalithic necropolis of Anta do Malhão 

(Alcoutim) revealed a latter utilisation (Cardoso and Gradim, 2009). The characteristics of the 

burial uncovered, together with the typologies of the materials recovered from excavations, 

specifically ceramics and metals, situate the grave in the transition of the CA to the BA (~2250-

2000 BC). The copper-based artefacts recovered correspond to a long and narrow dagger and a 

Palmela point, AM/1 and AM/2 respectively (Figure 4.2). The dagger has a hilt without riveting, 

which is a characteristic inherited from the Chalcolithic period. 

 

During 2005, archaeological excavations on a small hill facing the Guadiana River uncovered 32 

cists containing a small number of ceramic and metallic offerings (Cardoso and Gradim, 2008) – 

the MBA necropolis of Soalheironas (Alcoutim). The copper-based collection comprises a dagger 

(Soa/1) and a throwing tip (Soa/2: arrow?) with the remainder of the riveting hole (Figure 4.2). 
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Figure 4.2. Copper-based artefacts belonging to the archaeological sites of Anta do Malhão and Soalheironas. 

 

The copper-based weapons were analysed by micro-EDXRF to establish their elemental 

composition (Table 4.1). Results indicate that these weapons are composed of arsenical copper 

alloys (i.e. As > 2%) with comparable arsenic contents (2.0 – 3.4%). Moreover, the only metallic 

impurity detected by micro-EDXRF analyses was iron, which is present at very low concentrations 

(<0.05%). 

 

Table 4.1. Results of micro-EDXRF analyses of copper-based artefacts from Anta do Malhão and Soalheironas (values in 

%; nd: not detected). 

Type Artefact Reference Context Cu As Pb Sn Fe 

Weapon Dagger AM/1 EBA 96.6 3.4 nd nd <0.05 

Weapon Arrow AM/2 EBA 97.8 2.2 nd nd <0.05 

Weapon Dagger Soa/1 MBA 96.9 3.1 nd nd <0.05 

Weapon Arrow (?) Soa/2 MBA 98.0 2.0 nd nd <0.05 

 

Microstructural characterisation by OM and SEM-EDS identified the common features of these 

artefacts, such as deformed equiaxial grains with annealing twins and slip bands (Table 4.2). Other 

regular feature is the presence of reddish inclusions at OM-Pol observations, later identified by 

SEM-EDS as being copper and arsenic oxides. These oxide inclusions are present in higher amount 

in the dagger from Soalheironas. Furthermore, both arrows (Soa/2 and AM/2) present monophasic 

microstructures, whereas the two daggers (Soa/1 and AM/1) exhibit a second phase rich in arsenic. 

In the microstructure of the dagger from Soalheironas, this As-rich phase is present at intergranular 

regions (bluish areas of OM-BF image at Figure 4.3C) with an homogeneous morphology, clearly 

different from the + eutectic of the dagger from Anta do Malhão (Figure 4.3A). The manufacture 

of these artefacts included mechanical and thermal operations, namely forging and annealing. The 

final forging procedure was applied with different intensities in each artefact, evident in deformed 

twins and slip bands densities. 
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Table 4.2. OM and SEM-EDS characterisation of copper-based artefacts from Anta do Malhão and Soalheironas (*: % 

given by micro-EDXRF; s: segregation bands; t: annealing twins; sb: slip bands; d: heavily deformed inclusions; C: 

Casting; A: Annealing; F: Forging; FF: Final Forging; : high amount; : low amount). 

Type Artefact Reference As* Phases As (EDS) Inclusions Features  Manufacture 

Weapon Dagger AM/1 3.4 
 

+ 
5.2; 6.8 

9.6; 27.9 
Cu-As-O equiaxial t, sb, d C+(F+A)+FF 

Weapon Arrow AM/2 2.2  - Cu-As-O equiaxial s, t, sb, d C+(F+A)+FF 

Weapon Dagger Soa/1 3.1 
 
As-rich 

- 

- 
Cu-As-O equiaxial t, sb(?) C+(F+A)+FF? 

Weapon Arrow (?) Soa/2 2.0  - Cu-As-O equiaxial s, t, sb, d C+(F+A)+FF 

 

 

  

  

Figure 4.3. Microstructures of copper-based artefacts from Anta do Malhão and Soalheironas (A: dagger AM/1 with 

detail on + eutectic; B: arrow AM/2; C: dagger Soa/1; D: arrow Soa/2; all OM-BF, etched). 

 

The SEM-EDS analyses performed at the dagger from Anta do Malhão allow a better 

characterisation of the As-rich phase. According to the equilibrium diagram of the Cu-As system 

(Figure 4.1), for hypoeutectic alloys, after the -Cu primary phase solidification, the second 

transformation comprises the liquid eutectic decomposition into +, where  is the Cu3As 

intermetallic, 29.6% As (Subramanian and Laughlin, 1988). SEM-EDS analyses of the dagger 

AM/1 characterise this + eutectic (Figure 4.4A) as being composed by  islands (with ~11% As) 
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surrounded by the  intermetallic with ~28% As. The quantification of the  island is overestimated 

since it also include some of the surrounding arsenic-rich  intermetallic. The  phase closer to this 

+ eutectic is richer in arsenic (with ~6% As) than the overall alloy (3.4%), evidencing the 

original segregation of arsenic in the  matrix during cooling. Copper and arsenic oxide inclusions 

display a very elongated morphology (Figure 4.4B), indicating the high deformation applied during 

the manufacture of this dagger. 

 

 

Figure 4.4. Microstructure of dagger AM/1 from Anta do Malhão (A and B: SEM-BSE images with EDS spectra of  

phase;  island;  intermetallic; 1: Cu-As-O inclusion). 

 



COPPER-BASED ARTEFACTS 

57 

 

4.1.3. Horta do Folgão
4
 

During 2009, archaeological excavations conducted at Horta do Folgão (Serpa) discovered several 

negative structures mostly attributed to the BA (Ponte et al., in press). The hypogeum 3 enclosed 

the skeletal remains of an adult together with a sword (F/1) with a riveting hilt containing, at least, 

6 rivets, although 4 of them (F/2 to F/5) are now detached from the main body (Figure 4.5). 

Additionally, a small awl (F/6) was recovered from the hypogeum 2, containing also the skeletal 

remains of an adult female. The radiocarbon dating of the skeletal remains from hypogeum 3 

allows including the burial into the 18th-16th centuries BC. 

  

 

Figure 4.5. Copper-based artefacts belonging to the archaeological site of Horta do Folgão (sword with analysis spots). 

 

Taking into account the size of the sword, it was considered important to study more than one area 

to ascertain about possible differences concerning elemental composition and manufacturing 

procedures. For that reason, several areas located along the blade were prepared for analysis – 3 

areas are lined up in the main axis of the sword, while the last is situated at the edge of the blade 

(see Figure 4.5). The end section of the sword was intentionally discarded since the corrosion 

phenomena at this thinner region of the sword make the preparing operation more hazardous 

regarding the stability of the artefact. The awl and 1 rivet were also prepared for micro-EDXRF 

analysis, while the remaining rivets were analysed by EDXRF without any preparation procedure 

(Table 4.3). 

 

The different areas of the sword present analogous elemental results indicating that the body of the 

blade is constituted by an homogeneous copper alloy with about 4.2% arsenic. The rivet exhibits a 

significant arsenic content (3.0%), while the awl presents a lower value (1.6%). Iron is the only 

noteworthy metallic impurity, being present at very low levels (<0.05%). 

 

                                                      
4
 A preliminary work with the content from this section was previously published (Ponte et al., in press). 
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Table 4.3. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Horta do Folgão (values in 

%;*: EDXRF analysis; nd: not detected; vest: <2; +: [2, 15]; ++: >15). 

Type Artefact Reference Context Cu As Pb Sn Fe 

Tool Awl F/6 BA 98.3 1.6 nd nd <0.05 

Tool Rivet* F/2 18th-16th ++ + nd nd vest 

Tool Rivet* F/3 18th-16th ++ + nd nd vest 

Tool Rivet F/4 18th-16th 97.0 3.0 <0.10 nd <0.05 

Tool Rivet* F/5 18th-16th ++ + nd nd vest 

         

Weapon Sword F/1 #1 18th-16th 96.0 4.0 nd nd <0.05 

  F/1 #2  96.0 4.0 nd nd <0.05 

  F/1 #3  95.5 4.5 nd nd <0.05 

  F/1 #4  95.5 4.5 nd nd <0.05 

  F/1 average  95.8 4.2 nd nd <0.05 

 

The microstructural characterisation using OM and SEM-EDS establish the different phases 

present, along with the common inclusions and manufacturing characteristics of each studied 

artefact (Table 4.4). 

 

Table 4.4. OM and SEM-EDS characterisation of copper-based artefacts from Horta do Folgão (*: % given by micro-

EDXRF; s: segregation bands; t: annealing twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: 

Annealing; F: Forging; FF: Final Forging; : high amount; : low amount). 

Type Artefact Reference As* Phases As (EDS) Inclusions Manufacturing characteristics 

Tool Awl F/6 1.6 
 

As-rich 
<0.10; 5.7 

18.6 
Cu-As-O equiaxial s, t, sb C+(F+A)+FF 

Tool Rivet F/4 3.0  2.3; 3.6 Cu-As-O equiaxial s, t, d C+(F+A) 

Weapon Sword F/1 4.2 
 
As-rich 

- 

- 
Cu-As-O equiaxial s, t, sb C+(F+A)+FF 

 

At the awl, segregation bands evidence an heavily cored microstructure where the regions richer in 

arsenic (brighter areas) correspond to regions that were the last to solidify in the original dendritic 

microstructure (Figure 4.6A). SEM-EDS analyses were able to quantify the segregation of the  

phase, i.e. arsenic contents varying from <0.10% to ~6%. Additionally, a second phase rich in 

arsenic was also identified, but the arsenic content determined (~19%) should be underestimated 

since it might include the surrounding  phase poorer in As. Such a heavy segregation in an alloy 

with an overall arsenic content (1.6% As) well below its solubility limit (~7-8% As, in equilibrium) 

evidences a fast cooling rate after pouring the alloy in the mould. This fast cooling rate is according 

with the very small size of the artefact, but suggests that there was not any intent to control its 

cooling. Manufacturing characteristics include also deformed equiaxial grains with annealing twins 

and slip bands evidencing mechanical and thermal operations. 
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Evidently, annealing was not sufficient to homogenize the microstructure of this awl. According to 

some authors (Northover, 1989), the annealing of arsenical coppers during ancient times were 

conducted with temperatures of about 300-400ºC. This range of temperatures is noticeably lower 

than the temperature necessary to homogenize this type of alloys in a reasonable time, i.e. ~600-

700ºC. Additionally, as the segregation intensity is the determinant factor regarding the 

homogenisation of arsenical coppers (Budd, 1991), this heavily segregated microstructure will 

require an even higher temperature to become fully homogenized. 

 

SEM-EDS analyses identify the common inclusions of copper and arsenic oxides (Figure 4.6D). 

Experimental works showed that during the melting operation arsenic will effectively detain 

oxygen (Northover, 1989), thus giving especially significance to the use of a reducing atmosphere 

during the melting of this type of alloys. The presence of arsenic prevents the significant formation 

of copper oxides, but arsenic retained in these oxidised inclusions will not contribute to the 

improving of the mechanical properties of the alloy. 

 

 

Figure 4.6. Microstructure of the copper-based awl F/6 from Horta do Folgão (A to C: OM-BF, etched; D: SEM-BSE 

image with EDS spectra of  phase; As-rich phase; 1: Cu-As-O inclusion). 

 

The sword presents a deformed equiaxial microstructure with annealing twins and slip bands 

(Figure 4.7). The microstructural characteristics of the different areas along the blade point to a 

general operational sequence comprising forging and annealing cycles, plus a final forging 
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operation. However, the different areas observed also revealed certain dissimilar microstructural 

features. The edge of the blade (area #4) shows a much smaller grain size than the central section 

(areas #1 and #3), establishing the higher deformation applied, definitely to obtain an edge with an 

increased hardness. Additionally, the central section closer to the tip of the blade (area #3) exhibits 

more slip bands than the section closer to the handle (area #1) suggesting a higher final 

deformation in a longitudinal direction of the blade. Similarly to the awl, the microstructure of the 

sword includes a second phase rich in arsenic (bluish areas of OM images from Figure 4.7). 

 

 

Figure 4.7. Microstructure of the copper-based sword F/1 from Horta do Folgão (areas #1, #3 and #4; OM-BF, etched). 

 

The rivet presents long segregation bands and heavily elongated inclusions (Figure 4.8) evidencing 

the high deformation applied during its manufacture. Despite the heavy contrast from etching, 

SEM-EDS analyses establish that arsenic variations in the  phase are minor (~3 to 5%), while the 

As-rich phase seems to be absent. This microstructure is not as heavily segregated as the one from 

the awl. It is also composed by equiaxial grains from recrystallization annealing, which was 

probably used to soften the material in order to allow further deformation. At the end, this will 



COPPER-BASED ARTEFACTS 

61 

 

result in a tougher material that is required for riveting the hilt of the sword. The high deformation 

induced by the riveting process is clearly visible in the microstructure of its head section (Figure 

4.8A – top left area). 

 

 

Figure 4.8. Microstructure of the copper-based rivet F/4 from Horta do Folgão (all OM-BF, etched). 

 

 

4.1.4. Monte da Cabida 3 

During 2009, archaeological works at Monte da Cabida 3 (Évora) uncovered several female burials 

containing a small collection of copper-based artefacts (Soares et al., 2009). The radiocarbon 

analyses were able to date this necropolis into the 15th-13th centuries BC. The copper-based 

collection from Monte da Cabida 3 is composed by 6 artefacts, namely 3 needles (MCAB/M1, 

MCAB/M1 and MCAB/M3) and 3 small fragments of unknown functionality (MCAB3/M8, 

MCAB3/M9 and MCAB3/L11, Figure 4.9). 

 

 

Figure 4.9. Copper-based artefacts belonging to the archaeological sites of Monte da Cabida 3. 

 

Results of micro-EDXRF analyses indicate that all needles and the fragment MCAB3/M8 are 

composed by arsenical copper alloys (Table 4.5). The composition of the fragment MCAB3/L11 

stands out of this set, being a pure copper with a considerably low arsenic content (<0.10%) and 
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somewhat higher iron content (0.33%) since all remaining artefacts present iron contents below the 

quantification limit (<0.05%). 

 

Table 4.5. Results of micro-EDXRF analyses of copper-based artefacts from Monte da Cabida 3 (values in %; nd: not 

detected). 

Type Artefact Reference Context Cu As Pb Sn Fe 

Tool Needle MCAB3/M1 15th-13th 97.2 2.8 <0.10 nd <0.05 

Tool Needle MCAB3/M2 15th-13th 94.1 5.9 <0.10 nd <0.05 

Tool Needle MCAB3/M3 15th-13th 94.6 5.4 <0.10 nd <0.05 

         

Unknown Fragment MCAB3/M8 15th-13th 97.4 2.6 <0.10 nd <0.05 

Unknown Fragment MCAB3/M9 15th-13th 99.0 1.0 <0.10 nd <0.05 

Unknown Fragment MCAB3/L11 15th-13th 99.6 <0.10 <0.10 nd 0.33 

 

The microstructural characterisation of these artefacts by OM and SEM-EDS is summarized in 

Table 4.6. Most microstructures exhibit deformed equiaxial grains with annealing twins and 

different densities of slip bands, except for the fragment MCAB3/M9 that appears to be hammered 

after casting. The inclusions more common are copper and arsenic oxides (e.g. Figure 4.10E3), 

while the fragment MCAB3/L11 presents a low amount of Cu-S inclusions. 

 

Table 4.6. OM and SEM-EDS characterisation of copper-based artefacts from Monte da Cabida 3 and Salsa 3 (*: % given 

by micro-EDXRF; s: segregation bands; t: annealing twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: 

Annealing; F: Forging; FF: Final Forging; : high amount; : low amount). 

Type Artefact Reference As* Phases As (EDS) Inclusions Features  Manufacture 

Tool Needle MCAB3/M1 2.8  
As-rich 

4.1 

26.2 
Cu-As-O equiaxial t, sb C+(F+A)+FF 

Tool Needle MCAB3/M2 5.9  
As-rich 

5.4 

27.1 
Cu-As-O equiaxial t, sb C+(F+A)+FF 

Tool Needle MCAB3/M3 5.4  
As-rich 

- 

- 
Cu-As-O equiaxial t, sb C+(F+A)+FF 

          

Unknown Fragment MCAB3/M8 2.6  - Cu-As-O equiaxial s, t, sb, d C+(F+A)+FF 

Unknown Fragment MCAB3/M9 1.0  - Cu-As-O equiaxial s C+F 

Unknown Fragment MCAB3/L11 <0.10  - Cu-S equiaxial t C+(F+A) 

 

The needles from Monte da Cabida 3 present very similar microstructures evidencing the use of 

forging and annealing cycles, plus a final forging operation (Figure 4.10). Annealing conditions 

were enough to recrystallize and partly homogenize the as-cast coring since segregation bands are 

absent. The As-rich phase is still present, mostly in the intergranular regions of the annealed grains 

of these needles. 
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Figure 4.10. Microstructures of copper-based artefacts from Monte da Cabida 3 (A: needle MCAB3/M1; B: needle 

MCAB3/M2; C: needle MCAB3/M3; D1 to D3: fragment MCAB3/M8; E: fragment MCAB3/M9; F: fragment 

MCAB3/L11; all OM-BF, etched, excluding E2: OM-Pol, non-etched). 
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Contrary, the As-rich phase is absent at the fragment MCAB3/M8 despite the similar arsenic 

content and operational sequence. This might be related with a slower cooling rate during 

solidification of the fragment MCAB3/M8 that minimized the inverse segregation of arsenic. In 

general, a higher efficiency of forging and annealing cycles will also assist the alloy 

homogenisation. 

 

Segregation bands are quite evident at the fragments MCAB3/M8 and MCAB3/M9 (Figure 4.10D2 

and E) evidencing the initial forging of the as-cast microstructure. In the first case, annealing was 

probably made at a low temperature that was not sufficient to homogenise as-cast segregation 

despite the relatively low arsenic content, whereas in the second fragment no evidences of 

annealing were found. By the contrary, the fragment MCAB3/L11 exhibits very well recrystallized 

grains with annealing twins. 

 

Additional SEM-EDS analyses were made on artefacts whose microstructure contains the As-rich 

phase in order to better characterise it. This As-rich phase seems to form a homogeneous layer 

close to the surface of the artefact, while becoming only present in intergranular regions at deeper 

regions (see Figure 4.11A: from bottom left to top right of SEM-BSE image we are looking at 

progressively deeper regions). 

 

 

Figure 4.11. Microstructures of needles MCA3/M1 and MCAB3/M2 (A, B and C: SEM-BSE images with EDS spectra of 

 phase; 1: Cu-As-O inclusion with reduced intensity of low energy peaks due to topographic effects). 
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The enrichment in superficial regions of the artefact suggests inverse segregation during the 

solidification of the alloy. The As-rich phase presents a similar composition in both artefacts 

(~26% and ~27% As) that correspond almost to the composition of the  intermetallic (29.6% As). 

However, the copper arsenic system can segregate the + eutectic (e.g. see the microstructure of 

the dagger AM/1, Figure 4.3A), but not the pure  intermetallic seen here surrounding the  grains. 

A previous work also identified this  intermetallic at intergranular regions, suggesting that it can 

precipitate from solid solution over archaeological times, thus being the result of post depositional 

alteration (Budd and Ottaway, 1995). Therefore, the presence of this  intermetallic along the grain 

boundaries results from long term precipitation in As richer regions of the α grains. 

 

The relatively high iron content and uncommon Cu-S inclusions of the fragment MCAB3/L11 

introduce some doubts regarding its actual integration in the MBA of the southern Portuguese 

region. It should be mentioned that the site of Monte da Cabida 3 also presents other contexts from 

the Roman period. However, the elemental characteristics should not be used to determine the 

chronological data of individual artefacts, so in the absence of more definitive answers, this artefact 

will still be included among the discussion of materials belonging to this period. 

 



COPPER-BASED ARTEFACTS 

66 

 

4.2. Late Bronze Age 

4.2.1. Introduction 

This period is especially characterised by a remarkable increase in the number of metal artefacts 

recovered from the archaeological record, being a testimony to a flourishing metal industry 

(Tylecote, 1992). It coincides with the full adoption of the bronze alloy that substitutes coppers and 

arsenical coppers. Typologies become more diversified, in particular with the production of more 

complex and finer artefacts. Their production is an outcome of the development of increasingly 

more versatile and advanced casting technologies, such as the use of a core for hollow casting, the 

utilization of multifaceted moulds and the heating of the mould prior to pouring. 

