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ABSTRACT: There is a growing need to develop artificial
intelligence technologies capable of accurately predicting the
properties of materials. This necessitates the expansion of material
databases beyond the scope of density functional theory, and also
the development of deep learning (DL) models that can be
effectively trained with a limited amount of high-fidelity data. We
developed a DL model utilizing a crystal structure representation
based on the orbital field matrix (OFM), which was modified to
incorporate information on elemental properties and valence
electron configurations. This model, effectively capturing the
interrelation between the elemental properties in the crystal, was
coined the PRoperty-networking Orbital Field maTrix-convolu-
tional neural Network (PROFiT-Net). Remarkably, PROFiT-Net
demonstrated high accuracy in predicting the dielectric constant, experimental band gaps, and formation enthalpies compared with
other leading DL models. Moreover, our model accurately identifies physical patterns, such as avoiding the prediction of unphysical
negative band gaps and exhibiting a Penn-model-like trend while maintaining the scalability. We envision that PROFiT-Net will
accelerate the development of functional materials.

1. INTRODUCTION
The development of artificial intelligence caused a paradigm
shift in prediction and design of crystal materials.1 The
traditional methods of characterization and design of crystal
materials often rely on laborious trial-and-error experimenta-
tion, guided by intuition and high-throughput computational
screening using density functional theory (DFT).2 This
approach suffers from high costs, time inefficiencies, and the
breadth of material design, which hinders the rapid develop-
ment of advanced materials.

Based on the rapid data accumulation and the development
of computing power, machine learning (ML) techniques
enable the extraction of meaningful patterns and correlations
from vast data sets comprising material properties.3 By
leveraging algorithms capable of learning from data, ML
empowers researchers to predict material properties, identify
promising candidates, and optimize parameters with unprece-
dented accuracy and efficiency. Particularly, deep learning
(DL), a subset of ML, excels in handling intricate, high-
dimensional data sets, offering advanced capabilities in feature
extraction, pattern recognition, and predictive modeling.4

In materials science and computational chemistry, the
accurate representation of molecular and atomic structures is
essential for understanding and predicting their properties and
behaviors. With the advent of ML techniques, the development
of efficient and robust methods for encoding structural
information into numerical descriptors that can be readily

utilized by ML algorithms has drawn considerable attention. In
this context, several innovative approaches have emerged, each
with its own strengths and applications. Prominent examples
include the Coulomb matrix,5 which is based on a pairwise
electrostatic representation; atom-centered symmetry func-
tions,6 which capture local structures; smooth overlap of
atomic positions (SOAP),7 which employs smooth rotationally
and translationally invariant atomic density distributions; and
many-body tensor representation,8 which considers pairwise
interactions extended to higher-order interactions involving
multiple atoms. In addition, graphs, which are fundamental
data structures used to represent the connections or relation-
ships between pairs of objects using vertices (nodes) and edges
(connections), are widely used to represent the atomic
structures of molecules and materials.9

The development of crystal structure representations has
frequently correlated with enhancements in DL models for
predicting material properties. For example, the crystal graph
convolutional neural network (CGCNN), introduced by Xie
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and Grossman10 has demonstrated reliable accuracy in
predicting properties including formation energy, absolute
energy, and band gap. Chen et al. developed the materials
graph network (MEGNet), which integrates atom, bond, and
global state variables into a unified model while embedding
elemental features.11 Additionally, the orbital graph convolu-
tional neural network (OGCNN) was recently introduced,12

combining the orbital field matrix (OFM)13 and CGCNN
atomic features within the framework of CGCNN and an
autoencoder.12 However, these DL models have predom-
inantly trained on databases at the DFT level, which inherently
limits their ability to accurately predict properties such as band
gaps. Furthermore, their fidelity-tolerance and performance
with more accurate, albeit rarer, databases have not been
thoroughly explored.

