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Abstract
Artificial intelligence methods such as artificial neural networks, Bayesian networks, genetic algorithms, and others, have 
shown great potential for application, not only as classification schemes, but also in numerical data analysis. In this work, 
we explore how, from a limited number of spectra (around 200), an ANN could be efficiently developed, using data aug-
mentation techniques and optimized architecture, and used to analyse neutron activation analysis (NAA) data. The IAEA 
Collaborating Centre Research Institute Delft (RID), Netherlands, has collected NAA data sets consisting of one single 
spectrum per sample to determine one single element (selenium), with addition of a marker (caesium) for flux normaliza-
tion, all irradiated and measured the exact same way and analysed with  k0-based software. The problem studied is one of the 
simplest that can be addressed with NAA; therefore the present work is intended merely as proof of concept that ANNs can 
perform well in NAA data analysis of simple problems. We present the results and discuss how to extend the present work 
to more demanding problems in NAA.
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Introduction

Neutron activation analysis (NAA) is the technique most 
commonly found in research reactors, with half of the 223 
operating research reactors reporting activity in this appli-
cation [1]. The level of activity varies widely among labo-
ratories, with some analysing a limited number of samples, 
while others may analyse many hundreds or even thousands 
of samples per year. The International Atomic Energy 
Agency supports NAA laboratories through different activi-
ties, including the organization of annual proficiency test 
exercises [2], coordinated research projects (e.g. promoting 
automation of the NAA process, including process manage-
ment, experiments and data processing [3], or the establish-
ment of Large Sample NAA [4]) and quality assurance and 
quality control [5].

Data analysis is one of the crucial steps in the NAA pro-
cess, and how it is done depends on the calibration method 
employed. This can be, for instance, absolute calibration, the 
relative (also named comparator) method, single comparator 
method, or the k0 method. Single comparator methods such 
as the k0 method allow for panoramic analysis without using 
multi-element standards [6]. The k0-method in particular 
offers efficient methods for irradiation facility and detec-
tor characterization, as well as for necessary corrections 
incurred by sample geometry, counting geometry and sam-
ple matrix effects, such as true-coincidence summing cor-
rections, neutron self-shielding and gamma self-absorption.

Nevertheless, the data analysis process can be com-
plex and may require a great deal of expertise by the 
user. Therefore it would be desirable to have a method 
that would allow reliable, push-button, fast data analysis 
without requirement of specific knowledge by the analyst. 
Artificial neural networks (ANNs) are a flexible scheme 
capable, among other things, of approximating an arbitrary 
function via training with an appropriate data set. The pro-
gramming of ANNs does not include any knowledge of the 
physics that applies to the system to be studied; in the case 
of NAA; this means that even the law of radioactive decay 
is not explicitly used. Instead, the ANNs learn by example: 
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in an initial training phase, they are trained with available 
examples, for instance sets of data (e.g. spectrum yields, 
irradiation, decay and counting times, calibration param-
eters, etc., named “ANN inputs”) previously analysed with 
conventional analytical methods, for which the results (e.g. 
elemental amounts, named “ANN outputs”) are known. In 
supervised training, a given ANN is optimized such that 
the inputs lead to calculated outputs as close as possible 
to the examples given. This often requires the availability 
of a database with thousands (or more) of datasets. The 
trained ANN is then ready to be applied to new datasets. 
Once trained, the analysis is nearly instantaneous.

We have in the past successfully applied ANNs to 
other analytical techniques, such as Rutherford backscat-
tering [7], elastic backscattering [8], elastic recoil detec-
tion analysis [9], and even to automated determination of 
optimal experimental parameters for a given sample [10]. 
The problems studied ranged from the very simple to the 
very complex, including multilayered films with multiple 
elements [9]. ANNs have also been applied to analysis 
of X-ray [11] and gamma ray spectra [12]. ANNs have 
been applied to NAA by Roshani et al., using 29 spectra 
constructed with a Monte Carlo code, without testing to 
real experimental data [13]. Medhat [14] used a dataset 
consisting of eight samples, which is usually not sufficient 
to train an ANN sufficiently. Artificial neural networks 
have been successfully applied to prompt gamma analysis, 
either by using large extensive databases of experimental 
results [15] or by using a large number of simulated spec-
tra – 4900 in the work by Bilton et al. [16], 1478 in the 
work by Hossny et al. [17]. They have also been applied to 
unfolding neutron spectra measured by means of a Bonner 
Sphere Spectrometer set [18], using up to 52 spectra.

