
Nuclear Instruments and Methods in Physics Research B 268 (2010) 1676–1681
Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier .com/locate /n imb
Artificial neural networks for instantaneous analysis of real-time Rutherford
backscattering spectra

J. Demeulemeester a,*, D. Smeets a,1, N.P. Barradas b,c, A. Vieira d, C.M. Comrie e, K. Temst a, A. Vantomme a

a Instituut voor Kern- en Stralingsfysica and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
b Instituto Tecnológico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavém, Portugal
c Centro de Física Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699 Lisboa Codex, Portugal
d Instituto Superior de Engenharia do Porto, Rua S. Tome, 4200 Porto, Portugal
e Department of Physics, University of Cape Town, Rondebosch 7700, South Africa

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 December 2009
Received in revised form 16 February 2010
Available online 6 March 2010

Keywords:
Artificial neural networks
Real-time RBS
Ni silicides
Growth kinetics
IBA software
RBS analysis
0168-583X/$ - see front matter � 2010 Elsevier B.V.
doi:10.1016/j.nimb.2010.02.127

* Corresponding author. Tel.: +32 16 327227; fax: +
E-mail address: Jelle.Demeulemeester@fys.kuleuve

1 Present address: RQMP, Département de Physiq
Montréal, QC, Canada H3C 3J7.
This paper reports on the advantage of using artificial neural networks (ANNs) to analyze large sets of
real-time Rutherford backscattering spectrometry (RBS) data. Real-time RBS, i.e. collecting RBS spectra
at periodic time intervals during a thermal treatment, probes the full response of a thin film to the
annealing in situ. Although very valuable insights can be gained by this technique, the time-consuming
analysis of the vast amount of RBS spectra acquired during real-time RBS measurements has so far pre-
vented the widespread use of real-time RBS. Setting up an ANN is quite an intensive process as well, but
once trained, these ANNs can handle the analysis of large data sets practically instantaneously. As such,
the beneficial combination of real-time RBS and ANN analysis forms a perfect synergy. In this test case, a
network was trained and applied to analyze the Ni silicide growth during annealing of a thin 80 nm Ni
film on Si(100). The ANN performance was validated by comparing the ANN results with the conven-
tional analysis performed on the same data set.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decades, Rutherford backscattering spectrometry
(RBS) has secured an indispensable position as a tool for dedicated
compositional depth profile studies in a wide variety of research
fields. The main reason for the success of this ion beam technique
is that it is fully quantitative and depth-sensitive in a range of a
few nm up to tens of lm. In thin film studies RBS is often applied
in the cook-and-look approach, in which several specimens are
subjected to a thermal treatment and subsequently analyzed by
RBS. With this method various features of the solid phase reaction
such as thin film phase formation, diffusion kinetics, impurity
redistribution, dominant diffusing species, etc. can be studied by
examining a number of discrete steps in the thermal treatment.
Although this cook-and-look approach has proven very useful in
the past, performing RBS in situ during the thermal treatment, i.e.
real-time RBS, yields more valuable and reliable data [1,2]. More-
over, since RBS provides direct thickness information its real-time
application can be utilized in kinetic studies, marker experiments
and studies on the redistribution of impurities during the solid-
All rights reserved.
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phase reaction [2–6]. This does not only drastically decrease the
workload: kinetic parameters can, for example, be obtained from
a single ramped annealing; it also limits the risk of overlooking
important transitions in the formation process and virtually elim-
inates the influence of small differences in annealing procedures
and specimen preparation. However, the time-consuming analysis
of the vast amount of spectra produced by a single real-time RBS
measurement (typically a few hundred spectra per measurement)
has up to now obstructed a wide breakthrough of this powerful
technique.