 

Generally, the Western European region was divided into two different metallurgical traditions. 

LBA communities from regions around the Mediterranean Sea, such as Sardinia, Sicily, Italy and 

Greece (Giardino, 1995; Hook, 2007; Kayafa, 2003), as well as, most of the Iberian Peninsula 

(Rovira, 2004), were using a technology of binary bronzes. On the other hand, the majority of 

metallic artefacts from LBA Atlantic Europe, such as the British Isles, Western France and 

Northwestern Iberia, were composed by leaded bronzes, i.e. Pb>2% (Rovira and Gómez-Ramos, 

1998). Lead enhances the fluidity of the molten bronze alloy and increases the temperature 

solidification range, thus facilitating the casting of large and/or complex artefacts. Additionally, the 

significant use of leaded bronzes can also be understood as an outcome from a shortage of tin, as at 

the LBA central Iberian Peninsula (Delibes de Castro et al., 2001). 

 

However, extensive sources of tin could be found during ancient times in the Northwestern region 

of the Iberian Peninsula (Penhallurick, 1986). Mediterranean regions imported tin from 

neighbouring areas. Low tin bronze alloys produced at the northeastern Italy during a local crisis in 

the trade of tin are a good indication of the importance of tin supply within the Mediterranean 

region (Giumlia-Mair, 2005a). The southern region of the Portuguese territory could obtain tin 

from the neighbouring area at north. The tin could be traded by copper obtained at the common 

copper sources of the southern region (Coffyn, 1985). 

 

Similarly to arsenical copper, the bronze alloy exhibits a much higher strength and increased 

capability to strain hardening by cold working than copper (Figure 4.12). The strain hardening 

effect of additions of tin or arsenic to copper is rather similar, especially for worked alloys, 

allowing an increase up to 4-5 times in the hardness of the material (Figure 4.12). Despite their 

comparable mechanical properties, bronzes replaced arsenical coppers within a relatively short 

period (~300-400 years) throughout the entire European and Middle Eastern world (Tylecote, 

1992). Several reasons have been pointed out to explain the abandonment of arsenical coppers, 
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namely the higher volatility of arsenic, the instability and toxicity of the As2O3 produced and the 

higher complexity of arsenic minerals over cassiterite (Mohen, 1990). 

 

  

Figure 4.12. The hardness increase of copper, Cu-8%As and Cu-8%Sn alloys by cold hammering (adapted from 

Tylecote, 1996) and the effect of tin and arsenic additions on the hardness of worked and annealed (C+(F+A)) and work 

hardened (C+(F+A)+FF) copper-based alloys (adapted from Tylecote, 1986). 

 

The temperature needed to melt a bronze is lower than to melt copper, while the high temperature 

solidification range of the bronze alloy results in a better castability, which improves significantly 

as tin content increases (Figure 4.13). 

 

 

Figure 4.13. Copper-rich section of Cu-Sn phase diagram evidencing the shift of the  “solvus” line between a situation 

close to the equilibrium (annealed) and a fast solidification (as-cast), (adapted from Hanson and Pell-Walpole, 1951). 
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However, under the usual casting conditions, a second phase rich in tin ( phase) starts to develop 

from very low tin contents (~4-5% Sn). A significant presence of this  phase in the alloy makes 

the artefact brittle and much more difficult to hammer. The annealing operation softens the metal 

by dissolution of  phase into  phase, but for tin contents higher than ~14% some  phase is 

always present. Therefore, the control over the tin content of a bronze alloy is very important to 

obtain an artefact with high mechanical properties, which is especially significant, even in those 

ancient times, for some tools and weapons. 

 

At the southern region of the Portuguese territory the LBA corresponds to the period between the 

end of the 2nd millennium BC and the beginning of the next, approximately 1200-800 BC. The 

elemental and microstructural characterisation of numerous LBA artefacts from this region will be 

presented in the following sections. The results typify the metallurgical technology present in this 

important region, located amongst the Atlantic and Mediterranean metallurgical traditions, thus 

allowing for the first time its integration into the metallurgical panorama of the LBA Iberian 

Peninsula. 

 

 

4.2.2. Entre Águas 5 

In addition to the significant collection of production remains that were presented in the previous 

section, the archaeological works at Entre Águas 5 (Serpa) also exposed several copper-based 

artefacts (Rebelo et al., 2009). 

 

The collection of 13 copper-based artefacts from Entre Águas 5 is mainly composed by ornaments, 

namely small beads (e.g. 1127a), a bracelet (314a) and two fibula fragments (411 and 1384a) 

(Figure 4.14). The tools are merely represented by a needle (491a) and a small awl (1554). Most of 

these artefacts came from the same archaeological context of the metallurgical production remains 

(hut X). The bracelet, fibula pin, needle and a fragment 314 belong to other archaeological 

contexts, although with a similar chronology (i.e. 10th-9th centuries BC). 
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Figure 4.14. Copper-based artefacts belonging to the archaeological site of Entre Águas 5. 

 

 

Selected artefacts from Entre Águas 5 were analysed by micro-EDXRF to determine the elemental 

composition (Table 4.7). Due to the advanced corrosion processes in the bead 1410, it was 

impossible to obtain the clean metallic alloy for micro-EDXRF analysis. Similarly, it was 

considered that the nail with a gold head 1495b should not be sampled nor cleaned for micro-

EDXRF analysis due to its significant museological value, being analysed by EDXRF to identify 

the main alloy constituents. 

 

Compositional results point out to binary bronze alloys, apart from the bead 1127a that is 

constituted by copper with very low tin content (1.6%). Lead is the main metallic impurity with 

contents up to 0.7%, while arsenic and iron present mostly values below the quantification limits 

(0.10% and 0.05%, respectively). 
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Table 4.7. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Entre Águas 5 (values in %; *: 

EDXRF analysis; nd: not detected; vest: <2; +: [2, 50]; ++: >50). 

Type Artefact Reference Context Cu Sn Pb As Fe 

Ornament Bead 1037 10th-9th 88.8 11.1 nd <0.10 <0.05 

Ornament Bead 1127a 10th-9th 97.6 1.6 0.49 0.33 <0.05 

Ornament Bead* 1410 10th-9th ++ + nd nd vest 

Ornament Bracelet 314a 10th-9th 94.6 5.0 0.27 <0.10 <0.05 

Ornament Fibula (axe?) 1384a 10th-9th 91.5 8.3 0.10 <0.10 <0.05 

Ornament Fibula (pin?) 411 10th-9th 89.6 10.3 nd nd <0.05 

         

Tool Needle 491a 10th-9th 93.1 5.9 0.69 0.20 <0.05 

Tool Awl 1554 10th-9th 88.3 11.6 nd nd <0.05 

Tool Nail* 1495b 10th-9th ++ + nd nd vest 

         

Unknown Ring (open) 1388 10th-9th 84.3 15.5 0.20 <0.10 <0.05 

Unknown Ring (open) 1425 10th-9th 87.1 12.7 0.12 <0.10 <0.05 

Unknown Fragment 314 10th-9th 90.1 9.5 0.20 <0.10 <0.05 

Unknown Fragment 1250 10th-9th 92.2 7.7 nd <0.10 <0.05 

 

This small collection of bronzes presents an average tin content of 9.7  3.2% (Figure 4.15). The 

distribution of tin contents among ornaments, tools and rings is by no means statistically 

significant, but it is useful to demonstrate that the higher tin artefacts are rings (1388 and 1425), 

while the only “unalloyed” copper is an ornament (1127a). Theoretically, rings and ornaments do 

not require a high mechanical strength, so the “abnormal” tin content of these artefacts might be 

related with their functionality. However, the reduced number of studied artefacts prevents any 

further considerations about the selection of alloys according to different artefact typologies. 

 

 
Figure 4.15. Distribution of tin contents in copper-based artefacts from Entre Águas 5 (white columns symbolize 

“unalloyed” copper artefacts, while darker columns symbolize artefacts with higher tin contents). 
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Most artefacts were further analysed by OM to identify its operational sequence, which is given by 

the type of microstructure, presence of annealing twins, inclusion morphologies and slip bands 

density (Table 4.8). All studied artefacts exhibit a deformed equiaxial microstructure with 

annealing twins, evidencing the use of forging and annealing operations. The considerable 

occurrence of Cu-S inclusions is another common feature to this collection. It must be noted that 

the classification of the amount of Cu-S inclusions is somewhat subjective because it derives from 

observation and comparison of OM images. However, it is rather significant that the artefacts from 

Entre Águas 5 present a considerable occurrence of these Cu-S inclusions since the analytical study 

of production remains from this site (previous chapter) established the co-smelting of copper oxide 

and carbonate ores with significant amounts of sulphides. 

 

Table 4.8. OM characterisation of copper-based artefacts from Entre Águas 5 (*: % given by micro-EDXRF; t: annealing 

twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: Annealing; F: Forging; FF: Final Forging; : high 

amount; : low amount). 

Type Artefact Reference Sn* Phases Inclusions Features  Manufacture 

Ornament Bead 1037 11.1  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Ornament Bead 1127a 1.6  Cu-S equiaxial t, sb C+(F+A)+FF 

Ornament Bracelet 314a 5.0  Cu-S equiaxial t, d C+(F+A) 

Ornament Fibula (axe?) 1384a 8.3  Cu-S equiaxial t C+(F+A)+FF 

Ornament Fibula (pin?) 411 10.3  Cu-S equiaxial t, sb C+(F+A)+FF 

         

Tool Needle 491a 5.9  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Awl 1554 11.6  Cu-S equiaxial t, sb, d C+(F+A)+FF 

         

Unknown Ring (open) 1388 15.5 , + Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (open) 1425 12.7  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Fragment 314 9.5  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Fragment 1250 7.7  Cu-S equiaxial t, sb C+(F+A)+FF 

 

Microstructural characterisation shows that the use of a final forging operation is equally used 

among ornaments, tools, rings and fragments. However, some microstructures display a higher 

density of characteristic slip bands (Figure 4.16) than others (Figure 4.17). This indicates a 

different amount of final deformation applied to some artefacts. The alloy with the higher tin 

content (ring 1388, 15.5%) corresponds to the only microstructure that is not completely 

homogenized, with a high amount of the α+δ eutectoid distributed along the ring microstructure 

(Figure 4.16C). 
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Figure 4.16. Microstructures of copper-based tools, rings and fragments from Entre Águas 5 (A: needle 491a; B: awl 

1554; C: ring 1388; D: ring 1425; E: fragment 314; F: fragment 1250; all OM-BF, etched). 
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Figure 4.17. Microstructures of copper-based ornaments from Entre Águas 5 (A: bead 1037; B: bead 1127a; C: bracelet 

314a; D: fibula axe(?) 1384a; E: fibula pin(?) 411; all OM-BF, etched). 

 

SEM-EDS analysis of the ring 1388 shows the high amount of Cu-S inclusions, the + eutectoid 

displaying an interdendritic morphology and more corroded in the regions closer to the surface 

(Figure 4.18). Semi-quantitative SEM-EDS point analysis indicate an  phase with 14.0% Sn, 

while the + eutectoid analysed attained 22.5% Sn. 
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Figure 4.18. Microstructure of ring 1388 from Entre Águas 5 (A: OM-BF, non-etched; B and C: SEM-BSE images with 

EDS spectra of  phase; + eutectoid; 1: Cu-S inclusion). 

 

The Vickers testing of selected artefacts evidences that most artefacts present comparable hardness, 

except for the well recrystallized bracelet 314a that exhibits a much lower value, 79 HV0.2 (Table 

4.9). It seems that the final forging procedure actually produces a harder material, but other factors 

like, tin content, recrystallized grain size and different phases also influence the hardness of the 

material. The high hardness of the ring 1388 (163 HV0.2) is a clear example of the effect of high 

tin contents, jointly by α phase saturation in tin and by precipitation of the harder δ phase. 

However, the high hardness of the needle 491a (154 HV0.2) evidences that even low tin content 

bronzes can be effectively strain hardened by final forging, i.e. it presents a very high amount of 

slip bands (Figure 4.16A). Regarding the differences among different typologies/functionalities of 

the artefacts, one must rely on a much higher number of samples to obtain reliable conclusions (a 

comparison involving data from all studied collections will be presented among the discussion). 

 

Table 4.9. Vickers microhardness of copper-based artefacts from Entre Águas 5 (relevant elemental and microstructural 

data obtained by micro-EDXRF and OM analyses is also presented). 

Type Artefact Reference Sn (%) Phases Manufacture HV0.2 

Ornament Bead 1037 11.1  C+(F+A)+FF 148 

Ornament Bracelet 314a 5.0  C+(F+A) 79 

Ornament Fibula (axe?) 1384a 8.3  C+(F+A)+FF 146 

Ornament Fibula (pin?) 411 10.3  C+(F+A)+FF 166 

Tool Needle 491a 5.9  C+(F+A)+FF 154 

Unknown Ring (open) 1388 15.5 , + C+(F+A)+FF 163 

Unknown Ring (open) 1425 12.7  C+(F+A)+FF 126 

Unknown Fragment 1250 7.7  C+(F+A)+FF 139 
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4.2.3. Baleizão 

A collection of metallic artefacts was accidentally discovered during 2004 at the neighbourhood of 

Baleizão (Beja). This metallic collection comprises some gold and copper-based materials, the 

latter presenting typologies that are familiar to the LBA period of the Portuguese territory (Vilaça 

and Lopes, 2005). 

 

The collection of 20 copper-based artefacts from Baleizão includes a serpentine fibula (392/26) 

(Figure 4.19), which is a typology very common during the LBA (Arruda, 2008). Tools comprise 3 

flat axes (392/7, 392/8 and 392/9) plus a remarkable set of 7 balance weights (392/19 to 392/25) 

(Figure 4.19). These balance weights include bitroncoconical – some with a piercing to insert the 

pondarium, in addition to discoidal and octahedral shapes. Bitroncoconical and discoidal 

typologies are usually found in LBA contexts, while the octahedral shape seems to be very rare, 

with only another known exemplar at the Portuguese territory – the balance weigh from the LBA 

site of Monte do Trigo, Castelo Branco (Vilaça, 2003). 

 

Additionally, the collection from Baleizão contains 8 rings (e.g. 392/10, 392/11 and 392/129) 

(Figure 4.19) most of them closed, while others are open. It is impossible to ascertain if the latter 

were manufactured as “open” rings or resulted from a breakage. Contrary, it is certain that closed 

rings were cast in circular moulds since it is generally accepted that bronze sections cannot be 

joined through heating and forging (Sarabia-Herrero et al., 1996). 
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Figure 4.19. Copper-based artefacts belonging to the archaeological site of Baleizão. 

 

Copper-based artefacts from Baleizão were analysed by micro-EDXRF to determine their 

elemental composition (Table 4.10). Only one balance weight was cleaned for the micro-EDXRF 

analyses due to the relevant archaeological and museological significance of these artefacts. The 

remaining were analysed by EDXRF to identify the main alloy constituents. EDXRF analyses also 

established that one of the rings (392/14) is composed by a copper-zinc alloy. Although a few pre-
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Roman brasses are known at the Iberian Peninsula, these only seem to occur since the 6th century 

BC among Orientalising contexts (Montero-Ruíz and Perea, 2007). As a consequence, the ring 

392/14 was not included in this study since brasses are out of the scope of this work. 

 

Table 4.10. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Baleizão                                   

(values in %; *: EDXRF analysis; nd: not detected; vest: <2; +: [2, 50]; ++: >50). 

Type Artefact Reference Context Cu Sn Pb As Fe 

Ornament Fibula (Serpentine) 392/26 LBA 90.7 9.1 nd 0.12 <0.05 

         

Tool Axe (flat) 392/7 LBA 87.3 12.5 nd 0.14 <0.05 

Tool Axe (flat) 392/8 LBA 88.8 11.0 nd 0.17 <0.05 

Tool Axe (flat) 392/9 LBA 88.6 11.0 0.20 0.13 <0.05 

Tool Weight (bitronc.)* 392/19 LBA ++ + vest vest vest 

Tool Weight (bitronc.)* 392/20 LBA ++ + vest nd vest 

Tool Weight (bitronc.)* 392/21 LBA ++ + vest vest vest 

Tool Weight (bitronc.)* 392/22 LBA ++ + vest vest vest 

Tool Weight (bitronc.)* 392/23 LBA ++ + vest vest vest 

Tool Weight (octahedral)* 392/24 LBA ++ + vest vest vest 

Tool Weight (discoidal) 392/25 LBA 91.4 8.4 nd 0.19 <0.05 

         

Unknown Ring (open) 392/10 LBA 89.9 10.0 nd <0.10 <0.05 

Unknown Ring (open) 392/11 LBA 89.8 10.1 nd 0.10 <0.05 

Unknown Ring (closed) 392/12 LBA 91.7 8.1 0.17 nd <0.05 

Unknown Ring (closed) 392/13 LBA 92.1 7.9 nd nd <0.05 

Unknown Ring (closed) 392/15 LBA 89.7 10.1 nd 0.15 <0.05 

Unknown Ring (open) 392/16 LBA 89.2 10.6 nd 0.12 <0.05 

Unknown Ring (closed) 392/17 LBA 88.7 11.1 0.19 <0.10 <0.05 

Unknown Ring (closed) 392/18 LBA 86.6 12.9 0.23 0.18 <0.05 

 

 

Artefacts analysed by micro-EDXRF are composed by binary bronze alloys with low metallic 

impurity contents, namely lead (up to 0.23%) and arsenic (up to 0.19%), while Fe always present 

contents below the quantification limit (0.05%). Tin contents present a narrow normal distribution 

around an average value of 10.2  1.6% (Figure 4.20). Once more, the distribution of tin contents 

among ornaments, tools and rings is by no means statistically significant, but it is useful to 

exemplify that in this collection, tools and rings display an analogous distribution of tin contents. 
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Figure 4.20. Distribution of tin contents in copper-based artefacts from Baleizão (darker columns symbolize artefacts 

with higher tin contents). 

 

The type of microstructure, phases present, annealing twins and slip bands density, plus common 

inclusions were determined by OM observations (Table 4.11). The occurrence of Cu-S inclusions is 

a common feature of these microstructures, whereas the + eutectoid is scarcer, being only 

present in a few (axe 392/7, weight 392/25, ring 392/11 and ring 392/18). The presence of + 

eutectoid in annealed alloys with low tin contents (i.e. 392/11: 10.1%) evidences the low efficiency 

of the forging and annealing cycles in homogenising the alloy. 

 

Table 4.11. OM characterisation of copper-based artefacts from Baleizão (*: % given by micro-EDXRF; t: annealing 

twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: Annealing; F: Forging; FF: Final Forging; : high 

amount; : low amount). 

Type Artefact Reference Sn* Phases Inclusions Features  Manufacture 

Ornament Fibula (Serpentine) 392/26 9.1  Cu-S equiaxial t, sb C+(F+A)+FF 

         

Tool Axe (flat) 392/7 12.5 , + Cu-S equiaxial t C+(F+A) 

Tool Axe (flat) 392/8 11.0  Cu-S equiaxial t C+(F+A) 

Tool Axe (flat) 392/9 11.0  Cu-S equiaxial t C+(F+A) 

Tool Weight (discoidal) 392/25 8.4 , + Cu-S dendritic  C 

         

Unknown Ring (open) 392/10 10.0  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (open) 392/11 10.1 , + Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (closed) 392/12 8.1  Cu-S dendritic  C 

Unknown Ring (closed) 392/13 7.9  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (closed) 392/15 10.1  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (open) 392/16 10.6  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (closed) 392/17 11.1  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (closed) 392/18 12.9 , + Cu-S equiaxial t C+(F+A) 
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Some of the artefacts from Baleizão exhibit the characteristic features of as-cast microstructures, 

namely dendrites with coring (Figure 4.21). However, despite the similar low tin contents of both 

alloys, the ring 392/12 presents a monophasic microstructure (Figure 4.21B), whereas the weight 

392/25 display the + eutectoid (Figure 4.21A), probably due to a faster cooling rate. 

 

  

Figure 4.21. Microstructures of copper-based artefacts from Baleizão, showing characteristic as-cast features (A: weight 

392/25; B: ring 392/12; OM-BF, non-etched and OM-BF, etched, respectively). 

 

The axes 392/7, 392/8 and 392/9 present deformed equiaxial grains with annealing twins (Figure 

4.22A, B and C, respectively), evidencing the use of forging and annealing operations. The density 

of the annealing twins is much lower in the axe 392/8, which is certainly related with the position 

of sampling. All axes were sampled at the blunt end since the blades were highly corroded. 

However, the axe 392/8 was sampled in a longitudinal area, which is obviously less deformed than 

the transversal areas sampled in the other two axes. The ring 392/18 display a comparable 

operational sequence (i.e. forging and annealing operations), but the high amount of the + 

eutectoid present (Figure 4.22D) indicates that the annealing conditions were not sufficient to 

completely homogenize the alloy. 
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Figure 4.22. Microstructures of copper-based artefacts from Baleizão with forging and annealing work (A: axe 392/7; B: 

axe 392/8; C: axe 392/9; D: ring 392/18; all OM-BF, etched). 

