Intermetallics 18 (2010) 655-665

Contents lists available at ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

The Yb-Zn-Ga system: Partial isothermal section at 400 °C with 0-33.3 at.% Yb

Yu. Verbovytskyy*, A.P. Gonçalves

Departamento de Química, Instituto Tecnológico e Nuclear/CFMC-UL, Estrada Nacional 10, P-2686-953 Sacavém Codex, Portugal

ARTICLE INFO

Article history: Received 1 July 2009 Received in revised form 29 October 2009 Accepted 4 November 2009 Available online 3 December 2009

Keywords: A. Rare earth intermetallics A. Ternary alloy systems B. Phase diagrams B. Phase identification

1. Introduction

Pure gallium metal and many gallium based alloys and intermetallic compounds have extensive technological applications and fundamental interest. Gallium arsenide (GaAs) and gallium nitride (GaN) are well known semiconductors. Gallium is used as a doping component in electronic devises (as in transistors or photovoltaic cells), for cold welding, with other metals (In, Sn) for producing low-melting alloys, etc. Moreover, unusual physical properties have been found in intermetallic gallides, as the unconventional superconductivity observed in PuCoGa₅. In order to develop new materials, there is an increasing interest for the investigation of the related gallium based alloys and intermetallic compounds.

The ternary (rare earth)-(*d*-metal) gallides have been extensively studied during the past decades. Two book reviews [1,2], containing information about the crystal structure of the ternary compounds and on some R–M–Ga phase diagrams, have been published 20 years ago. A more deep analysis on the interaction among the components in the Ga-based ternary systems has been done in a recent work [3]. The systematic oriented investigations were mainly performed on the R–{Mn, Fe, Co, Ni, Cu}–Ga systems, and only some specific compositions were studied in the remaining systems [4]. However, the interest on the crystal structure and physical properties of other systems, as the ytterbium–(transition

ABSTRACT

The phase relations in the ternary system Yb–Zn–Ga have been studied at 400 °C for the partial isothermal section in the 0–33.3 at.% ytterbium concentration range. X-ray powder diffraction (XRPD), optical microscopy (OM) and scanning electron microscopy (SEM), complemented with energy dispersive X-ray spectroscopy (EDS), were used to analyse the microstructures, identify the phases and characterize their crystal structures and compositions. The Yb–Zn–Ga partial section at 400 °C is characterized by the presence of an extended solid solution, YbZn_{2-x}Ga_x (0 \le x \le 1), and the existence of four ternary intermetallic compounds, YbZn_xGa_{4-x}, 0.75 \le x \le 2 (BaAl₄-type), YbZn_xGa_{4-x}, 0.25 \le x \le 0.5 (CaCu_{0.15}Ga_{3.85}-type), Yb₃Zn_{11-x}Ga_x, 3.5 \le x \le 4.2 (La₃Al₁₁-type) and YbZn_{11-x}Ga_x, 1.8 \le x \le 2.7 (BaHg₁₁-type), the last three being reported here for the first time. Sixteen ternary phase fields have been identified in the studied partial isothermal section at 400 °C.

© 2009 Elsevier Ltd. All rights reserved.

Intermetallics

metal)–gallium ones, is increasing due to their interesting physical properties, such as heavy fermion behaviour, spin fluctuations and mixed valence.

In the present paper we report for the first time a study on the partial isothermal section of the Yb–Zn–Ga system at 400 °C, with 0–33.3 at.% Yb, together with the crystal structure identification of the new ternary phases stable at this temperature.

2. Literature data

A brief summary of the literature data focusing on the phase equilibria of the binary Yb–Zn–Ga subsystems is presented below. A list of the solid phases formed in the three binary systems involved is given in Table 1.

The Yb–Zn phase diagram has been established by Mason and Chiotti [5]. Six binary compounds exist in this system: YbZn (CsCl-type), YbZn₂ (CeCu₂-type), Yb₃Zn₁₁ (La₃Al₁₁-type), Yb₁₃Zn₅₈ (Gd₁₃Zn₅₈-type), Yb₂Zn₁₇ (Th₂Zn₁₇-type) and YbZn₁₁ (BaCd₁₁-type). Five of them, YbZn, YbZn₂, Yb₁₃Zn₅₈, Yb₂Zn₁₇ and YbZn₁₁ melt congruently at 650, 751, 752, 754 and 755 °C, respectively. The Yb₃Zn₁₁ is obtained by the peritectic reaction L + Yb₁₃Zn₅₈ = Yb₃Zn₁₁ at 695 °C. The YbZn₂ and Yb₂Zn₁₇, according to [5] and [6], have two polymorphic modifications (unknown-type and Th₂Ni₁₇-type, respectively). Also, authors [6] pointed out on existence of the Yb₃Zn₁₇ (Ru₃Be₁₇-type) and YbZn₁₃ (NaZn₁₃-type) intermetallics.