In this work, we took advantage of an NAA data set 
collected and analysed at the IAEA Collaborating Centre 
Research Institute Delft (RID), Netherlands, to establish a 
methodology for development of an ANN applied to NAA, 
even when only a limited amount of data is available. The 
data set consists of 216 single measurements per sample to 
determine one single element (Se) from a short-lived iso-
tope, with addition of a marker (Cs) for flux normalization. 
All samples were irradiated and measured the exact same 
way and analysed with  k0-based software. In this work, we 
show how an ANN could be efficiently developed using 
data augmentation techniques and optimized architecture. 
The problem studied is one of the simplest that can be 
addressed with NAA and is intended as a proof of con-
cept that ANNs can perform well in NAA data analysis of 
simple problems. The potential of extending this work to 
more demanding problems, and possible methodologies 
for doing so, is discussed. The code and data used in this 
work are publicly available.

Experimental data

216 toenail samples were weighed into 10 mm tall, 9 mm 
diameter high-density polyethylene capsules. Caesium flux 
monitor samples were prepared by gravimetrically pipet-
ting 50 µl of Cs solution containing 60 µg of caesium onto 
filter paper in 5 mm tall and 9 mm diameter polyethylene 
capsules. The toenail masses were in the 30–200 mg range.

Flux monitor and sample were stacked inside a poly-
ethylene rabbit and irradiated together in the CAFIA 
facility at RID [19], at a neutron fluence rate of about 
5 ×  1016  m−2  s−1, and measured together, rabbit included, 
at a 2 cm distance from a horizontal-looking 40% rela-
tive efficiency Ge detector. Each sample was irradiated 
for 17 s and measured after 3-s decay time, then the next 
cycle restarted after a 3-s wait and was repeated 7 times 
in a cyclic protocol, where the counts from all 7 measure-
ments were accumulated in a single spectrum. This proto-
col yields 134mCs 127 keV peak areas of about 2 ×  104 with 
relative uncertainties below 1%, and a limit of detection 
(LOD) for selenium of about 0.02 mg  kg−1.

The spectra were acquired with an 8192 channel Ortec 
DSPEC digital spectrometer with zero-dead time counting 
enabled, at dead times of about 15%.

The measured spectra were converted to lists of peak 
energies and areas using the in-house RID software [20], 
the neutron fluence rate determined using the 134mCs peak 
at 127 keV, and then the elemental mass fraction, again 
using the in-house RID software [21]. All detected peaks 
were interpreted, but only the result for selenium was 
reported and used for the purpose of the current study. 
The observed selenium concentrations were typically 
near 0.5 mg  kg−1, with absolute uncertainties of about 
0.02  mg   kg−1. The system was specifically calibrated 
for these analyses, eliminating the need for an efficiency 
curve, the dependency on nuclear data et cetera. Timing 
errors were considered to be negligible, even in view of 
the 17.45 s halflife of 77mSe. The counting statistics of 
the 77mSe peak at 161.8 keV are the remaining, dominant 
source of uncertainty by far.

Artificial neural networks

ANN architecture

There is a wide range of different types of ANNs. Most 
modern ANNs architectures are based on transformers 
[22] that have enabled major breakthroughs, for instance 
in natural language processing [23] and computer vision 
[24]. Transformers have become the dominant network 
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architectures, replacing many previous models like Convo-
lutional Neural Networks (CNN), Long Short Term Mem-
ory Networks (LSTM) and Multilayer Perceptrons (MLP) 
[25, 26]. The transformer architecture is based on two con-
cepts: a) recurrent-free architecture which computes the 
representations for each individual token in parallel, and 
b) multi-head self-attention blocks which aggregate spatial 
information across tokens.

Despite their success, recently [27] Liu et al. showed that 
a modular structure of an MLP, consisting of a channel pro-
jection and spatial projections with static parameterization, 
is a competitive alternative to transformers without the need 
for self-attention and having a much lighter design.

For an analytical problem as the one at hand, we have 
used a similar architecture consisting of a modular multilay-
ered deep neural network [28]. As inputs we used the chan-
nel yields and experimental parameters, which in this case 

were the Cs comparator mass, the sample mass, and the fill 
height of the sample during the irradiation. As outputs we 
consider three parameters of interest, namely the Se amount, 
its uncertainty and limit of detection.