 

The fibula and most of the rings present deformed equiaxial microstructures with annealing twins 

and slip bands (Figure 4.23). The variable efficiency of the forging plus annealing cycles is very 

obvious from the different grain sizes present, ranging from the better (ring 392/16, Figure 4.23E) 

to the poorly worked (ring 392/10, Figure 4.23B). The presence of slip bands indicates that the 

operational sequence ended with a final forging operation, whose intensity can generally be related 

with the density of the slip bands. 
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Figure 4.23. Microstructures of copper-based artefacts from Baleizão with forging, annealing and final forging work (A: 

fibula 392/26; B: ring 392/10; C: ring 392/13; D: ring 392/15; E: ring 392/16; F: ring 392/17; all OM-BF, etched). 

 

The microstructure of the ring 392/11 was further investigated by SEM-EDS. Previous OM 

observations had already established that the annealing operation was not sufficient to completely 

homogenize the alloy since the + is still present. In addition, SEM-BSE images and EDS 

analyses evidence some coring (Figure 4.24B – spot analyses (1 and 2) show different tin 

contents), which indicates non-equilibrium solidification conditions, typical of as-cast alloys. 

Therefore, this microstructure is the result of an initial high heterogeneity from “as-cast” 

segregation, followed by poor annealing conditions (i.e. not enough temperature or time of 
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operation). Some minute Pb rich inclusions were also identified (Cu-Pb eutectic formed at 326 ºC 

with ~99.9% Pb content; the Cu and Sn peaks in EDS spectrum of the Pb inclusion are mainly from 

the surrounding Cu-Sn matrix). 

 

 

Figure 4.24. Microstructure of ring 392/11 from Baleizão (A: OM-BF, etched; B: SEM-BSE image with EDS spectra of 

 phase (1 and 2: coring); + eutectoid; 1: Pb rich inclusion; 2: Cu-S inclusion). 

 

Vickers testing of selected artefacts evidences variable hardness despite similar tin contents and 

operational sequences (Table 4.12). The lower hardness of the ring 392/10 (99 HV0.2) is certainly 

related with the larger grain size of this microstructure (Figure 4.23B), which, as was already 

mentioned, evidences the poor efficiency of the forging and annealing operations. The higher 

hardness obtained at the ring 392/11 (129 HV0.2) is probably due to the presence of the harder  

phase (additionally, the heterogeneous distribution of this  phase among the microstructure of the 

ring produced a lower confidence HV0.2 mean). Finally, the even higher hardness of the fibula 

392/26 (154 HV0.2) might be related to a superior final deformation evidenced by the higher 

density of slip bands (Figure 4.23A). 

 
Table 4.12. Vickers microhardness of copper-based artefacts from Baleizão (HV0.2 values in italic mean that the relative 

standard deviation of measurements is among 5-10%; relevant elemental and microstructural data obtained by micro-

EDXRF and OM analyses is also presented). 

Type Artefact Reference Sn (%) Phases Manufacture HV0.2 

Ornament Fibula (Serpentine) 392/26 9.1  C+(F+A)+FF 154 

Unknown Ring (open) 392/10 10.0  C+(F+A)+FF 99 

Unknown Ring (open) 392/11 10.1 , + C+(F+A)+FF 129 
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4.2.4. Other artefacts 

The archaeological sites of Salsa 3, Casarão da Mesquita 3, Santa Margarida and Quinta do 

Marcelo produced a small number of copper-based artefacts that were grouped in this section. 

 

The majority of the material culture recovered by archaeological excavations carried out at Salsa 3 

(Serpa) belongs to LBA contexts (Deus et al., 2009). The metallic set comprises an awl (S3/F5) 

and a small fragment (S3/N18) that probably belonged to a needle (Figure 4.25).  

 

The archaeological excavations at Casarão da Mesquita 3 (Évora)
5
 recovered two copper-based 

artefacts (Santos et al., 2008) – a small bead (CMQT3/F42) and a fragment of a blade 

(CMQT3/F49) with the riveting hole (Figure 4.25). 

 

Archaeological works conducted during 2008 at Santa Margarida (Serpa) revealed several LBA 

negative structures (Deus et al., in press), whereas a copper-based tranchet (or pendant?) was 

recovered at the surface layer (SM1, Figure 4.25). 

 

During 1986, archaeological works conducted at Quinta do Marcelo (Almada) identified a seasonal 

settlement that was probably related with gold digging activities at the Tagus estuary (Barros, 

1998). Radiocarbon dating points out to a LBA occupation belonging to the 11th–9th centuries BC. 

The copper-based artefacts consist of a tranchet (QM/0001, surface recovery) and a fragment 

(QM/1531), possibly from the blade of a knife (Figure 4.25). 

 

                                                      
5
 A preliminary work with some content from this section was previously published (Santos et al., 2008). 
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Figure 4.25. Copper-based artefacts belonging to the archaeological sites of Casarão da Mesquita 3, Santa Margarida, 

Salsa 3 and Quinta do Marcelo. 

 

The elemental characterisation using EDXRF and micro-EDXRF analyses indicates that the   

artefacts from Casarão da Mesquita 3, Santa Margarida, Salsa 3 and Quinta do Marcelo are 

constituted by binary bronze alloys, except for the awl from Salsa 3 that is composed by an 

arsenical copper alloy (Table 4.13). 

 

The micro-EDXRF results establishes that the bronze artefacts are composed of alloys with tin 

contents (~10%) close to the values obtained in other LBA sites studied in this work. The relatively 

high iron content (0.25%) of the tranchet from Quinta do Marcelo differentiates it from the 

remaining LBA artefacts, which usually present lower iron contents (<0.05%). However, it is 

possible that the tranchet belongs to a later chronology since it was recovered at the surface level. 
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Contrary, the awl from Salsa 3 might belong to an earlier period since it is composed by an 

arsenical copper. 

 

Table 4.13. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Casarão da Mesquita 3, Santa 

Margarida, Salsa 3 and Quinta do Marcelo (values in %; *: EDXRF analysis; nd: not detected; vest: <2; +: [2, 50]; ++: >50). 

Type Artefact Reference Context Cu Sn Pb As Fe 

Ornament Bead* CMQT3/F42 LBA ++ + nd nd vest 

Ornament Pendant (?) SM/1 LBA 88.8 10.0 0.12 0.97 <0.05 

         

Tool Blade (?)* CMQT3/F49 LBA ++ + vest vest vest 

Tool Awl S3/F5 LBA(?) 95.8 nd nd 4.1 <0.05 

Tool Needle (?) S3/N18 LBA 90.6 7.6 0.76 0.17 <0.05 

Tool Knife (?) QM/1531 11th-9th 92.5 7.3 0.18 nd <0.05 

Tool Tranchet QM/0001 11th-9th 90.5 8.8 0.36 nd 0.25 

 

Optical microscopy observations identified some common features of these bronze alloys as being 

constituted by monophasic microstructures (the + eutectoid present at the needle S3/N18 is only 

residual) with Cu-S inclusions, despite presenting rather different operational sequences (Table 

4.14). The awl S3/N18 presents microstructural characteristics that are common to other arsenical 

copper artefacts analysed at the previous chapter, namely Cu-As-O inclusions among an equiaxial 

microstructure with annealing twins and slip bands. 

 

Table 4.14. OM characterisation of copper-based artefacts from Santa Margarida, Salsa 3 and Quinta do Marcelo (*: % 

given by micro-EDXRF; t: annealing twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: Annealing; F: 

Forging; FF: Final Forging; : high amount; : low amount). 

Type Artefact Reference Sn* Phases Inclusions Features  Manufacture 

Ornament Pendant (?) SM/1 10.0  Cu-S coarse - C+A 

         

Tool Awl S3/F5 -  Cu-As-O equiaxial t, sb, d C+(F+A)+FF 

Tool Needle (?) S3/N18 7.8 , + Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Knife (?) QM/1531 7.3  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Tranchet QM/0001 8.8  Cu-S equiaxial t C+(F+A) 

 

The “pendant” SM/1 has a coarse microstructure (Figure 4.26A) that can either result from a very 

slow cooling rate after pouring or from a latter thermal treatment. However, considering that the 

pendant seems to be unfinished (i.e. it still exhibits some casting seams) and do not exhibits any 

traces of ever being used, it is more likely that its microstructure resulted from a controlled cooling 

during casting. 
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Figure 4.26. Microstructures of copper-based artefacts from Santa Margarida, Salsa 3 and Quinta do Marcelo (A: pendant 

SM/1; B: needle S3/N18; C: knife QM/1531; D: tranchet QM/0001; E: awl S3/F5; pendant SM/1: BF, non-etched; 

remaining: OM-BF, etched). 

 

The needle S3/N18 and the knife QM/1531 exhibit deformed equiaxial microstructures (Figure 

4.26B and C) from forging and annealing cycle(s). Additionally, the knife presents highly 

deformed Cu-S inclusions and a high density of slip bands, evidencing the high deformation 

applied throughout the entire manufacturing procedure and during the final forging operation, 

respectively. The tranchet QM/0001 displays annealed grains with exceptionally variable sizes 

(Figure 4.26D). The abnormal grain growth identified in some regions of this microstructure was 
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probably induced by a high annealing temperature, which indicates a rather poor control over this 

heat treatment. 

 

Vickers testing of selected artefacts evidences the hardening effect of the final forging procedure 

since the needle S3/N18 presents a much higher hardness than the recrystallized tranchet QM/0001 

(Table 4.15). Additionally, the exceptionally strong thermal treatment applied to the tranchet 

QM/0001 originated a very large grain size, resulting in a softer material, as proven by the very low 

Vickers microhardness (94 HV0.2). 

 

Table 4.15. Vickers microhardness of copper-based artefacts from Salsa 3 and Quinta do Marcelo (relevant elemental and 

microstructural data obtained by micro-EDXRF and OM analyses is also presented). 

Type Artefact Reference Sn (%) Phases Manufacture HV0.2 

Tool Needle (?) S3/N18 7.8 , + C+(F+A)+FF 149 

Tool Tranchet QM/0001 8.8  C+(F+A) 94 
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4.3. Early Iron Age 

4.3.1. Introduction 

The foundation of the first Phoenician colonies in the southern and western seaboard regions of the 

Iberian Peninsula during the late 9th and early 8th century BC (Barros and Soares, 2004; González 

de Canales et al., 2006; Neville, 2007; Nijboer and Van der Plicht, 2006; Torres-Ortiz, 1998) 

initiated a period of plentiful cultural and technological interactions. Phoenician people belong to a 

region where bronzes were known for a very long time. In fact, the bronze alloy was already used 

at the Eastern Mediterranean region since around 2600 BC. Furthermore, at the time of the 

Phoenician implantation at the Iberian Peninsula, weapons and tools from the Eastern 

Mediterranean region were often made with iron, whereas the bronze alloy was more related with 

ornaments and cult artefacts (Mohen, 1990). 

 

During the following centuries there was an increase in the exploitation of the rich mineral 

resources of the Iberian Peninsula, including of iron, silver and tin. In general, most Phoenician 

sites at the Iberian Peninsula show archaeological evidences of metallurgical activities (Neville, 

2007), either concerning the exploitation of mineral resources or the production of metallic 

artefacts, e.g. Quinta do Almaraz, Almada (Araújo et al., 2004), Cerro da Rocha Branca, Silves 

(Gomes, 1993), Monte Romero, SW Spain (Kassianidou, 1993) and La Fonteta, SE Spain (Renzi et 

al., 2009). Innovative metallurgical practices were introduced, as for instance the lost wax 

technique for casting complex artefacts. Moreover, new artefact typologies related to 

Mediterranean traditions and culture emerge (e.g. tweezers for body treatment or some specific 

types of fibula for vestment tighten). However, acculturation appears to have been a slow and 

selective process, very dependent on the social-economic and cultural development of local 

societies (Sieso, 2005). 

 

The good castability properties of leaded bronze alloys seem to be better understood. Contrasting 

with its apparent indiscriminate use at the LBA Atlantic world, leaded bronzes become more 

related to ornaments from the southwestern Iberian Peninsula (Montero-Ruíz et al., 2003). This 

situation has also been recorded in the southeastern region (Montero-Ruíz, 2008), evidencing that 

the increased use of leaded bronzes was widespread among the areas that experienced a strong 

Orientalising influence. 

 

Another important alteration regarding the alloy composition at Southwestern Iberian Peninsula 

seems to involve the general use of alloys somewhat poorer in tin (Rovira, 1995). The elemental 

composition of latter Orientalising bronze sets becomes more comparable to collections from 

related Mediterranean areas, such as Sardinia, Italy and Sicily (Giardino, 1995; Hook, 2007; Ingo et 
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al., 2006). However, there has been a general lack of metallurgical studies concerning this 

important period of the Iberian Peninsula. 

 

The following sections will present the result of several metallic collections belonging to the Early 

Iron Age. The results aim to contribute to fill that gap by establishing the evolution of the copper-

based metallurgical technology at the southern Portuguese territory and ascertaining about the 

actual outcome of the Mediterranean influences in this region. 

 

 

4.3.2. Castro dos Ratinhos
6
 

The archaeological works at Castro dos Ratinhos (Moura) revealed a complex fortified system 

implanted on top of an elevated ridge in the left bank of the Guadiana River (Berrocal-Rangel and 

Silva, 2010). The different contexts of this settlement can be ascribed to a period from the LBA 

until the Orientalising period. Radiocarbon dating established that the earlier contexts belong to the 

12th-9th centuries BC, whereas the latter contexts comprise the end of the 9th century BC and the 

8th century BC (Soares and Martins, 2010). Being contemporary of the first Phoenician colonies in 

the Iberian coastal areas, the latter phase of this settlement already present some Orientalising 

traces, such as habitat structures with a rectangular plan, imported wheel-turned pottery (red slip 

ware and amphorae) and iron artefacts. 

 

The collection of 47 copper-based artefacts comprises mostly ornaments, tools and rings, which 

belong mainly to the latter 8th century BC contexts. Ornaments include a bead, belt-locks, fibulae, 

a necklace-lock and a pendant. Fibulae are among the most common and interesting artefacts, 

including 1 serpentine (B1/IIc/M2), 2 double-spring (C1/Ia/M1 and C1/Ib/M3) and, possibly, 1 

Bencarrón type fibula (M3/IIb/M1) (Figure 4.27). The serpentine fibulae are frequent in the LBA 

Portuguese archaeological contexts, whereas double-spring fibulae present an extensive period of 

utilization that continues up to the Iron Age (Arruda, 2008). It is during the period of increasing 

Orientalising contacts that other types emerge in the Iberian Peninsula, such as Alcores, Bencarrón 

and Acebuchal fibulae (Ponte, 2006). Finally, one should underline two small conical heads 

(D1/Ib/M3 and N3/Ic/M1) that might also belong to fibulae (Figure 4.27). 

 

The collection of tools consists of chisels, fish-hook, knives, awl, nails, needles, tweezers and a 

balance weight (Figure 4.27). The balance weight (C1/sup/M1) exhibits a bitroncoconical shape, 

being the more common typology in the Portuguese territory during the 12th-9th centuries BC 

(Vilaça, 2003). Chronologically latter balance weights also present cubic, zoomorphic and 

                                                      
6
 Part of the content from this section was previously published (Valério et al., 2010a; 2010b; 2010c). 
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anthropomorphic typologies, while are frequently constituted by lead instead of copper-based 

alloys (e.g. 2 cubic balance weights composed by lead from Quinta do Almaraz (Valério et al., 

2003). Finally, a considerable number of artefacts from this collection present an unknown 

functionality, namely 7 fragments and 9 rings, comprising open (fragmented?), coiled and closed 

examples (Figure 4.27). 

 

 

Figure 4.27. Copper-based artefacts belonging to the archaeological site of Castro dos Ratinhos (A: Bencarrón fibula 

from Carmona evidencing the flat bow ending as a conical head, adapted from Almagro-Bash, 1966). 
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Table 4.16. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Castro dos Ratinhos (values 

in %; *: EDXRF analysis; nd: not detected; vest: <2; +: [2, 50]; ++: >50). 

Type Artefact Reference Context Cu Sn Pb As Fe 

Ornament Bead* B1/IIc/M3 12th-9th ++ + vest nd vest 

Ornament Bead* C1/IIa/M2 9th-8th ++ + vest vest vest 

Ornament Belt-lock A1/Ib/M1 9th-8th 89.6 10.3 nd 0.18 <0.05 

Ornament Belt-lock A1/IIa/M4 9th-8th 88.8 11.1 nd <0.10 0.06 

Ornament Fibula (Bencarrón) M3/IIb/M1 9th-8th 89.9 9.8 0.16 0.13 <0.05 

Ornament Fibula (Double-spring)* C1/Ia/M1 9th-8th ++ + vest vest vest 

Ornament Fibula (Double-spring) C1/Ib/M3 9th-8th 93.3 6.3 nd 0.43 <0.05 

Ornament Fibula (Serpentine) B1/IIc/M2 12th-9th 87.3 12.8 nd nd <0.05 

Ornament Fibula (conical head) D1/Ib/M3 9th-8th 84.1 15.9 nd nd <0.05 

Ornament Fibula (conical head)* N3/Ic/M1 9th-8th ++ + vest nd vest 

Ornament Fibula (spring)* B1/IIc/M4 12th-9th ++ + nd nd vest 

Ornament Fibula (spring)* C1/Sup/M2 12th-9th ++ + vest vest vest 

Ornament Necklace-lock D1/Ib/M1 9th-8th 90.0 9.4 0.30 0.12 0.14 

Ornament Pendant D1/IIa/M2 9th-8th 91.4 8.3 0.17 <0.10 <0.05 

         

Tool Chisel A1/IIa/M3 9th-8th 90.3 9.5 0.18 <0.10 <0.05 

Tool Chisel C1/Ic/M1 9th-8th 88.3 11.4 0.19 0.15 <0.05 

Tool Chisel D1/IIa/M3 9th-8th 89.5 10.2 nd 0.23 <0.05 

Tool Fish-hook D2/Ic/M1 9th-8th 90.6 9.2 0.10 <0.10 <0.05 

Tool Knife A2/IIc/M1 12th-9th 95.1 4.9 nd nd <0.05 

Tool Knife* B1/IIc/M1 12th-9th ++ + vest vest vest 

Tool Nail A2/IIa/M1 9th-8th 90.1 9.6 nd <0.10 0.16 

Tool Nail B1/IIa/M1 9th-8th 90.3 9.4 nd 0.10 0.11 

Tool Needle A1/IIa/M1 9th-8th 91.4 8.3 0.10 0.11 <0.05 

Tool Needle C1/Ib/M2 9th-8th 89.2 10.3 0.18 0.29 <0.05 

Tool Needle C1/IIa/M1 9th-8th 91.4 8.5 nd nd <0.05 

Tool Needle D1/Ib/M2 9th-8th 92.3 7.2 0.30 0.19 <0.05 

Tool Needle R1/IIc/M1 9th-8th 93.0 6.9 nd nd <0.05 

Tool Awl C1/Ib/M4 9th-8th 93.6 6.3 nd 0.10 <0.05 

Tool Tweezers D1/IIc/M2 12th-9th 90.3 9.6 nd <0.10 <0.05 

Tool Weight (bitronc.) C1/Sup/M1 9th-8th 84.2 15.5 0.18 <0.10 <0.05 

         

Weapon Dagger* D2/IIb/M1 9th-8th ++ + nd vest vest 

         

Unknown Ring (closed) A4/Ia/M1 9th-8th 85.7 14.3 nd <0.10 <0.05 

Unknown Ring (closed) B1/IIa/M2 9th-8th 85.7 13.7 nd 0.51 <0.05 

Unknown Ring (closed) B1/Ic/M1 9th-8th 92.2 7.8 nd <0.10 <0.05 

Unknown Ring (closed) C2/Ic/M1 9th-8th 88.4 10.5 0.97 0.16 <0.05 

Unknown Ring (coiled) Q1/Ib/M1 9th-8th 88.8 10.8 0.16 0.18 <0.05 

Unknown Ring (open) D1/IIa/M4 9th-8th 86.9 12.7 0.18 0.14 <0.05 

Unknown Ring (open) D1/IIc/M1 12th-9th 89.3 10.7 nd nd <0.05 

Unknown Ring (open) D2/IIa/M2 9th-8th 86.8 13.1 nd 0.12 <0.05 

Unknown Ring (open) N3/IId/M1 9th-8th 89.1 10.3 0.15 0.16 <0.05 

Unknown Fragment* D1/IIa/M1 9th-8th ++ + vest nd vest 

Unknown Fragment D2/IIa/M3 9th-8th 89.4 9.3 1.3 <0.10 <0.05 

Unknown Fragment S1/Ia/M1 9th-8th 91.6 8.3 nd <0.10 <0.05 

Unknown Fragment A1/IIa/M2 9th-8th 90.1 9.7 0.14 0.10 <0.05 

Unknown Fragment D2/IIa/M1 9th-8th 86.5 13.5 nd nd <0.05 

Unknown Fragment D2/IIa/M4 9th-8th 90.7 8.5 0.80 <0.10 <0.05 

Unknown Fragment* D2/IIa/M5 9th-8th ++ + vest vest vest 
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The alloy composition of the majority of these artefacts was determined by micro-EDXRF analyses 

conducted at areas cleaned from the superficial corrosion layer (Table 4.16). The artefacts that 

could not be cleaned nor sampled were analysed by EDXRF to identify the main alloy constituents. 