Conventionally, RBS spectra are analyzed using one of the stan-
dard ion beam analysis codes [7], in which computational optimi-
zation algorithms are often utilized to refine the extracted
information of interest. In this process of analyzing, simulated
RBS spectra are recursively compared with the data and adjusted
until a convincing match is obtained. Although the consecutive
spectra acquired in a real-time measurement usually show only lit-
tle difference and can be analyzed using the parameters of the pre-
ceding analyzed spectrum as starting values, analyzing a full real-
time RBS data set remains a huge task. Especially when real-time
RBS is applied in systematic studies examining a matrix of samples
having slightly different properties or examining the response to
several thermal treatments, even larger data sets (1000 and more
spectra) are acquired and months of analyzing are required to ex-
tract the valuable data.

http://dx.doi.org/10.1016/j.nimb.2010.02.127
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Because of the recent success booked in the automated analysis
of single RBS measurements by artificial neural networks (ANNs)
[8], we investigated the possibility to extend this technique to
the analysis of large real-time RBS data sets. The major advantage
of ANNs is that, after the time-consuming initial steps necessary to
create a working network, analysis is fully automatic and practi-
cally instantaneous, virtually independent of the number of spectra
fed for processing. The ANN analyzing capabilities were tested on
real-time RBS data probing the solid-phase reaction of a thin Ni
film with a Si substrate, and compared with the outcome of con-
ventional analysis on the same data set. The selected system has
important applications in CMOS technology, and its solid-phase
reaction is therefore well documented in literature [9]. The phase
sequence is well understood, and the first two phases (i.e. Ni2Si
and NiSi respectively) are characterized by a diffusion-controlled
growth. Although we have already successfully applied ANN anal-
ysis to ternary systems exhibiting a much more complex growth
[3] and to metal germanide growth where the overlapping metal
and germanide RBS signals complicate the analysis [10], we use
this rather simple physics case as an example. Hence, all attention
can be drawn to the use of ANNs to analyze real-time RBS data sets,
rather than to explaining the complex diffusion behavior.

2. Artificial neural networks

Artificial neural networks are program codes based on neuron-
like building blocks designed to emulate data processing in the hu-
man brain [11]. ANNs are trained to solve specific problems by
learning to relate numerous possible inputs to the corresponding
output parameters without requiring the implementation of the
physics determining this problem. Because of their intelligent de-
sign ANNs are well suited for processing incomplete data sets
and noisy signals prone to statistics, which makes them applicable
in the field of automated pattern recognition (where conventional
software tends to fail), e.g. medical diagnosis, handwriting recogni-
tion, speech recognition, etc. Artificial neural networks have al-
ready been implemented successfully for several experimental
techniques, including ion beam analysis techniques [8,12], infrared
spectroscopy [13], Mössbauer spectroscopy [14,15] and analysis of
synchrotron nuclear resonant scattering data [16].

An artificial neural network consists of an input and output
node array connected through several node layers in between, as
schematically represented in Fig. 1. These nodes are mutually con-
nected with all nodes of the neighboring layer(s) and propagate
information with a weight specific for each connection. The output
of a single node is a function (usually a sigmoid) of the summed
and weighted inputs from the previous node layer. These weights
Fig. 1. A schematic representation of an artificial neural network consisting of two
hidden node layers interconnecting the input and output layer via transfer weights.
are intended to model the synaptic efficiencies in the human brain.
It is assumed in general, that the learning process in human brains
is realized by adapting the efficiencies with which information is
passed between the neurons. Similarly, an ANN can be trained to
solve a specific set of problems by adjusting all the weights of
the connections between the nodes. For ANNs performing the anal-
ysis of ion beam analysis (IBA) data, the input to the network con-
sists of the essential part of the IBA spectrum. The relevant physical
parameters of interest such as thickness of constituting layers, the
relative elemental concentrations, the roughness, etc. could be the
output parameters of the network. Consequently this implies that
for each fundamentally new problem, e.g. analyzing RBS data on a
totally new type of system, a new network, able to operate within
the specific boundaries defining the problem, needs to be trained.