Deep neural networks have a number of intermediate 
processing nodes, with typically hundreds of thousands, or 
even millions, of connections or parameters, that have to be 
learned. Normally, learning of these parameters is performed 
through a gradient descendent technique by presenting to 
the ANN thousands of training examples, in which both the 
inputs and outputs are given, and the connection parameters 
are adjusted through backpropagation until optimum agree-
ment is found between the calculated outputs and the actual 
values. In this case we use the metric Root Mean Square 
Error (RMSE) as the loss function.

The architecture of the network is shown in Fig. 1. It con-
sists of blocks of fully connected layers at the input layer that 

Fig. 1  ANN architecture used in 
this work. It consists of a set of 
3 blocks that are concatenated 
and then fed to an intermediate 
layer
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are then concatenated and followed by a number of interme-
diate layers. Since each spectrum has Nc = 8192 channels 
(or 414 after data compression as explained below), if we 
haven’t used a modular approach, we would end up with a 
very large ANN that would overfit on the small amount of 
data available. In the figure, the first (top) layer is the spec-
trum and the relevant parameters (Cs comparator mass, the 
sample mass, and the fill height of the sample during the 
irradiation).

In order to facilitate the training, we used a modular 
approach to the network, where the input layer is sliced first 
into six blocks (layer 2 from the top) and then into K = 3 
blocks (layer 3), each of size S = Nc∕K , allowing for ini-
tial pre-processing of each block separately, which contain 
only a limited number of peaks. The comparator mass, the 
sample mass and the fill height were concatenated to each of 
the blocks. In the following layers, the blocks are then con-
nected to each other. The “dense” layers enhance the deep 
processing capability of the model. The “dropout layers”, in 
which connection nodes are randomly eliminated, are used 
to reduce overfitting (i.e. over specialization of the ANN to 
the cases used in the training) [29]. The three outputs are the 
Se amount, its uncertainty and LOD.

For the activation function we used the gelu [30], and the 
optimization method was the Adam [31]. We also applied 
Dropout of 0.1 to avoid overfitting. After the first stage, two 
intermediate layers with 30 and 10 neurons are added before 
the outputs. The loss function to minimize had weights (1.0, 
0.1 and 0.2), corresponding to the error on the Se content, 
uncertainty and LOD. This was driven by the knowledge 
that the Se content can be determined from the data with 
much higher accuracy than the other two parameters. Giv-
ing slightly smaller or higher weights to the uncertainty and 
detection limit did not significantly change the results.

The model was implemented using Tensorflow Keras ver-
sion 2.2 [32]. All values were normalised to values between 
0 and 1. From the original 216 points, we use the first 173 
points for training and the remaining 43 for testing. In order 
to deal with the large dynamic range of counts, we applied 
the following transformation:

However, even with these optimizations, a small amount 
of training data can result in overfitting, where the ANN can 
reproduce the data used in the training, but performs poorly 
when confronted with new data (the so-called test data). The 
high dimensionality of the data as in the present case makes 
this risk even more likely. Moreover, the gradient descent 
algorithm may become unstable when only a small amount 
of data are available.

Therefore, we used a limited degree of knowledge about 
the technique to design a learning strategy to circumvent 

(1)y = y0 + log
(

y − y0 + 1
)

, y > y0 = 10000

these difficulties, as detailed below. This consisted in data 
compression, data augmentation and removal of outliers.

Data compression

Data compression was achieved by summing a number of 
adjacent channels. This has the advantage of reducing the 
number of input parameters and therefore reducing the com-
plexity of the ANN and making its training easier and more 
effective. It has the disadvantage that it can lead to worse 
discrimination of neighbouring gamma lines. We chose a 
compression of five, i.e. channels were added five by five. 
Given the FWHM energy resolution of the detector and the 
energy width of the original channels, the resulting com-
pressed channels have an energy width very close to one 
FWHM, which should be sufficient in many cases. This leads 
to a reduction from 8192–1638 channels.

Furthermore, a simple peak recognition routine was 
implemented using the average spectrum, allowing easier 
identification of small peaks or peaks only present in some 
of the spectra. Only channels in the vicinity of the 72 peaks 
that could be identified were used by the ANN. This led to 
a further reduction to 414 channels.