 

Results indicate that the collection of metallic artefacts from Castro dos Ratinhos is entirely 

composed of copper-tin alloys with impurities of lead, arsenic and iron. The quantitative analyses 

point to bronze alloys with very low impurity contents, namely of lead (only 3 artefacts present 

contents above 0.30%) and arsenic (only 2 artefacts present contents above 0.29%). Furthermore, 

iron is always present in remarkably low concentrations (<0.05%), except in 3 artefacts (necklace-

lock and nails: 0.11-0.14%) that belong to latter 8th century BC contexts. 

 

Regarding the distribution of the main alloying element, results indicate that the collection present 

a normal like distribution with an average of 10.1 ± 2.5% (Figure 4.28). Despite no noticeable 

differences between the alloy type in ornaments and tools, it should be noted that the few examples 

presenting higher tin contents (12-14%) are rings and other artefacts (e.g. conical heads, serpentine 

fibula and balance weight) that usually do not require high mechanical strength. 

 

 
Figure 4.28. Distribution of tin contents in copper-based artefacts from Castros dos Ratinhos (darker columns symbolize 

ornaments, tools and rings with higher tin contents). 

 

Selected artefacts were analysed by OM to identify different phases and common inclusions. In 

addition, operational sequences were established with the characteristic signatures of annealing and 

hammering operations, namely type of microstructure, annealing twins, inclusion morphologies 

and slip bands density (Table 4.17). 
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Table 4.17. OM characterisation of copper-based artefacts from Castro dos Ratinhos (*: % given by micro-EDXRF; t: 

annealing twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: Annealing; F: Forging; FF: Final Forging; 

: high amount; : low amount). 

Type Artefact Reference Sn* Phases Inclusions Features  Manufacture 

Ornament Fibula (Double-spring) C1/Ib/M3 6.3  Cu-S equiaxial t, sb C+(F+A)+FF 

Ornament Fibula (conical head) D1/Ib/M3 15.9 , + Cu-S dendritic - C 

Ornament Fibula (conical head) N3/Ic/M1 -  - dendritic - C 

Ornament Necklace-lock D1/Ib/M1 9.4 , + Cu-S equiaxial t, sb C+(F+A)+FF 

Ornament Pendant D1/IIa/M2 8.3  Cu-S coarse - C 

         

Tool Knife A2/IIc/M1 4.9  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Needle A1/IIa/M1 8.3  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Needle C1/Ib/M2 10.3  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Needle C1/IIa/M1 8.5  Cu-S equiaxial t C+(F+A) 

Tool Needle D1/Ib/M2 7.2  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Needle R1/IIc/M1 6.9  Cu-S equiaxial t C+(F+A) 

Tool Awl C1/Ib/M4 6.3  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Weight (bitronc.) C1/Sup/M1 15.5 , + Cu-S coarse - C 

         

Unknown Ring (closed) A4/Ia/M1 14.3 , + Cu-S dendritic - C 

Unknown Ring (open) D1/IIa/M4 12.7 , + Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Ring (open) D1/IIc/M1 10.7 , + Cu-S equiaxial t C+(F+A) 

Unknown Ring (open) D2/IIa/M2 13.1 , + Cu-S coarse sb C+A+F 

Unknown Ring (open) N3/IId/M1 10.3  Cu-S coarse sb C+A+F 

Unknown Fragment S1/Ia/M1 8.3  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Fragment A1/IIa/M2 9.7 , + Cu-S equiaxial t C+(F+A) 

Unknown Fragment D2/IIa/M4 8.5  Cu-S equiaxial t C+(F+A) 

 

“As-cast” artefacts from Castro dos Ratinhos account for about 25% of the analysed artefacts, 

comprising mainly ornaments plus 1 weight and 1 ring. These artefacts present as-cast 

microstructures constituted by dendritic structures or coarse grains (Figure 4.29). Faster cooling 

rates originate dendritic microstructures with evident primary and secondary arms. As the cooling 

rates diminish, the microstructures become more homogenized, exhibiting progressively coarser 

dendrites that ultimately develop into coarse grains at very slow cooling rates (as seen in Figure 

4.29). 

 

The “as-cast” artefacts with higher tin contents (~14-16%) exhibit the characteristic + eutectoid 

in the regions that were the last to solidify (Figure 4.29A and E), with the exception of the ring 

(Figure 4.29C), in which the interdendritic regions are completely corroded. A closer observation 

of the microstructure of the weight also reveals the coring of the  grains (Figure 4.29F). During 
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solidification sulphur was segregated into the liquid phase due to its low solubility in copper, 

precipitating as Cu2S in the last regions to solidify. Therefore, Cu-S inclusions are often close to 

the + eutectoid (e.g. see Figure 4.29F). 

 

  

  

  

Figure 4.29. Microstructures of copper-based artefacts from Castros dos Ratinhos, generally showing the effect of 

increasingly slower cooling rates on “as-cast” microstructures (A: conical head D1/Ib/M3; B: conical head N3/Ic/M1; C: 

ring A4/Ia/M1; D: pendant D1/IIa/M2; E and F: weight C1/Sup/M1; all OM-BF, non-etched). 

 

Some of these microstructures present “inclusions” of metallic copper (appearing pink in BF 

illumination) that derives from long term redeposition. This corrosion process of bronzes is 

characterized by tin oxide formation and metallic copper redeposition at internal regions where 
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oxygen concentration is low. These copper “inclusions” are commonly found in archaeological 

bronze alloys and are frequently used as an indicator of long term corrosion (Bosi et al., 2002). 

 

The rings D2/IIa/M2 and N3/Id/M1 present a rather unusual type of microstructure among the 

collections studied, being partially homogenized and deformed (Figure 4.30). This type of 

microstructures might result from a deficient annealing process due to low temperature (under 

critical deformation for recrystallization) or insufficient time of operation. In any case, the high 

density of slip bands in both microstructures indicates that these rings were finished by forging. 

Furthermore, certain slip bands appear to be distorted indicating that the final hammering was 

probably performed to bend the ring. Other significant characteristics include the islands of the + 

eutectoid present in the ring with high tin content (13.1%), clearly indicating the principal direction 

of development of the original dendrites. Additionally, the ring D2/IIa/M2 exhibits an abnormal 

density of large pores originated by degasification during the cooling. This type of casting defects 

is unusual among the artefacts studied, indicating a poorer control over the temperatures of the 

mould and molten metal during pouring. Copper sulphide inclusions are more resistant to the 

alteration processes and some still remain in the corroded regions. 

 

  

Figure 4.30. Microstructures of copper-based artefacts from Castro dos Ratinhos with “annealing” and forging work (A: 

ring D2/IIa/M2 and B: ring N3/Id/M1; both OM-BF, etched). 

 

Artefacts that were subjected to forging and annealing cycle(s) present deformed equiaxial 

microstructures with annealing twins (Figure 4.31). This particular type of manufacturing 

procedure accounts for about 25% of the analysed artefacts. Cu-S inclusions are common in all 

these microstructures, whereas the ring D1/IIc/M1 exhibit the + eutectoid (Figure 4.31D), 

despite a relatively low tin content (10.7% Sn). Corrosion evidences a residual dendritic 

microstructure, which is superimposed by recrystallized grains only in the regions closer to the 

surface (Figure 4.31C). Consequently, the thermomechanical treatments were probably only 

applied as a surface finishing of the ring. 
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Figure 4.31. Microstructures of copper-based artefacts from Castros dos Ratinhos with forging and annealing work (A: 

needle C1/IIa/M1; B: needle R1/IIc/M1; C and D: ring D1/IIc/M1; E: fragment A1/IIa/M2; F: fragment D2/IIa/M4; all 

OM-BF, etched). 

 

The type of microstructure more common at Castro dos Ratinhos (with a frequency of around 40%) 

presents equiaxial grains with annealing twins and slip bands (Figure 4.32). The presence of slip 

bands imply a manufacture finished with a final forging, which intensity can be related with the 

density of the slip bands, e.g. the flat fragment S1/Ia/M1 (Figure 4.32G) clearly suffered a much 

higher final deformation than the awl C1/Ib/M4 (Figure 4.32E). 
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Figure 4.32. Microstructures of copper-based artefacts from Castros dos Ratinhos with forging, annealing and final 

forging work (A: fibula C1/Ib/M3; B: needle A1/IIa/M1; C: needle C1/Ib/M2; D: needle D1/Ib/M2; E: awl C1/Ib/M4; F: 

ring D1/IIa/M4; G: fragment S1/Ia/M1; all OM-BF, etched). 
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In the microstructure of the flat fragment S1/Ia/M1 (Figure 4.32G) is very clear that intragranular 

corrosion along crystallographic planes evidence the slip bands, being a very useful indicator of 

corroded microstructures that were kept in a strain hardening condition. Besides, these 

microstructures present comparable characteristics to the ones already described, such as common 

Cu-S inclusions and + eutectoid in the alloys with higher tin contents (e.g. ring D1/IIa/M4, 

12.7% Sn Figure 4.32F). Furthermore, the ring D1/IIa/M4 exhibits a high density of large pores 

(Figure 4.32F) due to a significant degasification during the casting operation. This seems to be a 

rather uncommon characteristic among the collection of copper-based artefacts studied. 

 

A particularly remarkable microstructure was selected for further study by SEM-EDS – the knife 

A2/IIc/M1 exhibits heavily deformed grains, annealing twins and a few slip bands (Figure 4.33). 

Furthermore, copper sulphide inclusions are very elongated, clearly evidencing the high total 

deformation applied to obtain the final artefact shape. This indicates an operational sequence that 

comprises several forging and annealing cycles (high total deformation) followed by a rather 

limited final forging procedure. SEM-EDS analyses reveal Sn-O inclusions associated with some 

Cu-S inclusions. Tin oxide inclusions are less deformed probably due to their higher hardness. Tin 

oxide inclusions can be non-reacted ore or could also result from partial tin oxidation during 

melting (Klein and Hauptmann, 1999). The oxide inclusions would normally be transferred to the 

slag but a low casting temperature would prevent this occurring (Dungworth, 2000). 

 

 

Figure 4.33. Microstructure of the knife A2/IIc/M1 from Castro dos Ratinhos (A: OM-BF, etched; B: SEM-BSE with 

EDS spectra of  phase; 1: Sn-O inclusion; 2: Cu-S inclusion). 

 

Another noteworthy example (necklace-lock D1/Ib/M1) also displays a worked microstructure 

overlaying few remaining dendrites (Figure 4.34). The presence of cored dendrites together with 

some + eutectoid in a bronze alloy with relatively low tin content (9.4%), point to an incomplete 

recrystallization and homogenisation of the microstructure due to either a short time or low 

temperature of the annealing operation. It should be noted that recrystallization starts to take place 



COPPER-BASED ARTEFACTS 

99 

 

at around 500 ºC, while homogenisation of the tin microsegregation is only achieved at slightly 

higher temperatures, such as that of 650-700 ºC (Northover, 2004). The presence of iron, in this 

case associated with Cu-S inclusions, reflects the relatively higher content of this element in the 

alloy (0.14%). Lead is dispersed in small Pb rich globules due to its low miscibility in molten 

bronze (in this case, the Cu and Sn peaks in the EDS spectrum of the Pb inclusion are mainly from 

the surrounding Cu-Sn matrix). 

 

 

Figure 4.34. Microstructure of the necklace-lock D1/Ib/M1 from Castro dos Ratinhos (A: OM-BF, etched; B and C: 

SEM-BSE with EDS spectra of  phase (1 and 2: coring); + eutectoid; 1: Pb rich inclusion; 2: Cu-S-Fe inclusion). 

 

The Vickers microhardness of selected copper-based artefacts from Castro dos Ratinhos is 

presented in Table 4.18. The single as-cast artefact (pendant D1/IIa/M2) tested presents the lowest 

hardness (78 HV0.2) among the collection due to its coarse microstructure (Figure 4.29D). Other 

low hardness artefacts include the group of annealed artefacts (Figure 4.31), together with others 

with a less significant final forging procedure (needle D1/Ib/M2 and awl C1/Ib/M4; Figure 4.32D 

and E, respectively). By the contrary, artefacts with higher hardness (needle A1/IIa/M1, needle 

C1/Ib/M2 and fragment S1/Ia/M1; Figure 4.32B, C and G, respectively) exhibit higher deformation 

and/or smaller grain size. Despite a higher final deformation, the low hardness of the fibula 

C1/Ib/M3 (101 HV0.2) is most likely due to its larger grain size (Figure 4.32A). 

 

The numerous needles tested evidence that a same typology can present very different hardness 

values, in this case varying from 94 to 192 HV0.2. The intensity of the final forging seems to be the 

controling factor regarding the hardness since the other significant factors (phases, tin content and 

grain size) seem to be rather similar in all these needles. The presence of the harder  phase do not 

seem to be very significant, probably because when it is present it is always in very low amounts 

that do not produce a significant increase in the overall hardness of the material. 
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Table 4.18. Vickers microhardness of copper-based artefacts from Castro dos Ratinhos (relevant elemental and 

microstructural data obtained by micro-EDXRF and OM analyses is also presented). 

Type Artefact Reference Sn (%) Phases Manufacture HV0.2 

Ornament Fibula (Double-spring) C1/Ib/M3 6.3  C+(F+A)+FF 101 

Ornament Necklace-lock D1/Ib/M1 9.4 , + C+(F+A)+FF 124 

Ornament Pendant D1/IIa/M2 8.3  C 78 

       

Tool Knife A2/IIc/M1 4.9  C+(F+A)+FF 125 

Tool Needle A1/IIa/M1 8.3  C+(F+A)+FF 192 

Tool Needle C1/Ib/M2 10.3  C+(F+A)+FF 164 

Tool Needle C1/IIa/M1 8.5  C+(F+A) 94 

Tool Needle D1/Ib/M2 7.2  C+(F+A)+FF 100 

Tool Needle R1/IIc/M1 6.9  C+(F+A) 108 

Tool Awl C1/Ib/M4 6.3  C+(F+A)+FF 95 

       

Unknown Ring (open) D1/IIa/M4 12.7 , + C+(F+A)+FF 142 

Unknown Ring (open) D1/IIc/M1 10.7 , + C+(F+A) 108 

Unknown Fragment S1/Ia/M1 8.3  C+(F+A)+FF 160 

Unknown Fragment A1/IIa/M2 9.7 , + C+(F+A) 94 

Unknown Fragment D2/IIa/M4 8.5  C+(F+A) 100 

 

 

4.3.3. Quinta do Almaraz
7
 

Archaeological excavations conducted during 1988 on an elevated platform over the Tagus estuary 

revealed the site of Quinta do Almaraz, Almada (Barros et al., 1993). This settlement is considered 

one of the ancient Phoenician foundations of the west coast of the Iberian Peninsula (Melo et al., in 

press). The material culture includes a valuable collection of copper-based, iron and gold artefacts, 

together with a significant amount of production remains (i.e. slags, crucibles and tuyeres) that 

point to a local metallurgy of iron, silver and gold (Araújo et al., 2004). The site was already 

occupied during the LBA, but the archaeometallurgical materials largely belong to latter contexts. 

The radiocarbon dating established that the metallurgical material culture can generally be ascribed 

to the 9th-7th centuries BC, even though a small part might belong to a wider period that continues 

up to the 5th century BC (Barros and Soares, 2004). 

 

The collection of copper-based artefacts selected for study comprises 30 artefacts, mostly 

ornaments and tools. The ornaments are bracelets and fibulae (Figure 4.35), the latter being too 

incomplete to allow a secure identification. Nevertheless, some of the fibulae fragments 

                                                      
7
 Part of the content from this section was previously published (Valério et al., 2012). 
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(MAH4414, MAH9622 and MAH10114) are compatible with the Acebuchal type, which is a 

typology very frequent in the Portuguese territory during the EIA (Ponte, 2006).  

 

 

Figure 4.35. Copper-based artefacts belonging to the archaeological site of Quinta do Almaraz (A: Acebuchal fibula from 

the Iberian Peninsula, adapted from Almagro-Bash, 1966). 
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Tools comprise several typologies that are rather common among indigenous typologies (e.g. fish-

hooks, awls, rivets and handles), whereas the tweezers (MAH4411) are relatively rare (Figure 

4.35). Unsurprisingly, fish-hooks are among the more frequent typologies recovered from this 

riverside settlement. Fish-hooks studied present two different types – with or without barb (e.g. 

MAH9446 and MAH8475, respectively), which might indeed correspond to some chronological 

evolution (Melo et al., in press). This collection of copper-based artefacts is completed by an 

arrowhead (MAH9456) and several fragments of unknown functionality, e.g. U453/11/7 (Figure 

4.35). 

 

The collection from Quinta do Almaraz was analysed by micro-EDXRF to determine the alloy 

composition (Table 4.19). The artefacts that could not be cleaned were analysed by EDXRF to 

identify the main constituents of the alloy. 

 

The results evidence the presence of different groups of copper-based materials, namely 

“unalloyed” coppers (Sn <2% and Pb <2%), binary bronzes (Sn >2% and Pb <2%) and ternary 

bronzes (Sn and Pb >2%). These groups present similar contents of metallic impurities – arsenic is 

below detection limits in almost all artefacts, while iron present rather higher contents (0.4  0.3%) 

when compared to the other studied collections. 
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Table 4.19. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Quinta do Almaraz (values in 

%; *: EDXRF analysis; nd: not detected; vest: <2; +: [2, 50]; ++: >50). 

Type Artefact Reference Context Cu Sn Pb As Fe 

Ornament Bracelet MAH9600 9th-7th 93.8 5.3 0.19 nd 0.68 

Ornament Bracelet* MAH9605 9th-7th ++ + nd nd vest 

Ornament Bracelet U453/11/81 LBA 93.8 5.9 nd nd 0.27 

Ornament Fibula (Acebuchal?) MAH4414 9th-7th 98.8 nd 0.24 0.66 0.25 

Ornament Fibula (Acebuchal?) MAH9622 9th-7th 92.9 6.2 0.66 nd 0.24 

Ornament Fibula (pin) A12/34A 9th-7th 90.9 8.0 0.19 nd 0.80 

Ornament Fibula (pin-rest)* MAH10114 9th-7th ++ + vest nd vest 

Ornament Fibula (pin-rest)* A12/8/31A 9th-7th ++ + vest nd vest 

Ornament Fibula (pin-rest)* K311/4/17 9th-7th ++ + vest nd vest 

Ornament Fibula (spring) MAH4424 9th-7th 94.1 5.0 0.58 nd 0.29 

         

Tool Fish-hook* MAH8475 9th-7th ++ + nd nd vest 

Tool Fish-hook MAH9446 9th-7th 91.5 2.4 5.9 nd 0.16 

Tool Fish-hook* A12/8/31B 9th-7th ++ + vest nd vest 

Tool Fish-hook J274/4/19 9th-7th 92.0 7.2 0.16 nd 0.58 

Tool Awl C4/3/9 9th-7th 94.3 5.3 0.23 nd 0.16 

Tool Awl U453/Ba/5 LBA 95.6 3.2 0.63 nd 0.42 

Tool Rivet J294/5/10 9th-7th 97.8 1.2 <0.10 nd 0.91 

Tool Rivet (?) A12/34B 9th-7th 99.7 nd <0.10 <0.10 0.21 

Tool Situla handle MAH4403 EIA 99.6 nd <0.10 <0.10 0.36 

Tool Tweezers MAH4411 9th-7th 88.9 6.2 4.6 nd 0.27 

         

Weapon Arrowhead MAH9456 9th-7th 91.5 8.1 0.20 nd 0.15 

         

Unknown Fragment A12/4/19A 9th-7th 97.0 1.4 1.1 nd 0.45 

Unknown Fragment U453/11/117 LBA 98.1 1.4 0.10 nd 0.31 

Unknown Fragment A12/4/19B 9th-7th 96.7 2.2 0.60 0.10 0.36 

Unknown Fragment A12/8/31A 9th-7th 99.3 nd 0.41 nd 0.27 

Unknown Fragment J282/4/12A 9th-7th 97.8 1.6 0.18 nd 0.37 

Unknown Fragment A12/8/31B 9th-7th 90.8 7.7 0.16 nd 1.3 

Unknown Fragment J282/10/32A 9th-7th 94.1 4.8 0.55 nd 0.50 

Unknown Fragment J282/6/18A 9th-7th 96.1 3.0 0.28 nd 0.64 

Unknown Fragment* K311/4/17 9th-7th ++ + nd nd vest 

 

The ternary bronzes are represented by a fish-hook (MAH9446: 5.9% Pb) and a tweezers 

(MAH4411: 4.6% Pb), whereas artefacts constituted by “unalloyed” copper seem to be more 

related with tools than with ornaments (Figure 4.36). However, binary bronzes still constitute the 

more representative group at Quinta do Almaraz, but exhibiting a lower average tin content (5.4  

2.0%), with no noticeable difference among ornaments and tools (Figure 4.36). 
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Figure 4.36. Distribution of tin contents in copper-based artefacts from Quinta do Almaraz (white columns symbolize 

“unalloyed” copper artefacts). 