One of the standard methods to train an ANN is called super-
vised learning [11]. Supervised learning basically means that a
training set containing numerous examples with well-known cor-
responding output parameters is fed to the network repeatedly
to calculate the network output using a specific set of weights.
After each iteration a network error is calculated according to the
following equation (for simplicity only a single output node is
considered):

E ¼ 1
2

XN

n

ðyn � onÞ2; ð1Þ

with N the number of examples in the training set, yn the output
calculated by the network, and on the desired correct output. In turn
all weights are adjusted by the backpropagation algorithm [11] to
minimize the network error E, i.e. training the network. As a figure
of merit and a criterion to stop the training process one uses the
mean-square error (MSE), given by

eMSE ¼
X

i

ðyi � oiÞ2

ðoi � �oÞ2
; ð2Þ

summed over the full set, with �o the mean value of that specific out-
put parameter. After each training iteration, the MSE is calculated
on a similar but independent test set containing unseen spectra.
This is necessary to avoid the well known problem of overtraining,
in which the ANN learns to analyze the training set by heart. In
practice, overtraining means that the ANN loses its generalizing
capabilities, and cannot handle the analysis of new unknown data.
Overtraining can be recognized easily from an increase in MSE on
the test set while the MSE on the training set keeps on improving.
Hence, once a minimal MSE is reached on both training set and test
set, the training of the network is optimal and the ANN can be ap-
plied to the experimental data set, containing unseen data as well.

One of the most important criteria to obtain a well-functioning
network is the quality of the training set. It is indispensable to have
a realistic training set in the sense that the sampling space should
at least cover all experimental possibilities. Artificial neural net-
works are only capable of interpolation in sampling space, they
are unreliable when extrapolating. A training set may consist of
experimental data as well as simulated data. Whenever a good
computational model is available, it is far more beneficial to chose
for the latter option. This approach offers a perfect control over the
sampling space and allows to keep the training set as general as
possible. The upper and lower limits as well as the distribution
in between can be controlled, and in general a large training set
can be obtained in a relatively short time window. A training set
can for instance be generated by a code that repeatedly generates
the experimental and sample parameters and prompts a conven-
tional simulation program to calculate the corresponding spec-
trum. All simulated spectra should be convoluted with Poisson
noise to imitate experimentally acquired data. The time needed
for the construction of the training set and the training of the
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network merely depends on the speed of the simulation program
and the available computing power. Once the network is trained,
hundreds of experimental spectra (a typical number for one real-
time RBS measurement) can be analyzed instantaneously.
3. Real-time RBS

In real-time RBS, backscattering data are collected during the
thermal treatment of the sample. For this purpose a heating fila-
ment and temperature controller are connected to the sample
holder, on which the sample is mounted with conducting silver
paste. The temperature of the readout is calibrated using the eutec-
tics of Au–Si and Al–Si at 363 �C and 577 �C, respectively. A cold
trap allows to maintain a vacuum better than � 10�7 mbar during
the thermal treatment. To avoid black body radiation to interfere
with the backscattering collection at elevated sample tempera-
tures, a ruggedized detector is used, stopping photons without
adding too much straggling to the backscattered particles. Suffi-
ciently high incident beam currents (50–70 nA) are maintained
to allow fast data acquisition and therefore a relevant time and
temperature resolution on the thermal process, without creating
too much pile-up obstructing a straightforward data analysis.
Every 30 s an RBS spectrum is collected. For the analysis, multiple
spectra (typically 4) are assembled into a single spectrum in order
to obtain good statistics (6–8 lC). In this way analyzable RBS spec-
tra are produced, covering the thermal treatment with a time res-
olution of 2 min. Real-time RBS data are conveniently plotted in a
contour plot such as in Fig. 2. The contour plot is constructed from
the consecutively acquired RBS spectra, with the time (or temper-
ature) axis running from bottom to top. Every horizontal line in
such a contour plot corresponds to an RBS spectrum, with a color
scale representing the backscattering yield.

This technique has already been applied successfully to many
thin film solid-phase reaction studies. In binary systems real-time
RBS can easily reveal the phase sequence, and the kinetic parame-
ters can be extracted from the thickness information. In ternary
systems real-time RBS allows to study the redistribution of all ele-
ments during the reaction enabling a thorough study of the influ-
ence of the added element on the thin film growth. When
applied to marker studies, the continuous probing of the marker
movement allows to determine the dominant diffusing species
during the growth of a specific phase.