In this study, we developed a DL method, based on
encoding pairwise intercorrelations between orbitals and
elemental properties in a CNN. This approach is referred to
as PRoperty-networking Orbital Field maTrix (PROFiT)-Net,
which is based on a generalization of the previously developed
crystal representation of the OFM.13 Using dielectric materials
as an example, a popular material group common in
semiconductor research, we trained PROFiT-Net to predict
electronic dielectric constant (ε) for 1217 distinct systems. We
demonstrated superior performance compared with other
state-of-the-art techniques. Considering the importance of a
large band gap (Eg) for high dielectric materials and a low
formation enthalpy (ΔHf) for thermodynamic stability, we
extended the training of PROFiT-Net to predict Eg and ΔHf.
The model demonstrated significantly enhanced predictive
power, especially for high-fidelity data sets. Subsequently, we
found that our model correctly learns physical patterns from
data such as the trend of DFT underestimating band gap
without the information on data set fidelity and the Penn-
model-like physical trend of using large-scale databases. Finally,
we validated the scalability of our model by investigating a
large database.

2. METHODS
The OFM, as originally proposed by Lam Pham et al.,13 is a 2D
descriptor, in which the local environment of the central atom is
described by the valence electron configurations of the central atom
and neighboring atoms using one-hot vectors. To define the atomic
feature, like a natural language model, a one-hot vector (Oatom)
consisting of 32 bins is assigned to each atom to represent the valence
electron configuration of D = {s1, s2, p1 ... f13, f14} (nm means that m
electrons are occupied in the n-orbital). For instance, in the case of an
oxygen atom with a valence electron configuration of 2s22p4, the s2

and p4 bins are filled with ones, and the others are filled with zeros.
The neighbor list of each atom is determined according to O’Keeffe’s
theory,14 whereby Voronoi polyhedral are used to define coordinating
atoms. This eliminates arbitrariness in defining the local environment,
unlike many previous graph-based models that often define
coordinating atoms based on an empirically chosen cutoff
distance.10,11

To represent the local environment, OFM considers a multi-
plication of a transposed one-hot vector of a central atom p, denoted

by Op

T
, with a one-hot vector of a coordinating atom k, denoted by

Ok , i.e., ×O Op k

T
. Since this leads to a degenerated representation

for the pairs of atoms having the same valence electron configurations
(e.g., NaCl vs KCl), it is further normalized by the bond length rpk
between p and k, resulting in a bond matrix.

×
r

O O1
( )

pk
p k

T

(1)

Then, OFM defines a local environmental matrix X(p) of the central
atom p by summing bond matrices (see eq 1) over the neighbor list of
the central atom p with weights defined by the ratio of the solid angle
θk

(p) of the atom k to the maximum value = maxp

k n
k

p
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( )

1

( )

p

with np is

the number of atoms coordinating the central atom p. Hence, X(p) and
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where op(i) is the ith element of Op

T
and ok(j) is the jth element of

Ok . Finally, the entire representation of the crystal, denoted by F, is
constructed by averaging Xp of all atoms (p = 1, 2, ..., N) with N being
the total number of atoms in the unit cell

=
=

F
N

X1

p

N

p
1 (4)

While valence electronic configurations are linked to various chemical
properties of an atom, one cannot predict all essential atomic and
material properties solely from an understanding of this configuration.
For example, the nucleus-electron interaction plays a vital role in
determining the ionization energy (IE) and electron affinity (EA) of
an element. Notably, the average of IE and EA determines the atomic
electronegativity (E), a key factor influencing bond dipole and bond
ionicity (covalency), which in turn affect the band gap and dielectric
constant of a material. This signifies the limitations associated with
predicting properties solely using valence electron configurations.