The first versions of the Yb–Ga phase diagram, in the whole concentration range, were reported in [7] and [8]. Latter, contributions to the Yb–Ga system, mainly in the Ga-rich corner, were made in papers [9,10]. A generalized Yb–Ga phase diagram, based

^{*} Corresponding author. Departamento de Química, Instituto Tecnológico e Nuclear/CFMC-UL, Estrada Nacional 10, P—2686–953 Sacavém Codex, Portugal. Tel.: +351 219946100; fax: +351 219946185.

E-mail address: yuryvv@bigmir.net (Yu. Verbovytskyy).

^{0966-9795/\$ –} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.intermet.2009.11.001

Table 1

Literature data on binary and ternary phases of the Yb-Zn-Ga system.

Phase	Transformation	Structure type	Space group	Lattice parameters (Å)			Reference
	Temperature (°C) ^a			а	b	с	
YbZn	650, mp	CsCl	Pm3m	3.629	_	-	[5]
YbZn ₂ (α)	751, mp	-	-	-	-	-	[5]
YbZn ₂ (β)	630, pc	CeCu ₂	Imma	4.570	7.290	7.562	[5]
Yb ₃ Zn ₁₁	695, p	La ₃ Al ₁₁	Immm	4.421	8.891	13.127	[5]
Yb ₁₃ Zn ₅₈	752, mp	Gd ₁₃ Zn ₅₈	P6₃mc	14.32	-	14.15	[6]
Yb ₃ Zn ₁₇	?	Ru ₃ Be ₁₇	Im 3	14.291	-	-	[6]
$Yb_2Zn_{17}(\alpha)$	754, mp	Th ₂ Ni ₁₇	P6 ₃ /mmc	9.022	-	8.798	[4]
$Yb_2Zn_{17}(\beta)$?	Th ₂ Zn ₁₇	R3m	9.040	-	13.216	[5]
YbZn ₁₁	755, mp	BaCd ₁₁	I41/amd	10.637	-	6.822	[5]
YbZn ₁₃	?	NaZn ₁₃	Fm3c	12.172	-	-	[4]
YbGa ₆	282, р	PuGa ₆	P4/nbm	5.849	-	7.601	[12]
YbGa ₅	333, р	YbGa ₅	I4/mmm	4.3059	-	25.871	[10]
YbGa ₄	755, p	CaGa ₄	C2/m	6.148	6.106	6.084	[9]
				$\beta = 118.86^{\circ}$			
YbGa _{3-x}	735, pr	YbGa _{2.64}	P6/mmm	13.025	-	8.360	[9]
$(0 \le x \le 0.36)$	-						
Yb ₃ Ga ₈	868, p	Eu3Ga8	Immm	4.225	4.340	25.665	[9]
YbGa ₂	1100, mp	CaIn ₂	P6 ₃ /mmm	4.456	-	7.187	[13]
YbGa	895, mp	TiCu	P4/mmm	3.42	-	3.94	[7]
Yb ₂ Ga	650, p	Co ₂ Si	Pnma	7.063	5.050	9.427	[7]
YbZn _x Ga _{4-x}	?	BaAl ₄	I4/mmm	4.2428-4.2021		10.968-10.955	[16]
$(0.25 \le x \le 1)$		-					

^a mp = melting point, p = peritectic reaction; pc = polymorphic reaction; pr = peritectoid reaction.

Fig. 1. Compositions of the Yb–Zn–Ga samples quenched from 400 $^\circ C$ (1 – single-phase, 2 – two-phase, 3 – three-phase samples).

Experimental investigations and thermodynamic studies of the Zn–Ga phase diagram have been reported in papers [14,15]. There

Table 2

New ternary phases in the Yb-Zn-Ga systems.

Phase	Structure type	Space group	Lattice parameters (Å, Å ³)				Remark
			а	b	С	V	
$Yb_{13}Zn_{58-x}Ga_x$ $(0 \le x \le 7)$	Gd ₁₃ Zn ₅₈	P6 ₃ /mmc	14.317(2) 14.348(2)	-	14.173(3) 14.095(2)	2515.9(8) 2512.9(5)	$ x = 0^a x = 7^a $
$\begin{array}{l} \operatorname{YbZn}_{2-x}\operatorname{Ga}_{x}\\ (0\leq x\leq 1) \end{array}$	CeCu ₂	Imma	4.5668(8) 4.4803(5) 4.4838(3)	7.2866(11) 7.2281(7) 7.2084(4)	7.5643(12) 7.6440(8) 7.6622(5)	251.71(7) 247.54(4) 247.65(3)	$x = 0^{a}$ $x = 1^{a}$ $x = 1^{b}$
YbZn _x Ga _{4-x} ($0.25 \le x \le 0.5$) (τ_1)	CaCu _{0.15} Ga _{3.85}	C2/m	11.4747(3)	4.2381(1) $\beta = 110.642(1)^{\circ}$	4.3445(1)	197.71(1)	$x = 0.25^{b}$
			11.5091(7)	4.2070(2) $\beta = 110.564(3)^{\circ}$	4.3405(2)	196.77(2)	$x = 0.36^{b}$
			11.5409(2)	4.2007(1) $\beta = 110.592(1)^{\circ}$	4.3236(1)	196.21(1)	$x = 0.5^{b}$
$\begin{array}{l} YbZn_{x}Ga_{4-x}\\ (0.75 \leq x \leq 2) \ (\tau_{2}) \end{array}$	BaAl ₄	I4/mmm	4.2141(1) 4.1904(1) 4.1802(1) 4.1678(1) 4.1761(1)	- - - -	10.9182(3) 10.9718(3) 10.9901(2) 10.9994(2) 10.9213(2)	193.91(1) 192.66(1) 192.04(1) 191.07(1) 190.46(1)	x = 0.75b $x = 1b$ $x = 1.25b$ $x = 1.6b$ $x = 2b$
Yb ₃ Zn _{11-x} Ga _x ($3.5 \le x \le 4.2$) (τ_3)	La ₃ Al ₁₁	Immm	4.3150(1) 4.3109(1)	9.4482(3) 9.4763(3)	12.7121(4) 12.7016(4)	518.26(3) 518.89(3)	$\begin{array}{l} x \sim 3.5^{\rm b} \\ x \sim 4.2^{\rm b} \end{array}$
YbZn _{11-x} Ga _x (1.8 \leq x \leq 2.7) (τ_4)	BaHg ₁₁	Pm3m	8.4164(1) 8.4288(1) 8.4360(1)	- -	- -	596.18(1) 598.82(1) 600.35(1)	$x = 2^b$ $x = 2.4^b$ $x = 2.7^b$