Theron et al. particularly highlighted the strengths of this tech-
nique by showing that the kinetic parameters of a solid-phase
reaction (activation energy Ea and pre-exponential factor D0) can
be extracted from a single ramped anneal [2], whereas other tech-
niques usually require several ramped annealings (Kissinger anal-
Fig. 2. Real-time RBS measurement on an 80 nm thick Ni film on Si(100) capped
with 7 nm Si, ramp-annealed at 2 �C/min. The dashed lines indicate the points
where the growth of a new phase is initiated.
ysis) [17] or several isothermal annealings to construct an
Arrhenius plot. As such, the full kinetics can be obtained from a
single measurement, which eliminates the risks arising from irre-
producibilities in sample preparation and experimental conditions.
To extract the kinetic parameters for a diffusion-controlled process
with diffusion coefficient D ¼ D0 expð�Ea=kBTÞ, the squared thick-
ness of the growing phases is plotted as a function of temperature
and fitted (as described in Ref. [2]) with an exponential function
containing the activation energy Ea and pre-exponential factor D0.

4. Experimental details

The investigated sample consists of an 80 nm thick Ni film
deposited by molecular beam epitaxy (MBE) onto a Si(100) wafer.
The substrate was chemically cleaned with the standard RCA pro-
cedure and the deposition was carried out in UHV (< 10�10 mbar).
Subsequently a 7 nm thick Si capping layer was deposited in the
same MBE-setup to prevent oxidation of the Ni layer. Real-time
RBS measurements were performed with a 2 MeV Heþ beam, inci-
dent angle of 35� and backscattering angle of 165�. While perform-
ing the RBS experiment the sample was annealed at a constant
heating rate of 2 �C/min in high vacuum (< 10�7 Torr). Every 30 s
an RBS spectrum was collected. For the analysis, 4 spectra were
assembled in one spectrum resulting in a temperature resolution
of 4 �C on the annealing process.

All spectra were first analyzed in a conventional way using
RUMP [18]. The results were used as a reference to test the ANN’s
analyzing capabilities. The ANNs were trained on a training set of
18,000 spectra and a test set of 2000 spectra generated by NDF
[19]. Based on previous experiences with ANN analysis we chose
to use a network architecture containing only two hidden layers
[8]. The training set was created such that all possible sample com-
positions throughout the annealing sequence are taken into ac-
count. The thickness of the present layers is chosen randomly
between 0 at./cm2 and an upper boundary depending on the phase
stoichiometry and the total amount of Ni available in the sample.
In order to make the ANN capable of dealing with real data, ran-
dom but realistic roughness was added to the growing layers,
and a small spread on beam energy and detector resolution were
applied to finally convolute the full spectrum with Poisson noise.
Only the thicknesses of the three phases (Ni, Ni2Si and NiSi) were
required as an output of the ANN.

5. Results

The solid-phase reaction (SPR) of a thin Ni film on a Si substrate
has been studied extensively because of its importance in CMOS
technology. The solid-phase reaction is characterized by the fol-
lowing phase sequence: [9]

Ni! Ni2Si ! NiSi ! NiSi2:

First Ni transforms into a Ni2Si film mainly via Ni diffusion into the
Si substrate [20]. Once the Ni has completely transformed into
Ni2Si, NiSi starts to form at the Ni2Si/Si interface. This diffusion-con-
trolled growth continues until a uniform NiSi film is obtained. The
formation of the NiSi2 phase from NiSi is known to be nucleation-
controlled and will only be initiated at elevated temperatures
(800 �C ). Since these temperatures are out of reach for the experi-
mental apparatus, this latter reaction is not expected to be observed
in this real-time RBS measurement.