Data augmentation

Data augmentation was achieved by generating 10,000 syn-
thetic spectra by doing linear combinations of the real data. 
The spectra yields were combined linearly:

where Yt is the array of channel contents for the synthetic 
spectrum, and Y1 and Y2 are the channel contents corre-
sponding to the same energy for the two selected spectra. 
Each spectrum is given a weight, a1 and a2 such that

The spectra were selected randomly, but with higher 
probability in parameter regions where the data were very 
sparse. As an example, very few data points had high Se 
content, so the density of data points for high Se values was 
increased in the synthetic data, which aids the ANN learn-
ing process.

The Se content, its uncertainty and LOD for each syn-
thetic spectrum were determined from the corresponding 
values for the two selected spectra. Some degree of extrapo-
lation was introduced, whereby these parameters could be 
20% outside the range in the real data, which also aids the 
ANN learning process.

The distribution of Se in the original and in the synthetic 
data is shown in Fig. 2. The extension of the Se range on the 
extremes of the distribution, as well as the increased density 

(2)Yt = a1Y1 + a2Y2,

(3)a1 + a2 = 1.
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of data points in the intermediate region between 0.85 and 
1.05 mg  kg−1 are apparent.

The validity of the synthetic data was checked. A repre-
sentative sample of the synthetic spectra (200 spectra) was 
analysed with the in-house RID software, which yielded val-
ues of the Se content, uncertainty and detection limit fully 
consistent with those provided by the data augmentation 
routine.

Removal of outliers

The original data may have outliers, which given the data 
augmentation procedure could be amplified in the training 
set. Therefore, we removed the outliers from the data used 
to generate the synthetic data. We did not remove them from 
the test set used to test the final ANN.

In first order approximation one should have:

where ISe and ICs are the Se and Cs peak integrals, respec-
tively, mSe and mCs are the sample and comparator masses, 
respectively, c is the Se concentration, and f is the flux, 
which was available from the RID analysis, but not used by 
the ANN given that the information it provides is redundant 
with the comparator mass.

Equations (4) and (5) were used, first to check the data 
and remove any outliers from the training (taken as having 
values given by Eqs. (4) and (5) outside three sigma of the 

(4)ISe∕
(

f mSec
)

= constant

(5)ICs∕
(

f mCs

)

= constant

entire data set) and second to ensure that all synthetic data 
generated respected Eqs. (4) and (5) within three standard 
deviations of the mean calculated for the data. This is also 
a further check to the validity of the synthetic data, at least 
for the comparator mass and for the Se content.

Results and discussion

The ANN was trained as indicated above, over a number 
of epochs. In each epoch, the entire training data set is 
presented to the ANN, one by one, and the ANN internal 
parameters are adjusted accordingly. At the end of an epoch, 
the error is calculated for both the training and test sets. The 
training and test set errors as a function of epoch are shown 
in Fig. 3. The ANN is considered trained when the test set 
error stops decreasing.

The results obtained for the Se content, its uncertainty 
and LOD are given in Figs. 4, 5, and 6. The figures present 
the normalized values (range 0 to 1) obtained by the ANN 
vs the real values. The first observation is that the ANN 
seems to reproduce the values obtained with the standard 
software (which we will call the “real values” from now on) 
very closely. Numerically, the average absolute deviation 
between the ANN prediction and the real values for the Se 
content, considering only the test set, is 0.008 mg  kg−1 and 
its standard deviation is 0.006 mg  kg−1. This is within the 
expected uncertainty of the experimental Se values. It needs 
to be stressed that ANNs are interpolation devices, and the 
spread in the training data inevitably must also be found 
in the ANN results. Additional spread that comes from the 

Fig. 2  Distribution of Se in the 
original and synthetic data
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interpolation mechanism learned during the training will be 
small when the ANN architecture and the training process 
are effective, as is the case in this study.

The variation in the results obtained for the uncertainty 
and for the LOD (Fig. 5 and 6) is significantly higher than 
for the Se amount (Fig. 4). By observing Figs. 5 and 6, par-
ticularly the data for the LOD, some outliers in the ANN 
prediction can be seen, even for the training data. One 
should keep in mind that the figures show more than 10,000 
points, so the outliers are in fact a small percentage of the 
total number of points (0.3% and 1.4% of data points for the 
uncertainty and the LOD, respectively).