^a As-prepared sample.

Fig. 2. X-ray diffraction pattern (a) and microstructure (b) of the annealed Yb₂₅Zn₆₀Ga₁₅ alloy (1 – YbZn_{2-x}Ga_x (white phase), 2 – Yb₁₃Zn_{58-x}Ga_x (dark phase), 3 – Yb₂O₃).

are no binary compounds in all the Zn–Ga system. Only one eutectic reaction, with the \sim 3.7Zn:96.3Ga composition, is observed in this system at 25 °C.

Up to the author's best knowledge, there is no data in the literature on the interaction of the components in the Yb–Zn–Ga system. Only one compound, YbZn_xGa_{4-x} ($0.25 \le x \le 1$), reported to crystallize in the BaAl₄ structure type [16], has been described up to now on this system. No information on the forming characteristics of this compound was given.

3. Experimental details

A total of fifty four binary and ternary samples have been prepared and analysed in the present work, their compositions being shown in Figure 1. Metals with nominal purities >99.95 wt.% (ytterbium ingots, zinc tear drops and gallium pieces) were used as starting materials. Each sample was synthesized by directly melting the elements inside quartz ampoules under vacuum (10^{-5} Torr). The reactions were first performed at 900 °C, the ampoules being hold at that temperature for one hour, followed by their cooling to 400–500 °C in air and further under running water. The obtained

products, with metallic-like lustres, were studied by X-ray powder diffraction technique. No reaction with the quartz ampoules was observed. Finally, fragments of the as-prepared ingots were sealed in evacuated quartz tubes and annealed at 400 °C for 20 days, inside a vertical oven. After the heat treatments, the samples were quenched by submerging the quartz tubes in cold water and analysed.

A PANalytical X'Pert Pro diffractometer (CuK_{α}-radiation) was used for the X-ray phase and structural analyses of the powdered polycrystalline samples. The scans were taken in the $\theta/2\theta$ mode with the following parameters: 2θ region, 15–120°; step scan, 0.03°; counting time per step, 2–20 s. The theoretical powder patterns were calculated with the help of the PowderCell program [17] and used for the identification of the phases. The lattice parameters were obtained by least-squares fitting using the Latcon program [18]. The FullProf [19] program was used for single and multi phase Rietveld fittings.

The microstructure of the samples was first studied, on polished and etched surfaces, by using an optical microscope Olympus OM150. Selected samples were then observed by electron microscopy, by using a Hitachi S2400 scanning electron microscope

Fig. 3. X-ray diffraction pattern (a) and microstructure (b) of the annealed Yb_{33,3}Zn_{33,3}Ga_{33,4} alloy (1 – YbZnGa (grey grains), 2 – Yb₁₃Zn_{58-x}Ga_x (dark phase), 3 – Yb₂O₃).

Table 3

Crystallographic data and details of experimental conditions and structure refinement for the YbZnGa phase.

Empirical formula	YbZnGa
Structure type	CeCu ₂ (KHg ₂)
Crystal system	Orthorhombic
Space group	Imma
Pearson symbol, Z	tl12, 4
Diffractometer	PANalytical X'Pert Pro (Cu K_{α} -radiation)
2θ range, step (°), counting time (s)	15–120, 0.03, 15
Unit cell parameters	See Table 2
Reliability factors	
R _B , R _F	3.82, 2.18
R _p , R _{wp}	7.72, 10.4
Atom position	
Yb in 4e (0, $\frac{1}{4}$, z), B_{iso} (Å ²)	z = 0.5401(3), 1.49(5)
M in 8h (0, y, z), B_{iso} (Å ²)	y = 0.0470(3), z = 0.1647(3), 1.65(3)
Composition of M	0.5Zn + 0.5Ga

operated at 25 kV. The phases were analysed by semi-quantitative energy dispersive X-ray spectroscopy (EDS) using a Röntec detector with a protective beryllium window. At least three valid EDS point analyses were made for each phase in order to guarantee a good analysis of their compositions. These analyses were carried out with a spatial resolution of ~2 μ m and a collection time of 100 s. Automated matrix corrections were carried out using the Röntec Edwin EDS software package.

