Arduino controlled sample positioning stage and automatic data acquisition using OMDAQ3

M. Fortunato¹, N. Catarino², L.C. Alves^{1.3}, V. Corregidor^{1,3}, R.C. da Silva^{2,3}

1) C2TN, Instituto Superior Técnico (IST), Campus Tecnológico e Nuclear, Estrada Nacional 10, P-2695-066 Bobadela LRS, Portugal 2) IPFN, Instituto Superior Técnico (IST), Campus Tecnológico e Nuclear, Estrada Nacional 10, P-2695-066 Bobadela LRS, Portugal 3) DECN, Instituto Superior Técnico (IST), Campus Tecnológico e Nuclear, Estrada Nacional 10, P-2695-066 Bobadela LRS, Portugal

Introduction

In this work a simple, effective and low-cost system is described for actuating a stepper-motor driven x-y stage based on an Arduino Nano board together with a multi axis digital stepper driver module (Geckodrive G540) with commanded positioning and automatic data acquisition under OMDAQ3 environment.

Hardware

Arduino Nano board

USB connection port:

- any type of computer; no need for internal bus cards DB25 connector:
- Connection to the stepper-motor power driver 3D printed box:
- accommodates both the Arduino board and the DB25 male connector (robustness and ease of connection)

Stepper-motor driver

Geckodrive G540

- Controls up to 4 stepper motors
- DB9 output connector to stepper motors
- DB25 input/output connector
- Power from external PSU (18–50 V; 3.5 A máx.)
- Short circuit, overvoltage and overcurrent protection

OMDAQ3 interface

- DAQ3 built-in capabilities allow modifying DLL source code for adapting to users motor control interface (allows controlling a system with up to 6 degrees of freedom – 3 translations and 3 rotations).
- Offers USB communication support from PC to Arduino I/O port.
- DAQ3 "hardware options" window allows providing communication parameters (I/O port, baud rate and handshake) together with the definition of motion parameters (e.g. minimum) displacement).

- Programmed runs using an EXCEL CSV script file for defining stage to move, scan type (e.g. full scan, point) and data acquisition presets (e.g. time, spectrum count).

Motorized x,y stage

- 50 mm dislocation amplitude both in x and y

- 4 phase stepper motors RS 318-711 (wired as 2 phase, rating: 12 V, 0.24 A/phase w/ 240 Ω limiting resistor across pins 1 and 5 of DB9 connector)

Application

The hardware/software combined system previously shown was used in our external beam setup (1×1 mm² exit nozzle window dimensions) for the irradiation of easel painting coupons containing lead white pigments with different binders and supports. The experiment and further analysis required sample irradiated areas of 8×8 mm² with accurate measurement of accumulated beam charge per unit area in order to determine exposure thresholds for preventing beam induced damage

|--|

- C++ code compiled using Embarcadero's C++ Builder 10.3.3 Community Edition for obtaining a DLL file (must be named OmXyzDII.dll to be recognized by OMDAQ-3).

XYZ control panel: 6dof XYZ control panel: 6dof X 49.999900 Y 19.999966 Foc 0.00000	Arrows Direct Entry Memory Previous runs Move to (mm) X 50 Y 20 Use Z Z 0 Go there 1 mm / s

Arduino Board Initialization and operation

- Use of modified Arduino open-source libraries
- Waits receiving a string with motion parameters: "Xd Xs Yd Ys"

That considers 2 linear stages each of them with movement direction (d) and number of steps (s).

- Sends to G540, motor direction bit and (s) pulses (digital outputs).
- Gets 'flag' from G540 signalling end-of-segment (motion)

- Ion beam irradiation alteration test on a lead white pigment (lead carbonate form) with an egg yolk binder and painted on canvas. - 2 MeV proton beam – tested fluences: 0.1 μ C/cm², 1 μ C/cm² and 10 μ C/cm², - Irradiated area 8x8 mm².

- A low cost, off-the-shelf solution for motorized x,y stage control is devised and provided.

- Rewritten DLL and integration with OMDAQ3 environment using "universal" USB communications with Arduino Nano board.
- System tested for accurate exposure of painting test coupons.

Acknowledgements

The authors, and in particular Manuel Fortunato, would like to thank to Geoff Grime for is support and guidance on the development of the DLL source code