 

The OM characterisation evidences the microstructural homogeneity of this collection, i.e. the 

artefacts present monophasic and deformed equiaxial microstructures with Cu-S inclusions and 

having undergone forging and annealing procedures (Table 4.20).  
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Table 4.20. OM characterisation of copper-based artefacts from Quinta do Almaraz (*: % given by micro-EDXRF; t: 

annealing twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: Annealing; F: Forging; FF: Final Forging; 

: high amount; : low amount; +: tail of arrowhead). 

Type Artefact Reference Sn* Phases Inclusions Features Manufacture 

Ornament Bracelet MAH9600 5.3  - equiaxial t, sb C+(F+A)+FF 

Ornament Bracelet U453/11/81 5.9  Cu-S equiaxial t, sb C+(F+A)+FF 

Ornament Fibula (Aceb.?) MAH4414 nd  Cu-S equiaxial t C+(F+A) 

Ornament Fibula (Aceb.?) MAH9622 6.2  Cu-S equiaxial t, sb C+(F+A) 

Ornament Fibula (pin) A12/34A 8.0  Cu-S equiaxial t, sb C+(F+A)+FF 

Ornament Fibula (spring) MAH4424 5.0  Cu-S equiaxial t, sb C+(F+A)+FF 

         

Tool Fish-hook MAH9446 2.4  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Fish-hook J274/4/19 7.2  Cu-S equiaxial t C+(F+A) 

Tool Awl C4/3/9 5.3  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Awl U453/Ba/5 3.2  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Rivet J294/5/10 1.2  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Rivet (?) A12/34B nd  Cu-S equiaxial t, sb C+(F+A)+FF 

Tool Situla handle MAH4403 nd  Cu-S equiaxial t, d C+(F+A) 

Tool Tweezers MAH4411 6.2  Cu-S equiaxial t, sb C+(F+A)+FF 

         

Weapon Arrowhead+ MAH9456 8.1  Cu-S equiaxial t C+(F+A) 

         

Unknown Fragment A12/4/19A 1.4  Cu-S equiaxial t, d C+(F+A) 

Unknown Fragment U453/11/117 1.4  Cu-S equiaxial t, d C+(F+A) 

Unknown Fragment A12/4/19B 2.2  Cu-S equiaxial t C+(F+A) 

Unknown Fragment A12/8/31A nd  Cu-S equiaxial t C+(F+A) 

Unknown Fragment J282/4/12A 1.6  Cu-S equiaxial t, d C+(F+A) 

Unknown Fragment A12/8/31B 7.7  Cu-S equiaxial t C+(F+A) 

Unknown Fragment J282/10/32A 4.8  Cu-S equiaxial t, sb C+(F+A)+FF 

Unknown Fragment J282/6/18A 3.0  Cu-S equiaxial t, sb C+(F+A)+FF 

 

The absence of the  eutectoid might not reflect an actual improvement in the efficiency of the 

annealing operation, instead being more related with the low Sn contents of these bronze alloys. 

Actually, reduced Sn contents result in minor quantities of the + eutectoid, which under usual 

casting conditions arise from very low tin contents (as seen at the phase diagram, Figure 4.13). 

Additionally, minor + eutectoid contents can be more easily homogenized into a monophasic  

matrix through thermal treatment. 

 

Microstructures with twined grains (Figure 4.37 and Figure 4.38) resulting from forging and 

annealing operations belong mostly to fragments of unknown functionality and represent about 

43% of the collection. The fibula MAH4414 and the situla handle MAH4403 exhibit rather larger 
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grain sizes due to lower deformation intensity and/or extreme annealing conditions (Figure 4.37A 

and C).  

 

  

  

  

Figure 4.37. Microstructures of copper-based artefacts from Quinta do Almaraz with forging and annealing work (A: 

fibula MAH4414; B: fish-hook J274/4/19; C: situla handle MAH4403; D: arrowhead MAH9456; E: fragment 

J282/4/12A and F: fragment A12/8/31B; all OM-BF, etched). 

 

A particular group of fragments, also exhibiting deformed equiaxial microstructures with annealing 

twins, revealed further interesting microstructural features (Figure 4.38). Cu-S morphologies 

consist on more or less elongated inclusions set along the original axe of the fragment, which 

indicate the deformation carried out – a bar was initially flattened and subsequently folded. Grains 
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with very different sizes also determine an uneven deformation of certain areas, e.g. inner and outer 

fold regions of fragment U453/11/117. These characteristics clearly establish a peculiar 

manufacture procedure consisting on the use of a thin sheet of metal that is folded in order to form 

a bar with a thicker section. However, the specific purpose of this type of folded fragments is still 

unclear (e.g. could they correspond to a particular typology of artefacts?). 

 

  

 

Figure 4.38. Microstructures of copper-based artefacts from Quinta do Almaraz composed by sheet metal folded upon 

itself (A: fragment A12/4/19A; B: fragment A12/8/31A; C: fragment U453/11/117; D: fragment A12/4/19B; all OM-BF, 

non-etched, except A2 and C1: OM-BF, etched). 
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Figure 4.39. Microstructures of copper-based artefacts from Quinta do Almaraz with forging, annealing and final forging 

work (A: bracelet MAH9600; B: bracelet U453/11/81; C: fibula pin A12/32A; D: fibula spring MAH4424; E: awl 

C4/3/9; F: awl U453/Ba/5; G: fragment J282/10/32A; H: fragment J282/6/18A; all OM-BF, etched). 
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The type of microstructure more common presents recrystallized grains with annealing twins and 

slip bands, accounting for 57% of the set (Figure 4.39). The slip band density evidently increases 

from the bracelet MAH9600 and fibula pin A12/32A, up to the fibula spring MAH4424 and awl 

C4/3/9 (Figure 4.39A, C and D, respectively). The higher level of Cu-S inclusions of the awl 

U453/Ba/5 (Figure 4.39F) should also be mentioned, as well as the considerably small grain size of 

the fragment J282/10/32A (Figure 4.39G), which indicates more efficient forging and annealing 

cycles. 

 

The microstructures identified in two fragments from Quinta do Almaraz (deformed equiaxial 

grains with variable features along the section) are consistent with the microstructure of a rivet 

(Figure 4.40). The head of the rivet J294/5/10 present heavily deformed grains with much smaller 

size due to the higher deformation, probably induced by the riveting process. The higher 

deformation of certain regions is also noticeable by corrosion paths (Figure 4.40B, head), which 

most likely resulted from preferential corrosion of more impure regions and, currently, enhances 

the original deformation of the microstructure. 

 

 

Figure 4.40. Microstructures of copper-based rivets from Quinta do Almaraz (A: J294/5/10; B: A12/34B). 

 

SEM-EDS analyses on the fibula MAH9622 (0.66% Pb), fish-hook MAH9446 (5.9% Pb) and 

tweezers MAH4411 (4.6% Pb) evidence the enhanced presence of lead rich inclusions from binary 

to ternary bronze alloys (Figure 4.41). For low Pb contents, these inclusions present mainly 
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globular morphologies dispersed along the microstructure due the low miscibility of lead in bronze. 

At higher Pb contents, these low melting point inclusions highlight the primary interdendritic 

regions that were the last to solidify. In these microstructures, the common Cu-S inclusions were 

also identified, being sometimes associated with Fe-S inclusions especially for alloys with higher 

Fe contents. However, these Cu-S/Fe-S inclusions cannot be differentiated from Cu-S inclusions 

with SEM-BSE images. 

 

 

Figure 4.41. Microstructures of (A) fibula MAH9622; (B) fish-hook MAH9446; (C) tweezers MAH4411 from Quinta do 

Almaraz (SEM-BSE images with EDS spectra of  phase; 1: Pb rich inclusion; 2: Cu-S inclusion; 3: Cu-S/Fe-S 

inclusion). 

 

Vickers testing on selected artefacts from Quinta do Almaraz shows a collection with highly 

variable hardness – from 97 to 237 HV0.2 (Table 4.21). Despite their relatively low tin contents 

(~5-6% Sn) some of these bronzes exhibit a very high hardness. The high value of the fibula 

MAH4424 (221 HV0.2) is certainly related with a tougher final deformation, as evidenced by a 

high density of slip bands (Figure 4.39D). On the other hand, the high hardness of the fragment 

J282/10/32A (237 HV0.2) should be more related with extremely efficient forging and annealing 

cycles, proven by a very small grain size (Figure 4.39G). The importance of the grain size is also 

evident in the high hardness of the recrystallized fragment A12/8/31B (158 HV0.2). 
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Microstructures with very small grain size rely on a very good control over the annealing procedure 

since too much time or temperature will readily produce a large grain size microstructure, such as 

the one of the situla handle MAH4403 (Figure 4.37C). Finally, it should be mentioned that the low 

hardness of the arrowhead MAH9456 (97 HV0.2) corresponds to the tail and not to the head, which 

could not be sampled due to conservational issues.  

 

Table 4.21. Vickers microhardness of copper-based artefacts from Quinta do Almaraz (relevant elemental and 

microstructural data obtained by micro-EDXRF and OM analyses is also presented). 

Type Artefact Reference Sn (%) Phases Manufacture HV0.2 

Ornament Bracelet U453/11/81 5.9  C+(F+A)+FF 204 

Ornament Fibula (Aceb.?) MAH9622 6.2  C+(F+A) 103 

Ornament Fibula (spring) MAH4424 5.0  C+(F+A)+FF 221 

       

Tool Awl C4/3/9 5.3  C+(F+A)+FF 142 

Tool Awl U453/Ba/5 3.2  C+(F+A)+FF 113 

Tool Rivet J294/5/10 1.2  C+(F+A)+FF 117 

Tool Rivet (?) A12/34B nd  C+(F+A)+FF 140 

       

Weapon Arrowhead MAH9456 8.1  C+(F+A) 97 

       

Unknown Fragment A12/4/19A 1.4  C+(F+A) 150 

Unknown Fragment A12/8/31A nd  C+(F+A) 108 

Unknown Fragment J282/4/12A 1.6  C+(F+A) 133 

Unknown Fragment A12/8/31B 7.7  C+(F+A) 158 

Unknown Fragment J282/10/32A 4.8  C+(F+A)+FF 237 

Unknown Fragment J282/6/18A 3.0  C+(F+A)+FF 158 

 

 

4.3.4. Palhais 

During 2008, emergency archaeological excavations conducted at the site of Palhais (Beja) 

uncovered a rectangular structure, 1 cremation and 3 inhumation tombs that certainly belong to a 

much larger necropolis. The copper-based artefacts were recovered from two inhumation tombs, 

whose material culture ascribes to the 6th century BC – besides the typological significant copper-

based collection the tombs also contained iron weapons, vitreous bead necklace, silver bead 

necklace with pendant, a scarab naming Amun-Re and circular scaraboid (Santos et al., 2009). 

 

The collection of 10 copper-based artefacts (Figure 4.42) is composed by typologies that are unique 

in the Portuguese Proto-historic record, such as the two toilet instrument sets, comprising 

scalptorium (nail-cleaner?), spatula and spoon (ear-scoop?). The belt-lock should also be 
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mentioned since it is decorated with palm leaves, a motif characteristic of the Eastern 

Mediterranean region, where it was a fertility symbol related with the Astarté divinity. An almost 

exact replica of this belt-lock was found at the 7th-6th centuries BC necropolis of Cruz del Negro 

(Monteagudo, 1953). The fibula belongs to the Alcores type, exhibiting a flat bow with a 

decoration pattern of circles, also observed in some of the elements from the toilet sets. The 

Alcores fibulae are very common in the Southwestern Iberian Peninsula, being related with the 

Béncarron type, which is present at Castro dos Ratinhos. 

 

 

Figure 4.42. Copper-based artefacts belonging to the archaeological site of Palhais (A: Alcores fibula from Collado de los 

Jardines, SE Spain, adapted from Almagro-Bash, 1966). 
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The elemental composition of the metallic collection from Palhais was determined by micro-

EDXRF analyses (Table 4.22). The belt-lock was not sampled nor cleaned due to its relevant 

archaeological and museological significance. Additionally, the advanced state of corrosion at the 

wire and ring also prevented their quantitative analysis. These artefacts were analysed by EDXRF 

to establish the main constituents of the alloy. 

 

Table 4.22. Results of micro-EDXRF and EDXRF analyses of copper-based artefacts from Palhais (values in %; *: 

EDXRF analysis; nd: not detected; vest: <2; +: [2, 50]; ++: >50). 

Type Artefact Reference Context Cu Sn Pb As Fe 

Ornament Belt-lock* S2/M6 EIA ++ + vest nd vest 

Ornament Fibula (Alcores) S1/M1 EIA 93.3 6.1 0.12 0.17 0.34 

         

Tool Scalptorium S1/M4 EIA 95.4 2.9 0.14 0.71 0.78 

Tool Scalptorium S2/M8 EIA 97.0 2.0 <0.10 <0.10 0.92 

Tool Spatula S1/M2 EIA 95.0 3.2 0.15 0.77 0.85 

Tool Spoon S1/M3 EIA 90.4 8.3 0.76 <0.10 0.51 

Tool Spoon S2/M7 EIA 96.9 2.2 <0.10 <0.10 0.82 

Tool Rod S1/M5 EIA 93.0 6.0 0.33 <0.10 0.52 

Tool Wire* S2/M9 EIA ++ vest nd nd vest 

         

Unknown Ring* S2/M10 EIA ++ + nd vest vest 

 

This collection of artefacts is constituted by binary bronze alloys with a low average tin content 

(4.4  2.4%). The low tin content of some of these alloys (especially, scalptoria, spatula and 

spoon) results in lower castability (due to higher liquidus and solidus temperatures, as well as 

narrow temperature solidification range), in addition to lower strength and less capability to strain 

hardening through cold work. Some of the common metallic impurities present low contents, 

namely of lead and arsenic. However, the iron contents are rather high (0.7  0.2%) being only 

comparable to the values from the collection of Quinta do Almaraz (0.4  0.3%). 

 

Optical microscopy observations of these bronze alloys identified deformed equiaxial 

microstructures with annealing twins and slip bands (Table 4.23). In addition, the presence of 

copper sulphide inclusions in a monophasic  matrix is a common feature to all observed 

microstructures. Microstructural characteristics indicate that the manufacture of artefacts included 

one or more cycles of forging and annealing. Moreover, artefacts were finished with a more or less 

evident final hammering operation that would leave the alloy in a more strain hardened condition. 

This final hammering operation might intent to produce a harder material or to remove any surface 

imperfections, whereas this latter option would probably only produce microstructural deformation 

in areas located closer to the surface. 
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Table 4.23. OM characterisation of copper-based artefacts from Palhais (*: % given by micro-EDXRF; t: annealing 

twins; sb: slip bands; d: heavily deformed inclusions; C: Casting; A: Annealing; F: Forging; FF: Final Forging; : high 

amount; : low amount). 

Type Artefact Reference Sn* Phases Inclusions Features Manufacture 

Ornament Fibula (Alcores) S1/M1 6.1  Cu-S equiaxial t, sb C+(F+A)+FF 

         

Tool Scalptorium S1/M4 2.9  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Scalptorium S2/M8 2.0  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Spatula S1/M2 3.2  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Spoon S1/M3 8.3  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Spoon S2/M7 2.2  Cu-S equiaxial t, sb, d C+(F+A)+FF 

Tool Rod S1/M5 6.0  Cu-S equiaxial t, sb, d C+(F+A)+FF 

 

Microstructures present different grain sizes (e.g. the scalptorium S2/M8 exhibit noticeable smaller 

grain size, Figure 4.43C) as result from variations in the processing parameters. These variations 

consist of different deformation levels induced by hammering and diverse heat treatment conditions 

(temperature and/or time of operation). Copper sulphide inclusions are often elongated along the 

preferential deformation plane of the artefact, evidencing the higher deformation applied through 

the entire process. These elongated morphologies indicate the working of an originally larger cross-

sectioned bar into a thinner rod, consequently discarding the possibility of the casting of the 

artefact into its final shape. As it was noticeable along the microstructural characterisation of the 

artefacts studied in this work, the intergranular corrosion is a regular characteristic of 

archaeological bronze alloys. This type of corrosion advances faster along the grain boundaries, 

being clearly visible in the regions closer to the cross-section surface (e.g. Figure 4.43G). 

Additionally, the archaeological bronze artefacts that were finished by hammering often present 

intragranular corrosion, which progresses mainly along preferential crystallographic planes (e.g. 

Figure 4.43H). Intragranular corrosion evidences the slip bands, especially in the regions more 

altered, being a very useful indicator of the type of manufacturing process. 
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Figure 4.43. Microstructures of copper-based artefacts from Palhais, evidencing forging, annealing and final forging 

work (A: fibula S1/M1; B: scalptorium S1/M4; C: scalptorium S2/M8; D: spatula S1/M2; E: spoon S1/M3; F: spoon 

S2/M7; G and H: rod S1/M5; inter: intergranular corrosion; intra: intragranular corrosion; all OM-BF, etched). 
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The rod S1/M5 was selected for further characterisation by SEM-EDS (Figure 4.44). This study 

identified Pb rich inclusions dispersed in small globules (Cu and Sn peaks in EDS spectrum of the 

Pb rich inclusion are mainly from the surrounding Cu-Sn matrix) due to the relatively low Pb 

content (0.33%). Cu-S inclusions were also identified, often in association with Fe-S inclusions. 

 

 

Figure 4.44. Microstructure of rod S1/M5 from Palhais (A: SEM-BSE image with EDS spectra of  phase; 1: Pb rich 

inclusion; 2: Cu-S/Fe-S inclusion). 

 

The rod S1/M5 was submitted to Vickers testing to determine the hardness of the material (Table 

4.24). Despite the final forging procedure applied during the manufacture of this rod, the obtained 

hardness is rather low (114 HV0.2). Therefore, it seems that the final deformation was not enough 

to compensate soften produced by an intense annealing operation, as evidenced by the rather large 

grain size of this microstructure (Figure 4.43G and H). 

 

Table 4.24. Vickers microhardness of copper-based artefacts from Castro dos Ratinhos (relevant elemental and 

microstructural data obtained by micro-EDXRF and OM analyses is also presented). 

Type Artefact Reference Sn (%) Phases Manufacture HV0.2 

Tool Rod S1/M5 6.0  C+(F+A)+FF 114 

 

 

4.4. Discussion 

Despite the small number of copper-based artefacts from the EBA/MBA that were studied, their 

elemental compositions allow some important considerations regarding the metallurgy at the 

southern Portuguese territory before the full development of bronzes. Obtained results permit an 

initial incorporation of the EBA/MBA metallurgy of the southern Portuguese region in the already 

known metallurgy of neighbouring areas from the Iberian Peninsula. 
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The study established that the local EBA/MBA artefacts usually present significant contents of 

arsenic, while the majority of them were manufactured with forging and annealing operations 

(Figure 4.45). The operational sequences C+(F+A) and C+(F+A)+FF were considered together 

since the existence or not of the final forging operation in these type of large artefacts seems to be 

more related with the area analysed (e.g. edge versus centre of the blade) than with an actually 

different method of manufacture. The results establish that most artefacts were manufactured with 

forging and annealing, despite some evidences of a rather primitive control of the different 

metallurgical operations. Inverse segregation of arsenic indicates uncontrolled cooling rates during 

the casting operation, which difficult any latter homogenisation heat treatment. Arsenic oxide 

inclusions indicate not enough reducing environment during melting. Additionally, the use of 

reduced temperatures during the annealing procedure results in heterogeneous microstructures 

containing segregation bands and arsenic-rich phases. The arsenic retained in oxide inclusions and 

arsenic-rich phases reduces the arsenic content of the -phase solid solution, thus decreasing the 

actual improvement of mechanical properties. 

 

 

Figure 4.45. Distribution of arsenic contents and frequencies of operational sequences in EBA/MBA artefacts studied 

(n=14; white column symbolize artefacts with arsenic content below the limit usually utilised for arsenical copper alloys). 