4. Results and discussion

Samples from the gallium-rich region usually contain the binary YbGa₄, YbGa_{3-x} and YbGa₂ compounds, in agreement with the literature data, which indicate that they are stable at 400 °C. The existence of other five binary phases from the Yb–Zn system (YbZn₁₁, Yb₂Zn₁₇, Yb₁₃Zn₅₈, Yb₃Zn₁₁ and YbZn₂), also previously reported to be stable at that temperature, was confirmed, their crystallographic analysis agreeing with the reported data. The two previously described YbZn₁₃ and Yb₃Zn₁₇ compounds were not

Fig. 4. Unit cell (a) and coordination polyhedral for Yb (b) and M (Zn and Ga) (c) atoms in the structure of YbZnGa. Dark circles indicate Yb atoms, while M (Zn and Ga) atoms are represented by light circles.

detected in the present work. This, together with their absence in the published binary Yb–Zn phase diagram, clearly points to a metastable nature of $YbZn_{13}$ and Yb_3Zn_{17} . Most probably, they are stabilized by small amounts of impurities or by kinetic reasons, which still needs further investigations.

After the annealing procedure, the binary YbZn₁₁, Yb₂Zn₁₇ and Yb₃Zn₁₁ compounds were found to dissolve only a small quantity of gallium (less than 5 at.%). The solubility of gallium in the binary Yb₁₃Zn₅₈ compound is ~7 at.% in annealed samples and up to ~10 at.% in as-prepared alloys. Lattice parameters for the as-prepared Yb₁₃Zn₅₈ and Yb₁₃Zn₅₁Ga₇ alloys are presented in Table 2.

An extended homogeneity range based on the binary YbZn₂ compound, along the YbZn₂-YbGa₂ section, was found, dissolving gallium up to the YbZnGa composition. The X-ray diffraction pattern and microstructure of the Yb₂₅Zn₆₀Ga₁₅ alloy, respectively, are plotted in Fig. 2a and b. A two-phase mixture can be observed, formed by YbZnGa (white region, CeCu₂-type) and Yb₁₃Zn_{58-x}Ga_x (dark region, Gd₁₃Zn₅₈-type). Fig. 3a and b shows, respectively, the diffraction pattern X-rav and microstructure of the Yb_{33,3}Zn_{33,3}Ga_{33,4} alloy. According to the XRD data, the sample consists of two phases: YbZnGa (main phase, CeCu₂-type) and Yb₁₃Zn_{58-x}Ga_x (secondary phase, Gd₁₃Zn₅₈-type). Lattice parameters of YbZnGa are shown in Table 2. The microstructural analysis of the annealed sample confirms the XRD data: SEM/EDS studies indicate that the composition of the grey grains is closed to the Yb:Zn:Ga, while the composition of intergranular dark phase is consistent with the $Yb_{13}Zn_{58-x}Ga_x$ compound. White dots on surface of sample correspond to ytterbium oxides.

The Rietveld crystal structure refinement of the YbZn_{2-x}Ga_x solid solution has been performed for the YbZnGa nominal composition sample, the results of being presented in Table 3. Herein, the Yb atoms occupy the position of the Ce atoms, and a statistical mixture of the Zn and Ga atoms fills the Cu atoms position in the CeCu₂ structure type. Projection of the YbZnGa structure on XY plate and coordination polyhedra for the different atoms are shown in Fig. 4. Coordination polyhedra for Yb atoms are distorted two-capped hexagonal prisms (coordination number 14). The M (Zn and Ga) atoms are inside of 10-vertex polyhedra. Interatomic distances for the YbZnGa are presented in Table 4. These distances are close to the sum of the atomic radii of the respective atoms. The shortest Yb–Yb, Yb–M and M–M bonds are equal 3.659(1), 3.103(2) and 2.592(2)Å, respectively.

A non-existing, or negligible, zinc solubility in the binary YbGa₄ and YbGa₂ compounds can be deduced from the X-ray phase analysis.

In the as-prepared and annealed alloys with compositions along the cross-section with 20 at.% ytterbium and a small amount of zinc a new ternary compound (τ_1) was found. This new intermetallic phase has a small homogeneity range, which extends from YbZn_{0.25}Ga_{3.75} to YbZn_{0.5}Ga_{3.5}, and crystallizes with CaCu_{0.15}Ga_{3.85} structure type (space group C2/m) [20]. X-ray diffraction pattern of the as-prepared Yb₂₀Zn_{7.5}Ga_{72.5} alloy is presented in Fig. 5a. The cell parameters obtained during the XRD data fitting of annealed YbZn_xGa_{4-x} (0.25 ≤ $x \le 0.5$) samples are shown in Table 2.