Therefore, in our model, we concatenate elemental properties with
the valence electron configuration, expanding the number of bins of
Oatom to a total of 136. These include group/period numbers (GN/
PN), E, covalent radius (CR), the number of valence electrons, first
IE (FIE), EA, block (B), atomic volume, and atomic polarizability
(P). How each feature is embedded in an atomic feature vector is
described in Table S1. By adopting the concatenation method, the
elemental properties can interact across bonded pairs during
construction of X(p), facilitating the extraction of hidden patterns
and relationships crucial for determining the chemophysical nature of
materials. We thus coined our model PROFiT.

To construct the DL model using CNN, we flattened the two-
dimensional array of eq 4 into one-dimensional array as an input for
convolution layers and sequentially dense layers. The convolution
layers and fully connected layers were sequentially connected by
Tensorflow15 and Keras,16 and ReLU17 was used as an activation
function.

Our network consists of convolution layers and fully connected
layers. The activation function, ReLU, follows each convolution layer
to learn the nonlinear relationship between structure and property. In
addition, the dropout technique was used to prevent overfitting after
the convolution layers. After the initial three blocks (first−third
blocks), our model learned the relationship only with the combination
of a convolution layer and a dropout in the other blocks (fourth−fifth
blocks). Thus, the convolution layer part of our model is constructed
as the mixture of the first−third blocks where the ReLU function
exists, and the fourth−fifth blocks, where only convolution and
dropout layers are included to optimize the trade-off between
simplifying the model and capturing the complexity of the patterns.
Since pooling layers can improve computational efficiency by
reducing the input size, the pooling layer follows the dropout layer
for the max pooling layer, while the order is reversed for the average
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pooling layer. For fully connected layers, dense layers and ReLU
activation functions are alternatively repeated five times, with the sixth
dense layer being the last one. Since our DL model is designed to
predict a scalar value like ε, the final output from fully connected
layers is consequently reduced into a single value. This output in a
scalar form is used in calculating the loss, which here is the mean
squared error (MSE) loss, and the weights are updated by minimizing
this loss via the backpropagation algorithm. Details of the model are
tabulated in Table S2.

The number of epochs was set as 500 during all training and the
best model from the validation results was used to assess the test set.
NVIDIA GeForce GTX 1080 was used for model learning.
Hyperparameter optimization of our model was carried out with
respect to the ε data set by changing the number of convolution
layers, dense layers, kernel size, the number of kernels, dropout, and
max or average pooling.

All data sets used in this work, as well as their references and the
number of structures in data sets are listed in Table S3. Note that the
sizes of data sets employed in our study are slightly different from the
reported sizes in the references as indicated in parentheses, which is
due to the update of the Materials Project.18

The ε data set as calculated by density functional perturbation
theory was composed of 1217 structures that are queried via the
Materials Project18 from ref 19 (1364). The PBE(+U)-level DFT
band gap (Eg

PBE) and PBE(+U)-level DFT formation enthalpy per
atom (ΔHf

PBE) data sets were also queried through the Materials
Project18 from ref 10 (46,744), leading to 36,837 crystal structures.
This data set was composed of 15,614 metallic systems and 21,223
semiconducting or insulating materials. Only nonmetallic structures
are used for the Eg

PBE data set, while all structures are used for the
ΔHf

PBE data set. For HSE06-level DFT band gaps (Eg
HSE06) calculated

by Heyd−Scuseria−Ernzerhof06 (HSE06) hybrid functional,20 we
utilized ref 21 (10,481) and removed the compounds which contain
deuterium, resulting in 10,388 structures. The experimental band gaps
(Eg

exp) data set was composed of 465 structures was obtained from ref
22 (472) while experimental formation enthalpies (ΔHf

exp) consisting
of 1127 structures were constructed using ref 23 (1143). The
calculation data sets of ε, Eg

PBE, Eg
HSE06, and ΔHf

PBE were cleaned in
previous works, while no additional cleaning was carried out for the
experimental data sets of Eg

exp and ΔHf
exp. The data set was split into

6:2:2 as training, validation, and test sets, respectively. All materials
data were preprocessed with Pymatgen24 and Matminer25 Python
packages. Voronoi tessellation was performed using the Pymatgen
code by setting the tolerance parameter to 0.