 

According to Rovira (2004), the frequencies of operational sequences applied during the EBA and 

MBA at the Iberian Peninsula still exhibit a strong Chalcolithic influence despite the increased 

utilization of the annealing operation (Figure 4.46). Almost 40% of the MBA artefacts were still 

produced by cold forging instead of by the more complete manufacturing procedure that involves 

one or more forging and annealing cycles. 
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Figure 4.46. Relative frequencies of operational sequences (other comprise C+A and C+A+F) applied during the EBA 

and MBA at the Iberian Peninsula and distribution of arsenic contents in copper-based artefacts belonging to the Argaric 

Culture (modified from Rovira, 2004). 

 

This consideration clearly differs from the results obtained for the EBA/MBA artefacts from the 

southern Portuguese territory, which were mostly manufactured with forging and annealing cycles. 

In fact, the combined use of mechanical and thermal operations was already commonly used 

among certain regions during the CA (see for instance Valencina de la Concepción, SW Spain, 

Nocete, 2008). This might imply some regional differences regarding the metallurgical technology, 

but the reduced number of EBA/MBA artefacts analysed from the southern Portuguese territory 

prevents any further conclusions. 

 

The integration of the compositional results from the southern Portuguese territory in the 

metallurgy of the Iberian Peninsula was made by comparison with the statistically significant 

collection of metallic artefacts from the Argaric Culture at southeastern Spain (Figure 4.46). This 

last collection can be considered representative of the southwestern region, in the sense that the 

majority of these also exhibit low arsenic content (Hunt-Ortiz, 2003). The distribution of arsenic 

contents of EBA/MBA artefacts from the southern Portuguese territory is comparable to results 

from the Argaric Culture. However, the Portuguese collection seems to exhibit a somewhat higher 

frequency of artefacts with increased arsenic content (2-6%), which might be related with the 

typologies and the relatively small number of artefacts studied. A previous work had already 

evidence the higher arsenic content of some Chalcolithic typologies, namely Palmela points, saws, 

long awls and tanged daggers (Müller et al., 2007). The lighter colour of arsenical copper can be 

easily identified and chosen for specific typologies. This selection can either be related with the 

colour of this alloy or with the knowledge of the toughen effect of arsenic in copper. Alternatively, 

the fact that mostly analysed artefacts become from burials can also explain the higher arsenic 
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contents. Contrary to the artefacts recovered from settlements, burial offerings were removed from 

circulation at the time of burial. Considering that the recycling of scrap was already carried out 

during those ancient times, it is certain that common artefacts will endure more recycling cycles 

during their larger life span (Rovira, 2004). Each melting of an arsenical copper alloy induces 

arsenic losses by oxidation and evaporation of As2O3 fumes. The efficient control of the reducing 

atmosphere during melting and annealing has important consequences in the arsenic content of 

copper-based artefacts (Mckerrell and Tylecote, 1972). 

 

The sustained study of additional EBA/MBA artefacts and production remains in a near future will 

certainly provide a clearer characterisation of the evolution of the copper-based metallurgy in this 

region throughout the 2nd millennium BC. This could provide a better understanding about the 

“origin” of arsenic in copper artefacts, whereas it will possibly identify the introduction and spread 

of bronze alloys within the southern Portuguese territory. 

 

The composition of the copper-based artefacts belonging to the following chronological period 

changes considerably, with the substitution of copper and arsenical copper by bronze alloys during 

the LBA. Furthermore, the composition of LBA and EIA artefacts analysed in the present work, 

unmistakably discriminate two different clusters, which will be designated as “indigenous” and 

“orientalising” (Figure 4.47). 

 

 

Figure 4.47. “Indigenous” versus “orientalising” – distribution of tin contents and frequencies of operational sequences 

(other comprise C+A and C+A+F) in copper-based artefacts from the “indigenous” cluster (Entre Águas 5, Baleizão, 

Santa Margarida, Salsa 3, Quinta do Marcelo and Castro dos Ratinhos) and “orientalising” cluster (Quinta do Almaraz 

and Palhais). 
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The “indigenous” cluster is composed by artefacts from Entre Águas 5, Baleizão, Santa Margarida, 

Salsa 3, Quinta do Marcelo and Castro dos Ratinhos (65 artefacts). This cluster designates a 

metallurgy characterised by the presence almost exclusive of binary bronze alloys. Leaded bronzes 

are absent and only 1 exemplar is composed by unalloyed copper. These binary bronzes present 

“suitable” tin contents, that is to say a “normal” distribution with an average of 10.0  2.5% Sn. 

Furthermore, alloys with higher tin contents were utilised in typologies that do not require high 

mechanical strength, such as rings (“finger-rings”?), balance weights and fibulae. Considering 

similar casting conditions, an increased tin content results in a more significant presence of the + 

eutectoid, which make the alloy more brittle and difficult to toughen by forging. Furthermore, this 

+ eutectoid is always present for tin concentrations above ~14%. Therefore, functional tools and 

ornaments usually present lower tin contents that can easily be thermally homogenized. The higher 

tin content of rings, balance weights and fibulae could also be associated with their colouring, i.e. 

as-cast artefacts with increased tin concentrations present a more yellowish-brown tint that could 

be considered more suitable for prestige artefacts (Giumlia-Mair, 2005b). All these features 

indicate not only a good control over the tin content of the bronze alloy, but also an advanced 

knowledge over the mechanical and physical implications of tin additions to copper. 

 

The cluster of “orientalising” metallurgy is composed by artefacts from the chronological latter 

sites of Quinta do Almaraz and Palhais (30 artefacts). However, it is especially remarkable to 

verify that the metallurgy in attendance at Castro dos Ratinhos (coeval with Quinta do Almaraz) is 

not related with this “orientalising” cluster. In fact, despite the obvious Mediterranean influences 

present at this settlement, its artefacts are strongly correlated with the metallurgy inherited from the 

LBA. Regarding the “orientalising” cluster, the compositional results evidence the growing 

importance of unalloyed coppers (relative frequency of 27%) and leaded bronzes (relative 

frequency of 7%), even if binary bronzes are still the favoured alloy (relative frequency of 66%). 

The distribution of the tin contents in these binary bronzes is also different, presenting lower values 

with an average of 5.1  2.1% Sn (Figure 4.47). An experimental work established that the 

recycling of a bronze alloy diminishes its tin content, i.e. a bronze with 9.5% Sn was reduced to 

3.1% Sn after a few melting procedures (Sarabia-Herrero, 1992). The reduction is due to the 

preferential oxidation of tin during melting. Consequently, the significant use of bronze scrap 

without adding fresh tin might explain the presence of EIA low tin bronzes. It should be noted that 

none of the LBA production remains from the southern Portuguese region analysed in this work 

point to the recycling of bronze artefacts. Furthermore, only a comprehensive study of EIA 

production remains could clarify this issue. 
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The iron content additionally discriminates the “indigenous” and “orientalising” clusters, given that 

artefacts from the latter set clearly present higher iron contents (Figure 4.48). The increase of the 

iron contents of artefacts was also identified when comparing LBA and Phoenician-Iberian bronzes 

from SE Spain, namely from 0.04% to 0.27%, respectively (Craddock and Meeks, 1987). The iron 

content of bronze artefacts has been used as a technological indicator of the smelting process all 

over the Mediterranean region (Ingo et al., 2006). The difference was understood to be the result of 

more efficient copper smelting furnaces employed by Orientalising cultures. These metallurgical 

extractions run under high reducing conditions, enabling the reduction of iron impurities present in 

copper ores, which are subsequently incorporated in the metallic bath. The raw copper obtained 

could be purified to iron contents down to ~0.5%, but further reduction was increasingly difficult 

and needless since it did not bring any noticeable improvement to the mechanical properties of the 

alloy (Northover, 2004). 

 

 

Figure 4.48. “Indigenous” versus “orientalising” – distribution of iron contents in copper-based artefacts from the 

“indigenous” cluster (65 artefacts from Entre Águas 5, Baleizão, Santa Margarida, Salsa 3, Quinta do Marcelo and Castro 

dos Ratinhos) and “orientalising” cluster (30 artefacts from Quinta do Almaraz and Palhais). 
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established the production of bronze inside these primitive crucible vases using a poor reducing 

atmosphere. Most metallic nodules confined inside the slagged material from those crucibles 

present low iron contents, comparable to the observed in the indigenous artefacts. The potential 

evidence of the use of these crucibles was also found in the Phoenician settlement of La Fonteta 

(Renzi et al., 2009), which agrees with the absence of archaeological evidences regarding the 

replacement of crucibles by conventional furnaces during the EIA. However, it seems that the 

smelting of copper began to operate under more reducing conditions, which induced the increase of 

iron content of the bronze artefacts. It is possible that the need to improve the efficiency of 

smelting operations arise from the gradual exhaust of ores with high amounts of copper. 

 

The majority of operational sequences applied to copper-based artefacts include forging plus 

annealing cycles, often terminating with a more or less evident final forging operation (Figure 

4.47). Other operational sequences comprising annealing of the cast alloy followed or not by 

forging (i.e. C+A and C+A+F) are only residual, as has been noted in other studies concerning the 

early metallurgy in the Iberian Peninsula (Rovira, 2004). The more significant outcome is the fact 

that the replacement of “arsenical” coppers by bronzes does not produce any change in the 

manufacturing processes, i.e. the combined use of mechanical and thermal treatments remains 

customarily applied. Additionally, during the following chronological periods the differences 

observed between the bronze clusters at the southern Portuguese territory are not significant since 

as-cast artefacts from the “indigenous” group are related with typologies (balance weighs, rings, 

decorative parts of fibulae) and alloys with higher tin content, which are absent from the 

“orientalised” cluster. The fact that forging was not applied at artefacts with higher tin contents 

indicates a good knowledge of the technological aspects since these bronzes are more brittle and 

difficult to deform without fissuring. 

 

This good technological knowledge involves the casting operation given that casting defects are 

rather uncommon. Two rings from Castro dos Ratinhos (D1/IIa/M4 and D2/IIa/M2) display high 

density of large pores due to low temperatures of mould and molten metal, while a knife from the 

same site (A2/IIc/M1) exhibits tin oxide inclusions probably from low casting temperature. These 

few exceptions remind us that even after several centuries, the casting of bronzes was not a 

straightforward operation. The major problem seems to be the lack of control over the cooling rate 

after pouring. These small artefacts will naturally cool at a very high rate, resulting in considerable 

coring of the as-cast microstructure (e.g. ring 392/12 from Baleizão), as well as in the formation of 

the + eutectoid (e.g. balance weight 392/25 from Baleizão), even in alloys with low tin content. 

However, slow cooling rates were already achievable, as the coarse microstructure of few artefacts 

clearly demonstrates (e.g. pendant D1/IIa/M2 from Castro dos Ratinhos). The heating of the mould 
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prior to the pouring operation will induce slower cooling rates. This constitutes a technological 

innovation of the LBA (Rovira, 2004). 

 

Certain studied microstructures testimony that the temperatures and/or the time of operation were 

not enough to completely homogenise the alloy. In some extreme cases, alloys with low tin 

contents (e.g. needle S3/N18 from Salsa 3: 7.8% Sn; necklace-lock D1/Ib/M1 from Castro dos 

Ratinhos: 9.4% Sn) still exhibit the second phase richer in tin after being annealed. At the opposite 

edge, is the tranchet QM/1531 from Quinta do Marcelo, whose abnormal grain growth seems to 

indicate the use of an excessively high annealing temperature. Anyway, what seems more 

important is to verify that tools and weapons are almost always homogenised into a monophasic α 

matrix. This may indicate that the annealing operation was mastered, but only efficiently applied 

for typologies that require higher mechanical strength, while for certain ornaments, rings or 

specific tools (e.g. balance weights) the annealing operation seems to be of less importance. The 

only exception is the axe from 392/7 from Baleizão that presents a biphasic microstructure despite 

having a tin content (12.5%) that could have been completely homogenised. Finally, it should be 

mentioned that the fact that all “orientalising” artefacts present monophasic structures, is certainly 

more related with their lower tin content than with an improvement in the efficiency of annealing. 

 

The hardness of a bronze artefact result from several factors (tin content of solid solution, 

precipitation of δ phase, grain size and degree of deformation). The integrated study of the hardness 

of metallic artefacts allows identifying which factors contribute more significantly to obtain a high 

hardness (Figure 4.49). Additionally, this study permits to obtain important considerations 

regarding the actual efficiency of operational sequences applied among “indigenous” and 

“orientalising” clusters. First of all, it seems quite evident that the tin content does not have a 

preponderant influence on the hardness of studied artefacts. Generally, the “high” tin bronzes 

present similar hardness to bronze alloys with lower tin contents. The results also evidence that the 

use of a final hammering is one of the major key factors regarding the hardness of an artefact. 

Strain hardened “indigenous” artefacts present a higher average hardness than recrystallized ones, 

i.e. 139 and 97 HV0.2, respectively. This indicates that commonly the final forging operation 

intended to increase the hardness of the material, instead of being merely a finishing operation (e.g. 

to remove surface defects). The increased hardness due to the final hammering is not so obvious at 

“orientalising” artefacts. Nevertheless, both strain hardened and recrystallized “orientalising” 

artefacts (161 and 125 HV0.2, respectively) present higher average values than the comparable 

“indigenous” ones. The major difference seems to be related with a smaller grain size of some 

“orientalising” microstructures that result in higher hardness. This suggests that the typical 

efficiency of the forging and annealing cycles increased, i.e. further deformation through 

hammering together with the correct control over the temperature and time of annealing. This 
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important technological evolution means that bronze artefacts from the “orientalising” cluster could 

be produced with good mechanical properties even with tin contents lower than the ones used by 

indigenous tradition. This implies that the overall reduction of the tin content in copper-based 

artefacts, either intended or resulting from scarcity of tin, would not be a problem in the 

manufacture of this type of simple artefacts. Finally, it should be mentioned that the different 

typologies studied do not allow discriminating between ornaments, tools or weapons, nor even 

among the same type of artefact (e.g. needles present variable hardness values, 94 – 164 HV0.2). 

 

 

Figure 4.49. “Indigenous” versus “orientalising” – hardness values (average ± standard deviation) of “indigenous” 

artefacts (28 examples from Entre Águas 5, Baleizão, Salsa 3, Quinta do Marcelo and Castro dos Ratinhos) and 

“orientalising” artefacts (15 examples from Quinta do Almaraz and Palhais). 

 

As mentioned before, the common presence of Cu-S inclusions in LBA and EIA copper-based 

artefacts does not necessarily imply the use of ores from primary sulphidic deposits, which usually 

are located deeper in the mineralization. However, the absence of Cu-S inclusions in earlier copper-

based artefacts, namely from the EBA/MBA, suggests some modification involving the raw 

materials or the smelting conditions with the introduction of the LBA bronzes. In general, the 

difference might result from the selection of more pure oxidic copper ores during the earlier period, 

whereas the Cu-S inclusions in LBA and EIA artefacts should arise from the use of increasingly 

deeper oxidic ores naturally associated with sulphidic impurities. The LBA production remains 

from Entre Águas 5 confirm the use of these oxidic ores with significant amounts of sulphides, 

which are replicated in the higher amounts of Cu-S inclusions among the local bronze artefacts. 
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The results obtained in the present work allow, for the first time, to establish the evolution of the 

bronze metallurgy in the south region of the Portuguese territory. Indeed, the majority of LBA 

artefacts from the southern Portuguese territory are made of copper-tin alloys with suitable tin 

contents, i.e. 9.8±2.3% Sn. This type of metallurgy is very similar to the one present in the 

neighbouring areas, namely, to the north, the centre of the Portuguese territory and, to the east, the 

southwestern Spain (Figure 4.50). 

 

 

Figure 4.50 Tin contents (average  standard deviation) and frequency of leaded bronzes in collections of bronze artefacts 

belonging to the LBA (BI: Beira Interior, n=81 (Vilaça, 1997); BL: Beira Litoral, n=86 (Figueiredo, 2010); SP: Southern 

Portugal, n=28 (this work); RH: Ria de Huelva, n=387 (Rovira, 1995) and EIA (R: Castro dos Ratinhos, n=36 (this 

work); QA: Quinta do Almaraz, n=15 (this work); ER: El Risco (Montero-Ruíz et al., 2003); M: Medellin (Montero-Ruíz 

et al., 2003); EP: El Palomar, n=53 (Rovira et al., 2005); TV: Talavera la Vieja, n=18 (Montero-Ruíz and Rovira, 2006); 

CR: Cancho Roano, n=114 (Montero-Ruíz et al., 2003) and P: Palhais, n=7 (this work). 

 

The LBA collection from Beira Interior (81 artefacts from Cachouça, Castelejo, Alegrios, Monte 

do Frade and Moreirinha (Vilaça, 1997): mostly binary bronzes with 10.53.0% Sn), together with 

the collection from Beira Litoral (86 artefacts from Castro de São Romão, Santa Luzia, Baiões and 

Medronhal (Figueiredo, 2010): mainly binary bronzes with 12.71.9% Sn) characterise the LBA 

metallurgy at the Central Portuguese region. The metallic collection composed of nearly 400 

artefacts from Ria de Huelva (SW Spain) typify the LBA metallurgical tradition at southwestern 
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Spain, being composed mainly by binary bronzes with „„suitable‟‟ tin contents, i.e. 11.03.2% 

(Rovira, 1995). This establishes a LBA metallurgical tradition of binary bronzes with ~10-13% Sn, 

whilst pure copper artefacts are somewhat scant and leaded bronzes are even scarcer. 

 

During the EIA the scenery changes considerably, the keyword being diversification (that is why 

the Orientalising sites at Figure 4.50 are presented individually, contrary to LBA sites, which are 

presented in groups). Initially, the more obvious modification is the increased tendency to use 

leaded bronzes. The specificities of some collections can induce some exaggerations, i.e. the nearly 

exclusive use of leaded bronzes at Cancho Roano is attributed to the high incidence of “as-cast” 

artefacts, namely small statuary items (Montero-Ruíz et al., 2003). However, the general increasing 

trend is quite obviously shared by all mentioned artefact collections. 

 

Concerning the binary bronze metallurgy, the 9th-8th centuries BC collection from Castro dos 

Ratinhos continues to present an average tin value similar to the LBA cluster. Furthermore, the 

same is still observed in the 7th-6th centuries BC collections of El Risco, Medellin (Montero-Ruíz 

et al., 2003) and El Palomar (Rovira et al., 2005), despite an somewhat extended variability in this 

tin content (increased standard deviation, see Figure 4.50). On the contrary, the 9th-7th collection 

from Quinta do Almaraz, in addition to the 6th century BC collections from Palhais, Talavera la 

Vieja (Montero-Ruíz and Rovira, 2006) and Cancho Roano (Montero-Ruíz et al., 2003) present a 

reduced average tin content. 

 

These results evidence the tendency to use poorer bronzes during the EIA, but more important they 

establish that the evolution of the bronze metallurgy was a rather slow and unequal process. 

Indigenous communities, especially those who inhabited the inland areas (e.g. Castro dos Ratinhos, 

El Risco, Medellin and El Palomar) persist with some aspects of the LBA metallurgical tradition 

until very late. By the contrary, Phoenician seaboard settlements (e.g. Quinta do Almaraz) present 

from the start a metallurgy that uses different alloys (coppers, bronzes and leaded bronzes), 

together with dissimilar tin contents. According to the available data this diversification only seems 

to be completely widespread on the studied region by the 6th century BC. 
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5. GOLD ARTEFACTS 

5.1. Introduction 

The gold used during pre-historic and proto-historic periods usually comes from nuggets collected 

from alluvial deposits, while mining operations to exploit the primary gold deposits only seem to 

commence during the Roman period (Montero-Ruíz and Rovira, 1991). The first gold artefacts 

recovered from the archaeological record are thin metal sheets hammered from native gold during 

the last centuries of the CA (Soares et al., 1996). Native gold contains variable amounts of silver, 

which could reach up to 40% in some regions of Asia (Tylecote, 1987). At the Iberian Peninsula 

only very few gold artefacts belonging to the earlier metallurgical periods present silver contents 

above 20-25% (Montero-Ruíz and Rovira, 1991). Copper is also a common constituent of native 

gold and usually it may reach up to 1% (Tylecote, 1987). Consequently, despite not being 

straightforward to distinguish among native and alloyed gold based merely on the elemental 

contents of silver and copper, the above mentioned boundaries are generally used as an indication 

of its origin. 

 

The gold-silver alloys are always composed of a monophasic solid solution () because silver is 

completely soluble in gold (Figure 5.1). The copper is also totally soluble in gold, while for very 

slow cooling rates a low temperature ordered phase can be formed – Cu3Au, CuAu or CuAu3 

(Figure 5.2). This ordered phase is harder than the  solid solution so the gold alloy becomes more 

brittle and difficult to hammer. Fortunately, the copper content of pre-historic gold artefacts is 

commonly below the limit of the CuAu3 phase (~8% Cu) so pre-historic gold alloys with copper 

are usually composed by the  solid solution. 