5.1. Conventional analysis

In the real-time RBS measurement (Fig. 2) two main regions in
backscattering energy can be distinguished, wherein the highest
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backscattering energy strip (from approximately 1.26–1.56 MeV)
represents the Ni signal and the lowest energy part (below
1.15 MeV) is produced by backscattering from Si. The narrow line
visible at lower temperatures (at approximately 1.15 MeV) corre-
sponds to the thin Si cap on top of the Ni film, and is therefore a
useful guide to the eye to judge whether the Si from the substrate
has reached the surface in the solid-phase reaction (i.e. whether Ni
has completely transformed into a silicide). In the contour plot a
transformation of one phase into the next phase is represented
by a transition in color (in the Si as well as in the Ni RBS signal)
and by a bending contour line (increasing thickness) separating
the two regions. For each temperature the position of this contour
depicts the position of the interface between the shrinking and the
growing phase in the film. The curvature of these contours as a
function of temperature is thus a measure for the growth rate of
the growing phase. As can be deduced from the real-time RBS mea-
surement (Fig. 2), two phase transformations occur. The starting
point of the formation of each new phase is indicated by the
dashed lines in Fig. 2.

At first sight the Ni silicide formation thus proceeds as one
would expect. The bending of the Ni and Si contours from approx-
imately 250 �C to approximately 340 �C signals the growth of Ni2Si ,
the first phase in the thin film Ni silicide phase sequence. As Ni dif-
fuses into the substrate, Si appears at higher backscattering ener-
gies because of the apparent movement towards the surface.
Once the Si contour has reached the Si surface energy the Ni film
has completely transformed into Ni2Si (indicated by the dashed
line at 340 �C in Fig. 2). From that point onwards NiSi forms as indi-
cated by the subsequent bending in the Ni and Si contours, and
continues until a homogenous NiSi film is obtained (at approxi-
mately 400 �C). The NiSi film remains stable until the end of the
annealing since the NiSi2 nucleation temperature (800 �C ) is not
reached.

Fig. 3 shows the thickness of the Ni, Ni2Si and NiSi layers as a
function of the annealing temperature (solid symbols) as obtained
from the conventional analysis. The thickness is expressed in the
number of Ni atoms (1015 Ni at:=cm2) present in a certain phase.
As demonstrated in this figure the real-time RBS data allow a quan-
titative analysis of the silicide thin film growth. Both reactions, i.e.
the formation of Ni2Si and the formation of NiSi, can be distin-
guished and contain enough data points for each of the phases to
Fig. 3. Overview of the thickness evolution of Ni (squares), Ni2Si (circles) and NiSi
(triangles) during a 2 �C/min ramped annealing of an 80 nm thick Ni film capped
with 7 nm Si on Si(100). The results are obtained by conventional analysis (solid
symbols) and by ANN analysis (open symbols).
characterize the phase growth. Although most of the spectra can
be analyzed quite fast, taking the parameters of the previous spec-
trum as an initial guess for the local search routine in RUMP (PERT)
[21], it easily requires several days to fully analyze the real-time
RBS measurement.
5.2. ANN analysis

For the specific system investigated we used a network consist-
ing of 161 input nodes and 3 output nodes (i.e. the thickness of the
three phases) connected through two hidden layers containing 50
and 20 nodes respectively, i.e. (161, 50, 20, and 3). Only 161 rele-
vant channels, covering backscattering energies from 0.8 to
1.6 MeV, were selected to constitute the data input. The lowest
channels containing only information on the Si substrate, and the
channels above the Ni signal were barred from the input. As men-
tioned before, the training set (18,000 examples) and the test set
(2000 examples) were generated by a code that automatically
prompts NDF to calculate the RBS spectrum corresponding to the
given parameters. The thickness of the composing layers (i.e. cap-
ping, Ni, Ni2Si , and NiSi layer) was varied between realistic values,
and a random but relevant distribution of other contributing
parameters, e.g. collected charge, detector resolution, layer rough-
ness, straggling factor and beam energy was included in the train-
ing and test set as well. Since we were only interested in the
thickness of the growing or disappearing Ni, Ni2Si , and NiSi layer,
only those three parameters were requested as an output from the
network. The creation of the training and test set was accom-
plished within 12 h with a Pentium 4 processor running at
2.66 GHz, whereas the training of the network was realized within
half an hour. Although numerous spectra (63 in total) needed to be
analyzed, it required only a fraction of a second for the ANN to pro-
cess the data and come up with the output that is shown in Fig. 3
(open symbols).