The early reported ternary YbZn_xGa_{4-x} compound [16], with BaAl₄ structure type (space group I4/mmm) [21], was confirmed to be stable at 400 °C. According to our investigations, a homogeneity range of the above mentioned compound (τ_2), in annealed and asprepared YbZn_xGa_{4-x} alloys, was established with *x* from ~0.75 to ~2. Calculated lattice parameters of this intermetallic compound are presented in Table 2. X-ray diffraction pattern of as-prepared Yb₂₀Zn₁₅Ga₆₅ alloy is presented in Fig. 5b.

Fig. 6a and b shows the X-ray diffraction pattern and microstructure of the Yb₂₅Zn₃₀Ga₄₅ alloy, respectively. According to the XRD data, this alloy consists of three phases: YbGa₂ (Caln₂-type), ~YbZnGa (CeCu-type) and ~YbZn₂Ga₂ (BaAl₄-type). Microprobe analyses of the Yb₂₅Zn₃₀Ga₄₅ sample agree with the XRD results, revealing the formation of the YbZn_xGa_{4-x} compound (grey main phase), with ~Yb₂₀Zn₃₆Ga₄₄ average composition, together with big grains consisting of two phases (bright and dark dots), which correspond to the YbGa₂ and YbZnGa intermetallics (according to the XRD data).

The X-ray diffraction pattern and microstructure of the Yb₁₅Zn₇₀Ga₁₅ alloy, respectively, are displayed in Fig. 7a and b. X-ray

Table 4

Interatomic distances (d) and coordination number (CN) of the atoms in the structure of YbZnGa

Atoms		d (Å)	CN	Atom	IS	d (Å)	CN
Yb	-4M	3.103(2)	14	М	-2M	2.592(2)	10
	-2M	3.114(3)			-M	2.613(3)	
	-2M	3.227(3)			-M	2.927(3)	
	-4M	3.244(2)			–2Yb	3.103(2)	
	-2Yb	3.656(1)			-Yb	3.114(3)	
					-Yb	3.227(3)	
					-2Yb	3.244(2)	

Fig. 5. X-ray diffraction pattern of as-prepared Yb₂₀Zn_{7.5}Ga_{72.5} (a) and Yb₂₀Zn₁₅Ga₆₅ (b) alloys.

phase analysis of the above cited alloy indicated the existence of three phases: the major YbZn₂Ga₂ (BaAl₄-type) and YbZn₁₁ (BaCd₁₁-type), and minor amounts of Yb₂Zn₁₇ (Th₂Zn₁₇-type). This result is in good agreement with the microprobe analyses. According to the SEM/EDS studies, this sample is mainly formed by a bright and grey phases, which correspond to the YbZn₂Ga₂ (~Yb₂₀Zn₄₂Ga₃₈) and YbZn₁₁ (~Yb₈Zn₈₉Ga₃) intermetallic compounds, respectively. The XRD pattern and microstructure of the Yb₁₇Zn₆₃Ga₂₀ alloy are shown in Fig. 8a and b, respectively. Based on XRD data as well as on SEM/EDS studies it can be concluded that this alloy consists of only two phases: the ternary YbZn₂Ga₂ (bright phase) and binary Yb₂Zn₁₇ (grey phase) compounds.

X-ray phase analysis of some as-cast samples, whose composition lies along the 21.5 at.% ytterbium concentration and has 20–30 at.% gallium, shown the existence of a new ternary Yb₃Zn_{11-x}Ga_x (τ_3) compound with small homogeneity range ($x \sim 3.5-4.2$). This intermetallic compound crystallizes with the La₃Al₁₁ structure type. Calculated lattice parameters for ~Yb₃Zn_{7.5}Ga_{3.5} and ~Yb₃Zn_{6.8}Ga_{4.2}, which were obtained from an almost single-phase

sample, are shown in Table 2. The X-ray diffraction pattern of the phase sample with the composition $Yb_{21.5}Zn_{53.5}Ga_{25}$ is presented in Fig. 9. Annealed alloys with 21.5 at.% Yb and small amounts of Ga fall into three-phase or two-phase regions, which consist of $Yb_{13}Zn_{58-x}Ga_x$, $YbZn_{2-x}Ga_x$ and Yb_3Zn_{11} compounds.

In the as-prepared as well as in the annealed at 400 °C samples in Zn-rich corner we found a new intermetallic compound, $YbZn_{11-x}-Ga_x$ ($1.8 \le x \le 2.7$) (τ_4), with a small homogeneity range, which crystallizes with the BaHg₁₁ structure type (space group $Pm\overline{3}m$) [21]. Calculated lattice parameters for this phase are shown in Table 2. The X-ray diffraction pattern of an annealed $Yb_8Zn_{79}Ga_{13}$ alloy is presented in Fig. 10a. It consists of three phases: $YbZn_{11-x}Ga_x$ (BaHg₁₁-type, main phase), $YbZn_{11}$ (BaCd₁₁-type) and Zn (Mg-type). The X-ray diffraction pattern of the $Yb_{8.3}Zn_{75.5}Ga_{16.2}$ nominal composition alloy points to a single-phase sample, as can be see in Fig. 10b.