 

 

Figure 5.1. Gold-silver phase diagram with melting points of gold and silver (adapted from AMS, 1973). 
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Figure 5.2. Gold-copper phase diagram with melting points of gold and copper (adapted from AMS, 1973). 

 

Adding silver or copper to gold produces a decrease of the solidus and liquidus temperatures of the 

alloy (Figure 5.3). This reduction is more marked when alloying with copper than with silver, e.g. 

Au-20%Ag alloy presents a solidus temperature of 1040ºC, while Au-20%Cu alloy starts to melt at 

much lower temperatures (~910ºC). Consequently, during pre-history Au-Ag, Au-Cu and Au-Ag-

Cu alloys were used as solder to connect the different components of gold artefacts (Perea, 1990). 

 

Additionally, taking into consideration the symbolic nature of ancient gold artefacts, the effect of 

silver and copper in the colour of gold alloys must not be forgotten. The addition of silver to gold 

turns the golden colour more brownish, while the addition of copper makes the gold alloy more 

reddish (Figure 5.3). 

 

The following sections present the elemental characterisation of several gold artefacts belonging to 

different chronological periods (CA, LBA and EIA). Occasionally, an artefact already fragmented 

could be sampled for OM and SEM-EDS characterisation to resolve specific issues. This includes 

the welding process used to join the different components of EIA gold buttons or the 

manufacturing operations utilised to make Chalcolithic metal sheets. 
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Figure 5.3. Ternary diagrams with liquidus temperatures and chromatic trends of Au-Ag-Cu alloys (Grimwade, 2000). 

 

 

5.2. Perdigões 

Archaeological works conducted since 1997 at the archaeological site of Perdigões (Reguengos de 

Monsaraz) revealed a complex necropolis composed by a sequence of concentric ditches and 

several tombs (Lago et al., 1998). The architectural features of negative structures, together with 

the material culture typology, assign this necropolis to the CA period. 

 

The collection of gold artefacts studied comprises 12 metal sheets with different dimensions 

(Figure 5.4). The largest ones are also the thicker (11450 and 11511), presenting the shape of long 

bands. The majority of the gold sheets present evidences of being connected to a support material, 

which completely decomposed during the long burial time – riveting holes and tarnished surfaces, 

most likely contaminated by decay of the support material. 

 

  

Figure 5.4. Gold artefacts belonging to the archaeological site of Perdigões. 
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Non-invasive EDXRF analyses were conducted at these gold artefacts to establish their elemental 

composition (Table 5.1). The results evidence a very pure gold with traces of copper (<0.10%) and 

moderately variable contents of silver (0.6-5.5%). However, the composition of all these gold 

artefacts clearly indicates a native origin for the gold used, which is perfectly compatible with the 

CA period to which they belong.    

 

Table 5.1. Results of EDXRF analyses of gold artefacts from Perdigões (values in %). 

Artefact Reference Context Au Ag Cu 

sheet metal 11041 CA 96.0 3.9 <0.10 

sheet metal 11450 CA 96.9 3.0 <0.10 

sheet metal 11451 CA 99.1 0.8 <0.10 

sheet metal 11452 CA 99.0 0.9 <0.10 

sheet metal 11453 CA 99.2 0.7 <0.10 

sheet metal 11454 CA 99.3 0.6 <0.10 

sheet metal 11455 CA 96.7 3.2 <0.10 

sheet metal 11456 CA 96.7 3.2 <0.10 

sheet metal 11458 CA 97.0 2.9 <0.10 

sheet metal 11459 CA 96.8 3.1 <0.10 

sheet metal 11460 CA 99.2 0.7 <0.10 

sheet metal 11511 CA 94.4 5.5 <0.10 

 

Two of the thinner gold sheets (11454 and 11458) were sampled for microstructural 

characterisation. These artefacts present recrystallized microstructures with annealing twins (Figure 

5.5), evidencing the use of mechanical and thermal treatments. The manufacturing process 

involved hammering of a ticker sheet into a thinner one. Then this sheet was annealed to allow 

additional deformation without cracking. The consecutive cycles of hammering and annealing 

continue until the gold sheet attains the desired thickness. 

 

  

Figure 5.5. OM images of gold sheets 11454 and 11458 from Perdigões (both OM-BF, etched). 
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5.3. Baleizão 

As it was mentioned in the section dealing with the copper-based artefacts, the collection 

discovered at Baleizão also includes 11 gold artefacts with typologies that are typical to the LBA 

period of the Portuguese territory (Vilaça and Lopes, 2005). This gold collection comprises several 

large and massive artefacts, including a necklace (1182), bracelet (1183) and ear-ring (1184), 

together with a small ingot (1185), 2 segments of rolled double-wire (1186a/b) and 5 small 

fragments of metal sheet (1187a/b/c/d/e) (Figure 5.6). 

 

  

  

  

Figure 5.6. Gold artefacts belonging to the collection of Baleizão. 
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EDXRF analyses established that the artefacts are composed by gold alloys with rather high 

contents of silver and copper (Table 5.2). The ingot presents the lower silver and copper contents 

(11.4 and 1.4%, respectively), a composition very similar to the necklace (13.3% and 1.2%, 

respectively). The copper contents of all these gold artefacts (>1%) seem to indicate the possible 

alloying of gold with copper. Furthermore, the metal sheets (1187a/b/c/d/e) and rolled double-wires 

(1186a/b) present high silver contents that are very close to the limit of native gold (25% Ag). 

 

Table 5.2. Results of EDXRF analyses of gold artefacts from Baleizão (values in %; * with ~2% Zn). 

Artefact Reference Context Au Ag Cu 

Necklace 1182 LBA 85.5 13.3 1.2 

Bracelet 1183 LBA 80.7 18.0 1.4 

ear-ring 1184 LBA 78.4 18.2 3.4 

Ingot 1185 LBA 87.2 11.4 1.4 

double-wire* 1186a LBA 71.7 24.1 2.4 

double-wire* 1186b LBA 73.3 21.9 2.9 

sheet metal 1187a LBA 75.0 21.9 3.2 

sheet metal 1187b LBA 72.7 25.2 2.2 

sheet metal 1187c LBA 73.8 24.2 2.1 

sheet metal 1187d LBA 74.6 23.2 2.3 

sheet metal 1187e LBA 72.4 25.7 1.9 

 

 

The two segments of rolled double-wire (1186a and 1186b) from Baleizão also exhibit around 2% 

Zn. Gold nuggets can be very pure, such as the examples from Casas de Don Pedro (SW Spain) – 

0.01% As; 0.02% S; 0.35% Bi; 0.016% Fe; 0.8% Ag; 0.05% Sb and 0.04% Te, which seem to 

characterise the gold outcrops employed by goldsmiths to manufacture the EIA treasure of Aliseda, 

discovered at the southwestern Iberian Peninsula (Garcia-Guinea et al., 2005). On the other hand, 

native gold can also present highly variable amounts of other elements, mainly silver and copper, 

but other impurities as well, like tin or platinum (Montero-Ruíz and Rovira, 1991). Anyway, zinc 

seems to be an uncommon impurity among pre-historic gold artefacts from the Iberian Peninsula. It 

was found in a laminar fragment (~0.9-1.8% Zn) of a proto-historic pendant from Cancho Roano 

(Perea, 2003). Technologically, the presence of small amounts of zinc (up to 2% Zn) do not cause a 

pronounced change in the colour of these gold-silver-copper alloys, while it produces beneficial 

effects on the casting behaviour and quality of castings obtained (Raub and Ott, 1983). Summarily, 

it can be assumed that this is not a customary composition of a LBA gold artefact. 
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5.4. Castro dos Ratinhos
8
 

A collection of seven gold buttons was recovered in the ruins of a large palace-like building that 

stands up at the highest place of the settlement of Castro dos Ratinhos (Berrocal-Rangel and Silva, 

2010). The archaeological record suggests that this gold treasure was hidden during the 7th century 

BC, when the large building was abandoned, probably due to a violent event. A clay fragment 

exhibiting the imprint of a woven fabric was discovered in association with the gold buttons, 

suggesting that they were originally tied to a woven tissue. Additionally, a small hollow bead 

without decoration was discovered at surface level after the end of archaeological excavations. 

 

Furthermore, the gold buttons are easily recognisable as a single collection due to their remarkable 

similar typology (Figure 5.7). These buttons (~10mm; weight~0.4g) were made with different 

components: main body, peripheral rod and tab. The main body exhibits a central spherical 

decoration enclosed by several engraved circles. It is connected to a peripheral decorated rod 

composed by a twisted wire (Figure 5.7A). The tab seems to be made with a fragment of the 

twisted wire previously flattened by hammering (Figure 5.7B). Sometimes this hammering was so 

intense that the original twisted decoration almost disappeared. 

 

  

Figure 5.7. Gold buttons belonging to the archaeological site of Castro dos Ratinhos (A and B: detail of button decoration 

and decorated tab, respectively). 

 

The buttons from Castro dos Ratinhos were analysed by micro-PIXE
9
 with especial attention on the 

reverse faces so that it would be possible to investigate possible compositional differences between 

disk, peripheral rod, tab and welded areas. The micro-PIXE analyses did not identify any 

significant compositional differences among the different button components (see some examples 

in Figure 5.8). Additionally, the welded areas exhibit compositions that are similar to the 

                                                      
8
 Part of the content from this section was previously published (Valério et al., 2010d; Soares et al., 2010). 

9
 Micro-PIXE analyses were made at ITN by Luis Cerqueira Alves. 
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composition of surrounding components, indicating the absence of a solder alloy. Nevertheless, the 

solder material can be restricted to a small area between the two attached components, i.e. it is 

possible that the solder material would not be reachable by this non-invasive approach. 

 

 

button 2 Au Ag Cu 

disk 89.3 9.4 1.3 

rod 89.4 9.2 1.4 

tab 88.2 10.0 1.7 

    

    

Figure 5.8. Maps of gold, silver and copper distribution (buttons 4 and 6) and point analyses (button 2) obtained by 

Micro-PIXE at reverse faces of gold buttons from Castro dos Ratinhos (values in %). 

 

Due to the diameter of the incident beam, each EDXRF analysis corresponds to the entire face of 

the button, thus including more than one component. However, since micro-PIXE analyses 

established that the button components are composed of similar gold alloys and no solder materials 

could be detectable, it was considered that EDXRF analyses would give reliable results. Moreover, 

EDXRF results could be compared with the other collections of gold artefacts presented in this 

work. 

 

Gold buttons from Castro dos Ratinhos were analysed by EDXRF at the obverse and reverse faces 

(Table 5.3). Initially, it was ascertained that the different geometries at the obverse and reverse 

faces do not introduce significant deviations. In fact, both faces of each button present comparable 

results. The minor differences observed could be explained by geometric effects (non-flat surfaces) 

and small compositional changes from superficial alteration processes that in gold alloys result in 

the removal of the less noble elements (silver and copper) from the superficial layer. The presence 

of a superficial layer enriched in gold is confirmed by the higher gold contents obtained by Micro-

PIXE analyses when compared with EDXRF analyses (see results of button 2 in Figure 5.8 and 

Table 5.3, respectively). Micro-PIXE analysis concerns a more superficial layer due to the low 

penetration depth of the protons when compared with the X-rays used by EDXRF (Araújo et al., 

1993). EDXRF results established that all buttons are composed of almost identical gold alloys 

with ~13-16% Ag and 1.3-1.9% Cu. Furthermore, the gold bead discovered afterwards at Castro 

dos Ratinhos is composed of a very similar gold alloy (~12% Ag and 1.8% Cu). 
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Table 5.3. Results of EDXRF analyses of gold artefacts from Castro dos Ratinhos (a: obverse face; 

b: reverse face; values in %). 

Artefact Reference Context  Au Ag Cu 

button 1 EIA a 83.4 15.0 1.6 

   b 83.0 15.1 1.9 

button 2 EIA a 83.8 14.9 1.3 

   b 84.1 14.4 1.6 

button 3 EIA a 83.3 15.0 1.8 

   b 83.1 15.2 1.7 

button 4 EIA a 83.5 14.8 1.7 

   b 83.0 15.1 1.8 

button 5 EIA a 83.9 14.4 1.7 

   b 82.9 15.2 1.9 

button 6 EIA a 85.1 13.2 1.8 

   b 85.4 12.9 1.7 

button 7 EIA a 83.1 15.3 1.7 

   b 82.5 15.7 1.9 

bead 8 - - 86.4 11.8 1.8 

 

 

5.5. Outeiro da Cabeça 

The treasure of Outeiro da Cabeça (Torres Vedras) was discovered during the plowing of a field in 

the thirties of last century (Heleno, 1935). This gold treasure comprises two small ingots, together 

with many buttons, a necklace, ear-rings and bracelets, whose typology is familiar to the EIA. The 

small gold buttons deserve a special emphasis since it was their typology (similar to the buttons 

from Castro dos Ratinhos) that led us to study this collection. Part of this gold treasure now belongs 

to the Museu Municipal de Torres Vedras, while a second fraction is currently at display at Museu 

Nacional de Arqueologia. From the first, a collection was selected comprising 13 gold buttons, 2 

ear-rings, an ingot and a necklace comprising of a hollow cylinder, 2 rings and a coiled wire 

(Figure 5.9). The collection selected for study from the treasure of Outeiro da Cabeça was 

completed with 10 gold buttons and 1 ingot (206: Figure 5.9). 

 

Buttons from Outeiro da Cabeça (~16mm; weight~0.8g) are bigger than the ones from Castro dos 

Ratinhos, but the typology is analogous, comprising the main body, peripheral rod and tab. The 

main body exhibits a central spherical decoration enclosed by several engraved circles, whereas 

one or two of these circles are decorated by small punched points instead of a continuous circle. 

Similarly to the buttons from Castro dos Ratinhos, the peripheral rod is composed by a twisted 

wire, whereas the tab consists of a flattened twisted wire. The majority of the selected buttons 

present a single tab (1711; 1713; 1714; 1717; 1718; A; B; C; 199; 200; 201; 202; 203 and 593), 

while others have a double one (1707; 1712; 1715; 1716; 198; 204 and 205). 
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Figure 5.9. Gold artefacts belonging to the treasure of Outeiro da Cabeça (artefacts at Museu Municipal de Torres Vedras 

and ingot 206 from Museu Nacional de Arqueologia; A and B: detail of button decoration and double tab, respectively). 

 

The gold artefacts from Outeiro da Cabeça were analysed by EDXRF to determine the alloy 

composition (Table 5.4). The two ingots present low copper (0.4-1.1%) and silver (10.2-15.1%) 

contents, suggesting a probable native origin and possibly the base contents for the formulation of 

some of these gold alloys. Accordingly, the ear-ring 1, hollow cylinder and ring 4 were certainly 

made with alloyed gold due to their very high copper contents (2.4-2.9%). 

 

Table 5.4. Results of EDXRF analyses of gold artefacts from Outeiro da Cabeça (values in %). 

Artefact Reference Context  Au Ag Cu 

ear-ring 1 EIA  83.1 14.0 2.9 

ear-ring 2 EIA  87.7 11.1 1.2 

hollow cylinder 3 EIA  85.0 12.2 2.8 

ring 4 EIA  78.8 18.8 2.4 

ring 5 EIA  78.7 19.4 1.9 

coiled wire 6 EIA  80.7 18.2 1.1 

ingot 7 EIA  83.8 15.1 1.1 

ingot 206 EIA  89.4 10.2 0.4 

 



GOLD ARTEFACTS 

137 

 

The buttons from Outeiro da Cabeça were also analysed by EDXRF at the obverse and reverse 

faces to establish eventual deviations (Table 5.5). These would be mostly due to the different 

button components since the analyses of buttons from Castro dos Ratinhos had already established 

that the deviations due to the different geometries of obverse and reverse faces are not significant. 

 

Table 5.5. Results of EDXRF analyses of gold artefacts from Outeiro da Cabeça (a: obverse face; 

b: reverse face; values in %; +: reverse was not analysed since it is attached to a geologic material). 

Artefact Reference Context  Au Ag Cu 

button 1707 EIA a 84.5 13.5 2.0 

   b 85.6 12.2 2.2 

button 1711 EIA a 86.3 12.9 0.8 

   b 87.1 11.8 1.1 

button 1712 EIA a 84.3 13.9 1.8 

   b 85.6 12.6 1.8 

button 1713 EIA a 87.6 11.5 0.9 

   b 88.5 10.5 1.0 

button 1714 EIA a 85.6 11.7 2.7 

   b 85.8 11.3 2.9 

button 1715 EIA a 85.9 13.0 1.1 

   b 86.3 12.7 1.0 

button 1716 EIA a 85.9 13.1 1.0 

   b 86.0 13.0 1.0 

button 1717 EIA a 86.6 12.7 0.7 

   b 86.7 12.5 0.8 

button 1718 EIA a 84.8 13.2 2.0 

   b 84.8 13.3 1.9 

button 1719 EIA a 87.3 11.5 1.2 

   b 87.7 11.0 1.3 

button A EIA a 87.3 11.8 0.9 

   b 87.6 11.6 0.8 

button B EIA a 86.6 12.7 0.7 

   b 86.4 12.7 0.9 

button C EIA a 86.2 12.0 1.8 

   b 86.2 11.9 1.9 

button 197+ EIA a 86.8 11.7 1.5 

   b - - - 

button 198 EIA a 84.5 13.7 1.8 

   b 84.6 13.7 1.7 

button 199 EIA a 87.5 11.2 1.3 

   b 87.9 11.0 1.1 

button 200 EIA a 87.0 12.3 0.7 

   b 87.5 11.8 0.7 

button 201 EIA a 87.8 11.4 0.8 

   b 88.0 11.2 0.8 

button 202 EIA a 85.3 13.3 1.4 

   b 86.1 12.5 1.4 

button 203 EIA a 86.9 11.3 1.8 

   b 87.7 10.5 1.8 

button 204 EIA a 84.8 13.4 1.8 

   b 84.3 14.1 1.6 

button 205 EIA a 86.4 12.8 0.8 

   b 88.0 11.2 0.8 

button 593 EIA a 85.3 13.2 1.5 

   b 87.2 11.5 1.3 
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Similarly to the buttons from Castro dos Ratinhos, the EDXRF results from obverse and reverse 

faces of each button from Outeiro da Cabeça are comparable, suggesting that the main body, 

peripheral rod and tab are composed by gold alloys of similar composition. Additionally, this 

indicates that their joining did not imply a welding alloy with a different composition (i.e. gold 

alloy richer in copper, silver or in both). Generally, the buttons present comparable silver 

compositions (~10-14%), which are perfectly compatible with the gold ingots recovered among 

this treasure. However, the copper contents are more variable (0.8-2.9%) indicating a probable use 

of alloying, at least in the gold buttons that are richer in copper. 

 

Since the button 1719 was already broken, it was possible to acquire a small sample for OM and 

SEM-EDS analyses. The microstructural characterisation intents to establish the welding process 

used to connect the button components, given that this was not completely ascertained by the non-

invasive study of buttons from Castro dos Ratinhos. OM observations clearly identify the cross-

sections of the two button components – main body and peripheral rod (Figure 5.10). Both 

components present twinned grains from hammering and heat treatments. In the second image it is 

visible the cross-section of the end of the main body tangled upon itself to obtain a perfect link with 

the peripheral rod. 

 

  

Figure 5.10. OM-BF (etched) images of button 1719 (main body and peripheral rod cross-sections) from Outeiro da 

Cabeça.  

 

Several SEM-EDS line-scans and point analyses performed along the contact region between the 

main body and peripheral rod display almost constant gold, silver and copper contents (Figure 

5.11). The small variations observed in the line-scans are due to topographic effects, namely the 

presence of pores and fissures. The constant elemental profiles prove that the main body and wire 

are composed by gold alloys with very similar contents. Furthermore, it was established that no 

solder alloy was used to connect this two components. 
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Figure 5.11. SEM-BSE images and EDS line-scans of button 1719 from Outeiro da Cabeça. 

 

 

5.6. Fortios 

The treasure of Fortios (Portalegre) was inside a clay pot raised during the plowing of a field in the 

early seventies of last century (Veiga Ferreira, 1974). This treasure was composed of several tens 

of EIA gold buttons. Some of them enter private collections, while others were acquired by the 

Museu Nacional de Arqueologia. The buttons from Fortios exhibit a diameter of about 20mm 

(weight~1.4g), being larger than the ones from Castro dos Ratinhos and Outeiro da Cabeça. Their 

typology is composed by several concentric circles surrounding the central spherical decoration 

(Figure 5.12). The peripheral rod consists of a twisted wire, while the tabs are smooth and exhibit 

flattened ends to fit perfectly into the reverse face of the decorated main body. Some of these 

flattened ends exhibit traces of being melted due to excessive heat during welding. 