To evaluate the ANN performances, the network output (open
symbols) is overlayed with the conventional analysis (solid sym-
bols) in that figure. As can be seen the agreement between both
analysis results is striking and covers the full real-time RBS mea-
surement. Not only is the ANN capable of distinguishing between
the three possible phases, the network is also able to determine
the thickness of each of the phases with great accuracy. This is a
remarkable result considering that the network is actually trained
on a very general training set containing a wide variety of RBS
spectra. The thickness of each of the phases was for instance (nec-
essarily) varied between thicknesses corresponding to a Ni content
of 0 and 850� 1015 at:=cm2. Nevertheless the ANN had no problem
to ascribe the correct thickness to each of the phases for each spec-
trum. In general it is a good idea to restrict the network output to
the parameters of interest only. Having less output parameters al-
lows one to train the network with a simpler architecture and thus
less connections, which results in a decrease in computation time
needed to train the network. Additionally, simpler networks usu-
ally produce more reliable results [12].
6. Discussion

The most difficult task in the analysis is to pinpoint the moment
at which the growth of a new phase is initiated, as the initial stages
of growth can easily be overlooked or be mistaken as an increase in
roughness. In practice, when analyzing in a conventional way, one
tries to overcome this problem by working backwards; i.e. analyze
a spectrum where the new silicide phase has already grown to a
reasonable thickness, and successively analyze preceding spectra
to work towards the initial point. This basically means that the
experimentalist is using his/her knowledge on the solid-phase



Fig. 5. Squared thickness of the growing Ni2Si phase as a function of temperature as
obtained from the ANN analysis of the real-time RBS measurement during a ramped
annealing at 2 �C/min (data points). The fit (solid line) allows to extract the
activation energy Ea and the pre-exponential coefficient D0 characterizing the Ni2Si
growth kinetics.
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reaction of the studied system to assist in the analysis of the full
real-time RBS measurement. In contrast to this, the network has
no knowledge of the expected phase sequence and growth kinetics,
and processes all spectra independently from each other. Never-
theless the ANN performs exceedingly well in identifying the initial
stages of growth. Whereas in the conventional analysis at spec-
trum 12 and 34 (Fig. 3) a large discrete step from zero thickness
to a certain finite thickness of the new silicide phase can be ob-
served, the ANN reveals the transition more fluently without devi-
ating from the conventional analysis. Moreover, the ANN analysis
can be taken as a confirmation that the judgement of the experi-
mentalist to include a new phase in the analysis at that certain
point was a correct decision. Artificial neural networks exclude
any influence of the experimentalist and provide therefore a neu-
tral and reliable analysis.

As an additional control of the performance of the ANN one can
take the output of the neural network, feed it to simulation soft-
ware and compare the simulation with the data. This is for exam-
ple done in Fig. 4 for spectra acquired during the real-time RBS
measurement at the three stages in the reaction sequence, i.e. pure
Ni (RT), growth of Ni2Si (at 311 �C) and growth of NiSi (at 384 �C ).
The Ni, Ni2Si and NiSi thicknesses were taken from the ANN output
and were left unaltered for the simulation. A capping layer and
realistic amount of roughness on the growing layer were added
to the sample structure used to make the simulation. The convinc-
ing match for these spectra taken at the different stages of growth
provides again a confirmation on the excellent qualitative analysis
capabilities of the used ANN. With the available simulation soft-
ware one can easily generate such simulations using the ANN out-
put for all the spectra in the real-time measurement in an
automated way. This allows to evaluate the performance of the
ANN over the entire data set.