The crystallographic data on the new ternary Yb–Zn–Ga phases are collected in Table 2. Herein, we present only the lattice parameters of these compounds. Single crystal studies, accurate crystal structure determination, magnetic and transport physical

Fig. 6. X-ray diffraction pattern (a) and microstructure (b) of the annealed Yb₂₅Zn₃₀Ga₄₅ alloy (1 – YbGa₂ (grains), 2 – YbZnGa (grains), 3 – YbZn₂Ga₂ (dark phase), 4 – Yb₂O₃).

properties of ternary Yb–Zn–Ga phases will publish in a further paper.

The isothermal section at 400 °C of the Yb–Zn–Ga phase diagram (0–33.3 at.% Yb), constructed by using the experimental results obtained from the X-ray powder diffraction experiments and SEM/EDX analysis, is shown in Fig. 11. In this partial isothermal section sixteen ternary phase fields have been identified, those are listed below in order of increasing of zinc contents:

1) $L + YbGa_4 + YbZn_xGa_{4-x}(\tau_1)$, 2) $L + YbZn_xGa_{4-x}(\tau_1) + YbZn_xGa_{4-x}(\tau_2)$, 3) $YbGa_4 + YbZn_xGa_{4-x}(\tau_1) + YbGa_{3-x}$, 4) $YbZn_xGa_{4-x}(\tau_1) + YbGa_{3-x} + YbGa_2$, 5) $YbZn_xGa_{4-x}(\tau_1) + YbZn_xGa_{4-x}(\tau_2) + YbGa_2$, 6) $YbZn_xGa_{4-x}(\tau_2) + YbGa_2 + YbZn_{2-x}Ga_x$, 7) $YbZn_xGa_{4-x}(\tau_2) + YbZn_{11-x}Ga_x(\tau_4) + L$, 8) $YbZn_xGa_{4-x}(\tau_2) + YbZn_{11-x}Ga_x(\tau_4) + YbZn_{11}$, 9) $YbZn_xGa_{4-x}(\tau_2) + YbZn_{11-x}Ga_x(\tau_3) + Yb_2Zn_{17}$, 10) $YbZn_xGa_{4-x}(\tau_2) + Yb_3Zn_{11-x}Ga_x(\tau_3) + Yb_2Zn_{17}$, 11) $YbZn_{x}Ga_{4-x}(\tau_{2}) + YbZn_{2-x}Ga_{x} + Yb_{3}Zn_{11-x}Ga_{x}(\tau_{3})$,

- 12) $YbZn_{2-x}Ga_x + Yb_3Zn_{11-x}Ga_x(\tau_3) + Yb_{13}Zn_{58-x}Ga_x$,
- 13) $Yb_{3}Zn_{11-x}Ga_{x}(\tau_{3}) + Yb_{13}Zn_{58-x}Ga_{x} + Yb_{2}Zn_{17}$,
- 14) YbZn_{11-x}Ga_x (τ_4) + L + Zn,
- 15) $YbZn_{11-x}Ga_x(\tau_4) + Zn + YbZn_{11}$,
- 16) $YbZn_{2-x}Ga_x + Yb_{13}Zn_{58-x}Ga_x + Yb_3Zn_{11}$.

Table 5 shows a comparison on interaction with ytterbium, *d*-transition and gallium metals. Among the 30 possible Yb–M–Ga (M = d-metal) systems, the isothermal sections were investigated, in the partial or whole concentration region, only for the nine systems, and 95 ternary compounds were found [1–4]. The rare earth gallium systems with *d*-element from the IB and VIIIA periodic groups are usually rich in the number of ternary compounds. Up to now, all the known ternary gallides with established crystal structures were identified in the 0–40 at.% ytterbium region. They exist with a variety compositions and structure types: Mo₂NiB₂, MgZn₂, CeCu₂, TiNiSi, Mg₂Cu₃Si, CaCu₅, PrFe₇, ThMn₁₂, ScFe₆Ga₆, Th₂Zn₁₇, Na₃As, NaZn₁₃, BaHg₁₁, AuBe₅,

Fig. 7. X-ray diffraction pattern (a) and microstructure (b) of the annealed Yb₁₅Zn₇₀Ga₁₅ alloy (1 – YbZn₂Ga₂ (bright phase), 2 – YbZn₁₁ (grey phase), 3 – Yb₂Zn₁₇).