Nevertheless, the higher variation in the uncertainty and 
LOD results, as compared to the variation in the Se content 
results, is clear. This meets expectations: the relative accu-
racy with which the Se amount is determined is much higher 
than the relative accuracy with which its uncertainty and 
LOD are. Numerically, and considering only the test set, the 
average absolute deviation between the ANN prediction and 
the real values for the uncertainty is 0.0013 mg  kg−1, and 
its standard deviation is 0.0018 mg  kg−1. The average value 
of the uncertainty in the original data is 0.0154 mg  kg−1. 
For the LOD, the corresponding values are 0.0027 mg  kg−1, 
and 0.0038 mg  kg−1, respectively. The average value of the 
LOD in the original data is 0.02791. This means that the 
standard deviation of the ANN results is slightly below 10% 
of the values to be predicted. All in all, this variation in the 
ANN prediction can be taken as representing closely the 
uncertainty with which the Se uncertainty and LOD can be 
determined from the data.

Summary and outlook

We have shown that ANNs can effectively analyse simple 
NAA data with an accuracy that is close to what is achiev-
able with analytical methods. The problem studied is one 
of the simplest cases in NAA, with one single spectrum for 
each sample, and all samples measured under nearly the 
same experimental conditions. In particular, the decay and 
measurement times were equal.

Fig. 3  ANN error for the train and test sets as function of training 
epoch

Fig. 4  Normalised ANN 
(prediction) results versus real 
values for the Se content. The 
blue dots are the results for the 
training set, i.e., the 10,000 syn-
thetic data plus the 80% used for 
their construction. The orange 
dots are the results for the 43 
real spectra that were not used 
to generate the synthetic spectra
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The question arises of whether ANNs can also analyse 
common NAA data where the dimension of time plays 
a role, for instance in single spectra with varying decay 
times, typical for samples irradiated simultaneously and 
measured sequentially, or when more than one spectrum is 
collected after successively longer decay times.

In principle, if the information is present in the data, an 
ANN with a suitable architecture and suitably trained can 
retrieve it. The modular approach to the network architecture 
applied in the present case can be extended for the case of 
multiple spectra. For instance, each spectrum can be kept 
disconnected from the other ones in the initial ANN layer, 

Fig. 5  Normalised ANN 
(prediction) results versus real 
values for the uncertainty on 
the Se content. The blue dots 
are the results for the training 
set, i.e., the 10,000 synthetic 
data plus the 80% used for their 
construction. The orange dots 
are the results for the 43 real 
spectra that were not used to 
generate the synthetic spectra

Fig. 6  Normalised ANN 
(prediction) results versus real 
values for the Se detection limit 
LOD. The blue dots are the 
results for the training set, i.e., 
the 10,000 synthetic data plus 
the 80% used for their construc-
tion. The orange dots are the 
results for the 43 real spectra 
that were not used to generate 
the synthetic spectra
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allowing for initial pre-processing of each spectrum sepa-
rately. This technique would prevent a strong increase of the 
number of nodes in the network, which helps in the training 
process and has been successfully employed in analysis of 
multiple ion beam analysis spectra from the same sample, 
collected with different techniques and experimental condi-
tions [9, 33]. In any case, the training data needs to be suf-
ficiently representative, covering the range of parameters 
that is found in the data to be analysed, including irradiation, 
decay and measuring times. Appropriate data augmentation 
methods, similar to those employed in this work, could be 
used to generate synthetic training data.

One possibility of bypassing the need to use data augmen-
tation techniques, and at the same time allowing one to train 
the ANN before any experimental data is collected, would 
be to use calculated spectra for the training. These would 
have to be realistic, i.e. including Poisson noise and real-
istic continuum. As many thousands of spectra are needed, 
Monte Carlo methods might not be appropriate. However, 
Monte Carlo methods could be used to generate, for a given 
detector configuration, a set of continua for single energies, 
from which the continuum for a given sample with given 
elemental amounts could be interpolated. The continuum 
could then be added to the continuum-free spectra calculated 
with fast analytical methods. Alternatively, the production of 
synthetic spectra using generative neural networks might be 
explored. Generative models, capable of producing new data 
from a learned model, have made tremendous progress in 
recent years, since the initial proposal of Generative Adver-
sarial Networks (GANs) [34]. Initially applied to image 
processing, generative models have been also successfully 
applied in other domains such as particle physics [35].

The data, the augmentation code and its outputs, and the 
ANN code have been made publicly available [36].
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