In general it can be stated that spectra with corresponding out-
put parameters which are well-covered by the training set sam-
pling space are expected to yield a correct ANN analysis. Spectra
related to parameters far away from the sampling space average
have a large probability to yield meaningless results, without a
warning from the network. An alternative solution to avoid that
corrupt results remain undetected is thus to check whether the
individual spectra are outliers or not, prior to passing them
through the network for analysis. This can be done by training an
additional ANN that classifies spectra as ‘‘acceptable” or ‘‘not
acceptable”, based on the sampling space of the training set [22].
Fig. 4. Selection of RBS spectra acquired during the real-time RBS measurement of
an 80 nm thin Ni film on Si(100) at several stages of the solid-phase reaction, i.e. as
deposited (at RT, squares), during Ni2Si growth (at 311 �C , triangles) and during
NiSi growth (at 384 �C , circles). The simulations based on the ANN output are
represented by the solid lines.
Hence, the experimentalist is warned whenever the ANN is likely
to analyze a spectrum beyond its analyzing capabilities.

As an example the growth kinetics of the Ni diffusion governing
the Ni2Si and NiSi growth were extracted from the results obtained
via ANN analysis. Special efforts were made not to get trapped in
local minima during the fitting procedure, which often results in
a seemingly good fit, but incorrect values for the apparent activa-
tion energy and pre-exponential coefficient. Therefore the variance
between the data and the fit were calculated while moving Ea and
D0 through parameter space, in order to find the absolute mini-
mum. The Ni2Si growth kinetics are fitted in Fig. 5 and yield an
activation energy Ea of 1.25 ± 0.05 eV and a pre-exponential coeffi-
cient D0 of 0.5 ± 0.2 cm2/s. The NiSi growth kinetics are character-
ized by an activation energy Ea of 1.34 ± 0.06 eV and a pre-
exponential coefficient D0 of 2.7 ± 0.3 cm2/s. The fit is displayed
in Fig. 6. In literature different values can be found for the Ni2Si
growth kinetics (Ea � 1:3—1:6 eV) as well as for the NiSi growth
Fig. 6. Squared thickness of the growing NiSi phase as a function of temperature as
obtained from the ANN analysis of the real-time RBS measurement during a ramped
annealing at 2 �C/min (data points). The fit (solid line) allows to extract the
activation energy Ea and the pre-exponential coefficient D0 characterizing the NiSi
growth kinetics.
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kinetics (Ea � 1:2—1:8 eV) [23]. These discrepancies can be related
to several causes as different impurity concentration in the thin
film related to the deposition method, influences of the capping
layer, use of a different technique to extract the kinetic parameters,
etc. In this case the obtained kinetic parameters compare best to
the results obtained from RBS data acquired from isothermal
annealings for the growth of Ni2Si (Ea ¼ 1:35� 0:1 eV and
D0 ¼ 0:745 cm2=s) [24], as well as for the growth of NiSi
(Ea ¼ 1:55� 0:1 eV) [25].

7. Conclusions

We have constructed, trained and applied an artificial neural
network (ANN) to analyze RBS data of the growth of Ni silicide thin
films. The ANN is clearly capable of extracting the thickness of the
composing layers in the reacting system with the same quality as
conventional analysis. The remarkable difference, however, is the
time scale involved. Whereas conventional analysis of huge real-
time RBS data sets is extremely time-consuming and hence dis-
couraging, it takes the ANN only a fraction of a second to extract
the parameters of interest from the numerous RBS spectra.
Although it takes a few days to create a proper and optimal train-
ing set and train the ANN, the benefits still hold. Especially when
ANNs are applied in systematic real-time RBS studies where simi-
lar samples are annealed at several thermal treatments, the use of
the fast analysis capabilities of ANNs become virtually indispens-
able. The combination of real-time RBS and ANN analysis is thus
extremely useful and efficient in dedicated studies requiring a ma-
trix of samples, e.g. examining the solid-phase reaction in ternary
systems containing varying concentrations of an impurity, marker
studies, kinetic studies, etc. Once the ANN is trained it does not
matter how many spectra have to be analyzed. Furthermore, ANNs
exclude the influence of the experimentalist on the results and pro-
duce a reliable neutral analysis.
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