YCd₆, Cd₁₄Ag₅₁, YbAg_{3.1}Ga_{2.6} YbAg_{3.6}Ga_{1.9}, YbAg_{2.5}Ga_{2.1}, YbAu_{4.2}Ga_{1.8}, BaAl₄, CaCu_{0.15}Ga_{3.85}, La₃Al₁₁, Yb₃Au_{5.5}Ga_{5.5}, CeNi₃, DyCo_{6.6}Ga_{1.9}, Sm₁₅Ni₅₂Ga₄₄, HoNi_{2.6}Ga_{2.4}, Ce₃Ni₆Si₂, MgCuAl₂, CeNiSi₂, YbAgGa₂, Lu₂CoGa₃, Ce_{2-x}Pt₄Ga_{8+y}, Ho₄Ni₁₀Ga₂₁, Y₂Co₃Ga₉, TmNi₃Ga₇, ScRh₃Si₇, YNiAl₄, Yb₂Ru₃Ga₁₀, ErNi₃Al₉, Y₄PdGa₁₂, HoCoGa₅, Ho₂CoGa₈, CeFe₂Al₈ [1–4].

The formation of solid solutions, with extended homogeneity ranges, based on some binary compounds and ternary phases is also common in the Yb–M–Ga systems. For example, a wide YbM_{2-x}Ga_x solid solution based on the binary YbAg₂ compound, crystallizing with the CeCu₂-type structure, has been reported in [22], its limit composition being YbAg_{0.2}Ga_{1.8}. Up to the our best knowledge, transformation of the structures along the "row" CaGa₄ (YbGa₄)–CaCu_{0.15}Ga_{3.85} (YbM_xGa_{4-x})–BaAl₄ (YbM_xGa_{4-x})–La₃Al₁₁ (Yb₃M_{11-x}Ga_x) has been established in the Yb–M–Ga systems with M = Cu, Ag, Au, Pd, Pt [3] and Zn. The relationship among the above mentioned structures is schematically presented in Fig. 12. The CaGa₄ and CaCu_{0.15}Ga_{3.85} are distorted variants of the BaAl₄ structure type. The La₃Al₁₁ structure can be obtained from BaAl₄ by

considering three unit cells and merging part of the 4*e* positions from this last structure type into the 2*d* positions of the La_3Al_{11} structure. Therefore, the difference between the BaAl₄ and La_3Al_{11} compositions is a result of this merging. Albeit the large number of systems having compounds with the four above mention structure types, ternary gallides with BaHg₁₁ structure type have been found only in two of them, Yb–Pd–Ga [3] and Yb–Zn–Ga.

5. Conclusion

Fifty four binary and ternary samples belonging to the Yb–Zn–Ga system have been analysed by means of optical and electron microscopy, powder X-ray diffraction and EDS measurements. The existence of the seven compounds from the binary Yb–Ga and Yb–Zn systems reported to be stable at 400 °C has been confirmed during the study of the partial isothermal section of the Yb–Zn–Ga phase diagram at that temperature. The interaction of the components in this system leads to the formation of four ternary compounds (three of them reported here for the first time):

Fig. 8. X-ray diffraction pattern (a) and microstructure (b) of the annealed Yb₁₇Zn₆₃Ga₂₀ alloy (1 – YbZn₂Ga₂ (bright phase), 2 – Yb₂Zn₁₇ (grey phase)).

 $\textbf{Fig. 9.} X-ray \ diffraction \ pattern \ of \ annealed \ Yb_{21.5}Zn_{53.5}Ga_{25} \ alloy \ (1 - Yb_3Zn_{11-x}Ga_x, 2 - Yb_2Zn_{17}, 3 - Yb_{13}Zn_{58-x}Ga_x).$

Fig. 10. X-ray diffraction pattern of annealed $Yb_8Zn_{79}Ga_{13}(a)$ and $Yb_{8.3}Zn_{75.5}Ga_{16.2}(b)$ alloys $(1 - YbZn_{11-x}Ga_x, 2 - YbZn_{11}, 3 - Zn)$.

Fig. 11. Isothermal section of the ternary Yb–Zn–Ga phase diagram at 400 °C with 0–33.3 at.% Yb. τ_1 – YbZn_{0.25-0.5}Ga_{3.75-3.5}; τ_2 – YbZn_{0.75-2}Ga_{3.25-2}; τ_3 – Yb₃Zn_{7.5-6.8}Ga_{3.5-4.2}; τ_4 – YbZn_{0.2-8.3}Ga_{1.8-2.7}.

Tal	bl	e	5
-----	----	---	---

Summarized data on interaction among the components in the Yb-M-Ga system.

III	A IVA	VA	VIA	VIIA	VIIIA			IB	IIB
Sc	: Ti	V	Cr	Mn4	Fe3	Co13	Ni19	Cu10	Zn4
_		_	_	▲	Δ	Δ	Δ	Δ	Δ^*
Y1	1 Zr	Nb	Mo	Tc	Ru	Rh3	Pd7	Ag9	Cd
Δ	_	_	_	_	2			▲	1
La	ı Hf	Ta	W	Re	Os	Ir3	Pt6	Au10	Hg
_		_		_	_			•	

▲ or △ – isothermal section built in the whole concentration region or in part of it, respectively; (N) – number of ternary compounds; — – no data available; * – this work.

Fig. 12. Relations among CaGa₄ (a), CaCu_{0.15}Ga_{3.85} (b), BaAl₄ (c) and La₃Al₁₁ (d) structures. Dotted lines indicate the unit cell limits.