 

  

Figure 5.12. Gold artefacts belonging to the treasure of Fortios (A and B: detail of decoration and partially melted tab). 
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The gold buttons from Fortios were analysed by EDXRF to determine the alloy composition (Table 

5.6). Similarly to the other studied collections, the obverse and reverse faces of each button give 

comparable results. This suggests that the button components were made with similar gold alloys 

and that no welding alloy was used to join them. Furthermore, these gold buttons present 

exceptionally analogous silver and copper contents, ranging from ~13-14% Ag and 1.2-1.4% Cu. 

 

Table 5.6. Results of EDXRF analyses of gold artefacts from Fortios (a: obverse face; b: reverse 

face; values in %). 

Artefact Reference Context  Au Ag Cu 

button 235 EIA a 84.9 13.9 1.2 

   b 85.2 13.5 1.3 

button 237 EIA a 84.7 14.0 1.3 

   b 85.2 13.5 1.3 

button 248 EIA a 85.4 13.2 1.4 

   b 85.8 12.8 1.4 

button 252 EIA a 85.4 13.3 1.3 

   b 85.8 12.9 1.3 

button 253 EIA a 85.6 13.1 1.3 

   b 85.7 12.9 1.4 

 

 

5.7. Fonte Santa and Quinta do Almaraz 

The archaeological excavations conducted during 1972 at the necropolis of Fonte Santa (Ourique) 

discovered a gold button inside one of the tombs (Beirão, 1986). The gold button was accompanied 

by bronze bracelets, several bead necklaces, a scarab and silver artefacts, including a silver pendant 

shaped as an acorn, which is almost identical to the one found in the 6th century BC necropolis of 

Palhais. The material culture recovered by archaeological excavations at Quinta do Almaraz 

(Almada) includes a small crucible that suggests the local production of gold artefacts, but the only 

gold artefact recovered until now was a small hollow bead (Araújo et al., 2004). 

 

The gold button from Fonte Santa (~25mm; weight~1g) is somewhat different from the other 

studied examples since the peripheral rod is absent, instead being simulated by a punched relief 

along the periphery of the circular body (Figure 5.13). Furthermore, originally its reverse face was 

connected to a silver sheet containing the tab, which meanwhile disappeared, leaving only some 

traces of a molten area in the centre of the reverse face, probably due to the original welding of 

both components. 
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Figure 5.13. Gold button from the necropolis of Fonte Santa (A and B: detail of simulated peripheral rod and traces of 

welding at the reverse face, respectively). 

 

These gold artefacts were analysed by EDXRF to determine their elemental composition (Table 

5.7). The reverse face of the button seems to be richer in silver and copper, probably due to the 

presence of the relics of a solder alloy, as mentioned before. Therefore, only the result from the 

obverse face will be considered representative of this button. Anyway, this gold button is composed 

by a gold alloy very rich in silver and copper, such as the small gold bead from Quinta do Almaraz. 

These elemental compositions clearly indicate the use of alloyed gold instead of native one. 

 

Table 5.7. Results of EDXRF analyses of gold artefacts from Fonte Santa and Quinta do Almaraz 

(a: obverse face; b: reverse face/; values in %). 

Artefact Reference Context  Au Ag Cu 

button 982 EIA a 68.1 28.7 3.2 

   b 62.6 33.1 4.3 

bead ALZ1 EIA - 71.6 25.8 2.6 

 

 

5.8. Discussion 

The elemental composition of gold artefacts analysed in this work allows significant considerations 

regarding the evolution of the gold metallurgy at the southern Portuguese region. The artefacts 

belonging to the CA present very simple typologies – small sheets of metal – mostly composed of 

pure gold with minor amounts of silver (up to 5%) (Figure 5.14). The manufacture of these thinner 

sheets involved annealing and hammering cycles. The use of thermal treatment to facilitate 

additional mechanical deformation evidences the good technological expertise of the goldsmiths 

from this early chronological period. Many centuries later, the composition of gold artefacts seem 

to become remarkably different since the LBA artefacts analysed present increased silver and 

copper contents. The majority of LBA artefacts exhibit silver contents among 20-25% and copper 

contents above 1%, indicating that these LBA artefacts are made with alloyed gold. Additionally, 
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the single LBA ingot presents silver and copper contents lower than most of the remaining 

artefacts, which also seems to point to the use of alloying. In the following chronological period, 

the majority of the artefacts studied presents lower silver contents (10-15%), while the distribution 

of the EIA copper contents is similar to the observed at the earlier period (it must be noted that the 

EIA collection, mostly composed by buttons, is much larger than CA and LBA collections). Once 

more, the ingots (especially the 206) present copper and silver percentages lower than the average 

values of the artefacts. The gold artefact with higher silver and copper contents (button 982) belongs to 

the chronologically latter necropolis of Fonte Santa, being obviously made with alloyed gold. 

 

 
Figure 5.14. Distribution of silver and copper contents in gold artefacts from the southern Portuguese region (69 artefacts 

comprising 12 CA, 11 LBA and 46 EIA examples). 

 

In order to better establish the evolution of gold artefacts at southern Portuguese territory, our 

results should be analysed together with other significant data from the same region. Accordingly, a 

systematic study gathering pre-historic gold artefacts with a known chronology from this region 

was used (Soares et al., 1996). The data available comprises 104 analyses made by the SAM 

project (Hartmann, 1982), which increase the significance of CA and LBA collections, but above 

all, introduced the EBA/MBA chronology on this research. The results obtained by the OES 

technique used during the SAM project are comparable to the obtained by EDXRF (e.g. button 

1719 from Outeiro da Cabeça – EDXRF: 11% Ag and 1.2% Cu, while OES: 10%Ag and 1.3% Cu). 

The compilation of these results evidences that the rise of the silver contents in gold artefacts 

started during the EBA/MBA, whose majority of artefacts present 10-15% Ag (Figure 5.15). 

During the LBA, the most representative group remains unchanged (10-15% Ag) but the clusters 

richer in silver are better represented, evidencing the continuous tendency towards a general 

increase of the silver contents. The more obvious modification during the EIA is the higher 
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homogeneity of the silver contents (mostly belonging to the 10-15% Ag cluster), which could be 

related with the predominance of buttons in our collection. Regarding the copper content, the more 

significant modification seems to occur during the LBA, whose artefacts present significantly 

higher copper contents than the artefacts from previous periods. 

  

 
Figure 5.15. Distribution of silver and copper contents in gold artefacts from the southern Portuguese region (173 

artefacts, comprising 20 CA, 75 EBA/MBA, 32 LBA and 46 EIA examples). 

 

The increased amount of copper and, especially, of silver in the studied gold alloys produces a 

reduction in the liquidus temperature (Figure 5.16). Artefacts richer in silver present a liquidus 

temperature between 1000ºC and 950ºC, while pure gold melts at 1065ºC. Another outcome of the 

increased silver content is the more greenish colour of these gold artefacts (Figure 5.16). 

 

 

Figure 5.16. Ternary diagrams with the gold alloys studied in this work, evidencing the lower liquidus temperature and 

“greenish” colour of gold artefacts richer in silver (ternary diagrams from Grimwade, 2000). 
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A study involving the elemental composition of several hundred pre-historic gold artefacts from 

Spain allow to define the major trends observed throughout different chronological periods in most 

of the remaining Iberian Peninsula (Montero-Ruíz and Rovira, 1991). The database comprises 24 

analyses made by these authors, together with 446 analyses published by the SAM project 

(Hartmann, 1982). The first significant alteration regarding gold artefact composition only occurs 

during the LBA, consisting on a generalized increase in the silver contents – the majority of 

EBA/MBA artefacts exhibit 5-10% Ag, while LBA silver contents mostly range from 10-15% 

(Figure 5.17). This increase of the silver contents of gold artefacts occurred earlier at the southern 

Portuguese territory (during the EBA/MBA), probably as the result of looking for better alloys to 

work with. The increase in the copper content of LBA gold artefacts from Spain is also noticeable, 

but there is still little tendency to alloy gold with copper since only 25% of LBA artefacts have 

more than 1% Cu. Therefore, the obvious increase of copper impurities in LBA gold artefacts (i.e. 

0.25-1% Cu) might instead be related with the recycling of gold artefacts richer in copper 

(Montero-Ruíz and Rovira, 1991). Contrary, the majority (80%) of coeval artefacts from the 

southern Portuguese territory present copper contents above 1%, evidencing the copper richer raw 

materials used in this last region. Despite being impossible to completely determine the natural or 

artificial nature of these gold alloys, the composition of the ingot seems to support the alloying 

alternative in the southern Portuguese territory. 

 

 

Figure 5.17. Distribution of silver and copper contents in gold artefacts from Spain (modified from Montero-Ruíz and 

Rovira, 1991). 

 

During the EIA the main characteristic features of gold artefacts from Spain are the preponderance 

of copper rich alloys, simultaneously with an elevated differentiation among different regions and 
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collections (Montero-Ruíz and Rovira, 1991). The homogeneous alloy composition of most EIA 

gold artefacts from the southern Portuguese territory, namely the buttons from Castro dos Ratinhos, 

Outeiro da Cabeça and Fortios, together with the remarkable similar typology, seems to suggest a 

common gold workshop for these artefacts. The augmented heterogeneity encountered among EIA 

gold collections was interpreted as a consequence of the rising influences from the Orientalising 

region at the Iberian Peninsula (Perea, 2005). The bead from the Phoenician settlement of Quinta 

do Almaraz, being composed of a poorer gold alloy, seems to support this suggestion. 

 

The introduction of an incipient welding technique was one of the innovations of the LBA period 

(Montero-Ruíz and Rovira, 1991). A study of pre-historic and proto-historic gold artefacts from the 

south of the Iberian Peninsula identified different types of welding (Perea, 1990). Generally, a 

solder alloy was used – a gold-silver, gold-copper or gold-silver-copper alloy with a melting point 

lower than the melting point of the components to be joined. A typical proto-historic solder alloy 

was identified in a gold torc (26-27% Ag and 1-2% Cu) from Chaves (Alves et al., 2002) – the 

solder alloy is much richer in copper (~20% Ag and ~20% Cu) thus presenting a liquidus 

temperature (~850ºC) much inferior than the one of the torc alloy (~1020ºC). 

 

Contrary, the analytical study of the gold buttons from Castro dos Ratinhos, Outeiro da Cabeça and 

Fortios evidences the absence of a solder alloy. Besides a homogeneous elemental composition 

identified at buttons welding regions, the OM and SEM-EDS characterisation of one button shows 

a completely homogeneous interface between the main body and decoration rod. Two gold 

components with similar melting points can be welded without a solder alloy due to the low 

propensity of this noble metal to become oxidised, even at high temperatures. If temperatures 

below the melting point are used the welding is due to solid state diffusion. However, even with 

temperatures very close to the melting point, it will take too long to close the spaces between the 

microscopically uneven surfaces and a complete elimination of the interface will take place 

(Tylecote, 1978). Therefore, the use of a somewhat higher temperature to produce a partial melting 

of the areas to be joined will significantly expedite the welding procedure. The concentration of the 

heat could be achieved with the help of a blowpipe to direct the flame in the areas to be welded. 

However, some of the ends of the tabs are totally melted proving that it should be very difficult to 

maintain a proper control over the welding temperature. Anyway, the overall manufacture of these 

beautiful gold buttons is a clear indication of the high metallurgical expertise of those ancient 

goldsmiths. 
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6. CONCLUSIONS 

An integrated use of non-invasive and microanalytical techniques was able to characterise an 

important archaeological collection of artefacts belonging to the southern area of the Portuguese 

territory. The methodology selected to analyse the different type of materials, namely metallic 

artefacts (copper-based and gold) and production remains (copper-based), produced innovative and 

significant archaeometallurgical results without harming these valuable cultural items. Moreover, 

the analytical approach comprised a conservation treatment of those materials that are more 

predisposed to corrosion processes, namely the copper-based artefacts, to further minimize the 

impact of analytical studies. 

 

The main focus of this work involves the evolution of the copper-based metallurgy from the LBA 

to the EIA in the southern region of the Portuguese territory. However, other studied issues 

provided important knowledge as well concerning early chronological periods and different 

metallurgies at this region. The study of gold artefacts evidenced the increased use of alloyed gold, 

especially with copper, during the LBA and EIA. Moreover, the annealing operation was already 

among the operational sequences used during the CA. There is no reason to think that these 

practices could not be transmitted and adapted to the copper-based metallurgy (and vice versa), so 

it should be kept in mind that those ancient LBA metallurgists already possessed a knowledge 

accumulated along two millennia of trial and error. 

 

In fact, the few copper-based artefacts studied belonging to the period before the full adoption of 

the bronze alloys confirm that the results of hammering and annealing operations were already well 

understood. The edges of the MBA sword from Horta do Folgão were much more worked than the 

central section, thus creating a harder edge that was able to endure stronger impacts. However, 

there are still some evidences of a rather primitive control of the different metallurgical operations. 

Inverse segregation of arsenic evidences uncontrolled cooling rates during the casting operation, 

which complicates latter thermal homogenisation. Arsenic retained in oxide inclusions and arsenic-

rich phases do not contribute to the solid solution, thus reducing the improvement of mechanical 

properties obtained by arsenic on copper. 

 

The study of LBA production remains, principally the microstructural characterisation of slags, 

enabled an innovative approach about the bronze production at this region. All studied slags 

revealed a highly heterogeneous and immature nature, evidencing poor and changeable redox 

conditions within the smelting vases. These high viscosity slags detain a high amount of metallic 

prills, whose composition displays very low iron contents since the redox conditions were not 

sufficient to reduce the iron impurities present in the reaction vase. Metallic artefacts manufactured 
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with raw materials obtained by those early smelting operations will naturally exhibit very low iron 

contents. This was precisely the case of the “indigenous” cluster of bronze artefacts from this 

region, which includes all studied LBA collections together with the large EIA set from Castro dos 

Ratinhos. Despite the obvious Mediterranean influences present at this EIA settlement, the bronze 

artefacts recovered are still strongly correlated with the indigenous metallurgy inherited from the 

previous period. 

  

Additionally, the analytical evidences strongly point to the co-smelting of copper ores with 

cassiterite inside primitive socketed handle crucibles at Entre Águas 5. The production of bronze 

alloy using co-smelting was already identified in other coeval sites from Central Portugal and 

Southwestern Iberian Peninsula, being possibly the more common method to produce bronzes 

during the LBA. The use of this method is entirely compatible with an almost exclusive presence of 

binary bronze alloys among the “indigenous” LBA metallurgy of this region. The variable metal 

content of copper ores and tin ores, in addition to somewhat changeable smelting conditions will 

make more difficult to obtain a “suitable” tin content. However, several centuries of metallurgical 

knowledge seem to enable the production of bronze alloys with a narrow range of tin contents. 

 

The indigenous metallurgy at the southern Portuguese territory comprises binary bronzes with a 

“normal” distribution of tin contents around an average of ~10%, while the central region of the 

Portuguese territory presents a similar metallurgical tradition, but with slightly higher average tin 

contents (~13%, Figueiredo, 2010). Only the future analyses of a higher number of artefacts will be 

able to ascertain if there is actually a statistically significant difference between these two 

metallurgical traditions. If so, the reduction of tin contents at the southern region might be related 

with a higher distance to the sources of tin. Despite an apparent suitable supply of tin, evidenced by 

good tin contents of the bronzes from this southern region, it is possible that recycling of bronze 

scrap was somewhat more common than in the tin rich central region of the Portuguese territory. 

 

The microstructural characterisation evidenced a superior knowledge over the mechanical and 

physical implications of adding tin to copper. The few alloys with higher tin contents produced 

were used in typologies that do not require high mechanical strength (e.g. “finger-rings”, balance 

weights and fibulae), whilst these alloys were often not worked since they are more brittle and 

difficult to deform without fissuring. Tools and functional ornaments usually present lower tin 

contents that can easily be thermally homogenized. Additionally, the lighter colour of these high tin 

alloys could be considered more suitable for prestige artefacts. 

 

The good technological knowledge commences with the casting operation given that casting 

defects due to low temperatures of mould and molten metal are rather uncommon. Afterwards, the 
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majority of operational sequences include forging and annealing cycles, often terminating with a 

more or less evident final forging operation. Certain microstructures testimony that the annealing 

treatment applied was not sufficient to completely homogenise the alloy (i.e. still display the α±). 

However, tools and weapons are usually composed by α matrix, which might indicates that the 

annealing operation was mastered, but only efficiently applied for significant typologies. 

 

The metallurgy at the southern region of the Portuguese territory evidences a rising attendance of 

unalloyed coppers and leaded bronzes with the establishment of Phoenician colonies. The binary 

bronzes still constitute the more commonly used alloy, but commence to exhibit lower average tin 

contents (5.1  2.1% Sn). In theory, the decrease of the tin content can be related with a significant 

use of bronze recycling without adding fresh tin. However, there are no archaeological evidences of 

significant problems with the supply of tin and there is still a lack of analytical studies concerning 

EIA copper-based production remains that could further explain the decrease of tin contents in 

bronze alloys. 

 

Nevertheless, this study provides a number of primary clues regarding the metallurgical 

innovations induced by Phoenician contacts. The first evidence comes from the increased iron 

contents of “orientalising” bronze artefacts. Despite the absence of archaeological evidences 

regarding the replacement of crucibles by conventional furnaces during the EIA, the general 

increase of the iron content of bronze artefacts seems to indicate that the smelting operations began 

to operate under more efficient conditions. The second fact arises from the integrated study of the 

hardness of “indigenous” and “orientalising” artefacts from this region. Results seem to point out 

that the tin content do not present a ruling effect on the hardness of these artefacts. Moreover, some 

of the lower tin content “orientalising” artefacts present higher hardness than the “indigenous” 

ones. This higher hardness was attained by increasing the efficiency of both the hammering and 

annealing operations – additional deformation through hammering together with the correct control 

over the temperature and time of annealing. In practice, this means that even low tin bronzes could 

be worked to present somewhat good mechanical properties. It must be noted that the bronze alloy 

was already used among cultures from the Middle East since around 2600 BC. Therefore, it should 

be expected that the experienced Phoenician metallurgists, coming from a region with lack of tin 

sources, learned long ago how to beneficiate those low tin bronzes. 

 

For the first time, the results obtained in the present work allow to establish a change of 

metallurgical technology during the EIA in the Portuguese territory. The adoption of innovative 

technologies was a rather slow process since indigenous communities, especially those who 

inhabited the inland areas, persist with some aspects of the LBA metallurgical tradition until very 

late. In fact, the diversification of copper-based alloys among the local communities was also an 
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unequal process, very dependent on cultural and socio-economical characteristics of indigenous 

settlements from the southwestern Iberian Peninsula. The inland 7th-6th centuries BC settlements 

of El Risco, Medellin (Montero-Ruíz et al., 2003) and El Palomar (Rovira et al., 2005) present a 

significant use of leaded bronzes, while binary bronzes do not seem to vary. On the contrary, the 

6th century BC collections of Talavera la Vieja (Montero-Ruíz and Rovira, 2006) and Cancho 

Roano (Montero-Ruíz et al., 2003) already present a reduced average tin content. 

 

The diversification of metallic alloys also was encountered among EIA gold collections, being 

interpreted too as a consequence of the rising influences from the Phoenician people (Perea, 2005). 

Certainly, this diversification could not be found among the EIA gold artefacts from the southern 

region of the Portuguese territory analysed in this work because this collection was intentionally 

focused on a particular typology. 

 

In the future, the integrated study of EIA slags and other production remains is needed to better 

understand the evolution of metallurgical practices. This will allow finding out if the metallurgical 

evolution comprises the increased use of alloying over co-smelting of copper-ores with cassiterite. 

The early evidence of alloying of metallic copper and tin was identified at the 8th-7th centuries BC 

site of Carmona (Rovira, 2005). The production of bronze alloys though different methods (co-

smelting, cementation and alloying) would certainly originate in a wider range of bronze alloys, but 

further analytical studies are needed to corroborate this suggestion. 

 

Additionally, the archaeometallurgical research must include provenance studies to identify the 

sources of metal exploited during pre-historic and proto-historic times. Provenance studies 

involving the lead isotopic composition compare the isotopic composition of artefacts with possible 

ore deposits. The lead isotopic composition of an ore is not modified by metallurgical processes 

used during the manufacture of an artefact (e.g. smelting, melting and casting) thus it can be used 

as a fingerprint of an ore deposit. 

 

Finally, this work represents a significant step forward in the comprehension of the metallurgical 

evolution at the Portuguese territory. Innovative analytical data and interpretations contribute to the 

increased knowledge about the metal production and use among those ancient people, at last 

allowing to incorporate the southern region of the Portuguese territory amongst the well-studied 

regions from the Iberian Peninsula. 
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