YbZn_{0.25-0.5}Ga_{3.75-3.5} (CaCu_{0.15}Ga_{3.85}-type), YbZn_{0.75-2}Ga_{3.25-2} (BaAl₄-type), Yb₃Zn_{7.5-6.8}Ga_{3.5-4.2} (La₃Al₁₁-type) and YbZn_{9.2-8.3}Ga_{1.8-2.7} (BaHg₁₁-type). An extended solid solution, based on the YbZn₂ compound, ranges up to the limit YbZnGa composition. The available data on the Yb-M-Ga systems points to the possibility of existence of new compounds and homogeneity ranges based on the partial substitution of the *d* atoms in the yet unexplored systems.

Acknowledgments

This work was partially supported by FCT, Portugal, under the contract No. PTDC/QUI/65369/2006. The FCT Grant No. SFRH/BPD/ 34840/2007 for the research work of Y.V. at ITN, Sacavém, Portugal is highly appreciated.

References

- Bodak Ol, Gladyshevskii El. Ternary systems containing rare earth metals. Lviv: Vyshcha Shkola, 1985 [in Russian].
- Grin Yu N, Gladyshevskii RE. Gallides. Moscow: Metallurgiya; 1989 [in Russian].
 Fedorchuk AO. Intermetallides of gallium and rare-earth elements. Synthesis, structure, properties. Thesis. 2006; Lviv [in Ukranian].
- [4] Villars P, editor. Pearson's handbook, crystallographic data for intermetallic phases (desk ed.). OH: ASM Materials Park; 1997.
- [5] Mason JT, Chiotti P. The ytterbium-zinc phase diagram. Trans AIME 1968;242:1167-71.
- [6] Bruzzone G, Fornasini ML, Merlo F. Rare-earth intermediate phases with zinc. J Less Comm Met 1970;22:253–64.

- [7] Palenzona A, Cirafici S. The ytterbium-gallium system. J Less Comm Met 1979;63:105–9.
- [8] Yatsenko SP, Semyannikov AA, Semenov BG, Chuntonov KA. Phase diagrams of the rare earth metals with gallium. J Less Comm Met 1979;64:185–99.
- [9] Cirafici S, Fornasini ML. Crystal structure of phases of the Yb–Ga system in the range 20–32 at.% Yb. J Less Comm Met 1990;163:331–8.
- [10] Giedigkeit R, Niewa R, Schnelle W, Grin Yu, Kniep R. On the binary compound YbGa₅. Z Anorg Allg Chem 2002;628:1692–6.
- [11] Massalski TB, editor. Ga-Yb (gallium-ytterbium), binary alloy phase diagrams. 2nd ed., 2. Ohio: ASM International, Materials Park; 1990. p. 1876–7.
- [12] Pelleg J, Kimmel G, Dayan D. RGa₆ (R = rare earth atom), a common intermetallic compound of the R-Ga systems. J Less Comm Met 1981;81:33–44.
- [13] Iandelli A. MX₂-Verbindungen der Erdalkali- und Seltenen Erdmetalle mit Gallium, Indium und Thallium. Z Anorg Allg Chem 1964;330:221–32.
- [14] Heumann T, Predel B. Die Zustandsbilder von Gallium-Kadmium und Gallium-Zink. Z Metallkd 1958;49:90–5.
- [15] Zivkovic D, Manasijevic D, Zivkovic Z. Thermodynamic study of Ga-Sn and Ga-Zn systems using quantitative differential thermal analysis. J Therm Anal Calorim 2003;74:85–96.
- [16] Grin Yu, Hiebl K, Rogl P. Crystal structure and magnetism of YbT_xGa_{4-x} , T = Zn, Cd with the BaAl₄-type. J Alloys Compd 1995;227:L4–5.
- [17] Nolze G, Kraus W. Powder cell for windows (version 2.3). Berlin: Federal Institute for Materials Research and Testing; 1999.
- Schwarzenbach D. Program LATCON. Switzerland: University of Lausanne; 1975.
 Rodriguez–Carvajal J, Roisnel T. FullProf.98 and WinPLOTR: new windows 95/NT applications for diffraction commission for powder diffraction, International
- Union for Crystallography, Newsletter N²20 (May–August) Summer, 1998.
 Grin Yu, Ellner M, Predel B, Baumgartner B. Crystal structure of CaCu_{0.15}Ga_{3.85}-
- a new variant of the BaAl₄ structure type: structure analysis from X-ray powder diffraction data. J Solid State Chem 1995;114:342-5. [21] Parthé E, Gelato L, Chabot B, Penzo M, Cenzual K, Gladyshevskii R. Typix,
- [21] Partie E, Gelato L, Chabot B, Pelizo M, Celizuar N, Gladyshevskir K. Typix, standardized data and crystal chemical characterization of inorganic structure types. Berlin: Springer–Verlag; 1994.
- [22] Gumeniuk RV. Phase equilibria and crystal structure of compounds in the Ce-Ag-Ga, Tb-Ag-{Al, Ga} systems and some related. Thesis. 2003; Lviv [in Ukranian].