3. RESULTS & DISCUSSION
To benchmark the accuracy level of PROFiT-Net, we
compared it with other DL models including CNNs employing
the conventional OFM (OFMCNN), CGCNN,10 MEGNet,11

and OGCNN.12 For OFMCNN, all parameters and model
architecture were set to be the same as PROFiT-Net, except
that the pairwise intercorrelations between elemental proper-
ties were absent in the OFM. For CGCNN, MEGNet, and
OGCNN, which are state-of-the-art-level graph-based CNN
models, the default settings in their GitHub repositories were
used to conserve the originality of each model, except for the
cutoff of MEGNet and the definition of the neighbor list,
which was slightly adjusted only when errors occurred due to
the existence of isolated atoms. Details of CGCNN, MEGNet,
and OGCNN are provided in Tables S4−S6, with a
comparison of the number of model parameters shown in
Table S7. PROFiT-Net has 14 M model parameters, thus
exhibiting substantial flexibility at the expense of a relatively
long computation time (Figure S1).

Using LiAg2O3 as a representative example, Figure 1
illustrates the flowchart used to obtain the square feature
matrix F, see eqs 2−4. The matrix demonstrates sparsity due to

its construction by the multiplication of atomic feature vectors.
Diagonal components capture interactions between identical
properties of neighboring atom pairs; for instance, F1,1
represents the interaction involving the half-filled s-orbital of

Figure 1. Scheme of crystal structure representation for LiAg3O2. (1)
The atomic feature vector is defined for each atom in a unit cell, with
the number in parentheses indicating the vector size. (2) The
neighbor list of each atom is determined through the three-
dimensional Voronoi tessellation. (3) The bond matrix is constructed
by multiplying the transposed atomic feature vector of a central atom
with that of the coordinating atom. (4) Each bond matrix is weighted
by the solid angle and merged into the local environmental matrix. (5)
The local environmental matrices of all atoms in a unit cell are
combined and normalized by the number of atoms in the unit cell
(N), resulting in the matrix representing LiAg3O2. The color map of
the matrix based on the magnitude of each component shows the
sparsity of the matrix. Abbreviations of atomic features are used (see
Table S1).
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an atom with those of its neighbors. On the other hand, off-
diagonal components highlight interactions between different
properties. As an illustration, F50,100 denotes the interaction
between the group number 17 of an atom and the first
ionization energies of its neighboring atoms. In this manner,
our model encodes pairwise property-property relationships
beyond the orbital interactions of the original OFM.19 This
sets apart it unique to previous ones.

Furthermore, it is noteworthy that the matrix size, which
determines the input size of the CNN, is independent of the
type or size of the material. It is given by a square of the length
of the atomic feature vector, i.e., 136 × 136, irrespective of the
system size. Considering that the neighbor list is constructed
using O’Keeffe’s theory, our representation, which preserves
translational and rotational invariances, is empiricism-free and
size-invariant while uniquely integrating the chemical natures
and connectivity of adjacent atoms concurrently within a single
square matrix.

We then trained PROFiT-Net (see its structure in Figure 2)
against the ε data set consisting of 1217 different materials.

The distribution of this data set is illustrated in Figure S2a,
with values ranging from 1.63 to 26.53. Figure 3a demonstrates
the predictive power of PROFiT-Net for ε in terms of mean
absolute error (MAE). Our model (MAE: 0.493) exhibits
almost a 2-fold improvement compared to the OFMCNN
model (MAE: 0.898). This suggests that concatenating
additional elemental properties into the one-hot vector is
crucial for accurately predicting ε.

When compared to CGCNN, MEGNet, and OGCNN, our
model exhibits significantly improved performance. PROFiT-
Net shows a 12−15% reduction in MAE compared to the
other models, with MAE values for CGCNN, MEGNet, and
OGCNN being 0.568, 0.554, and 0.582, respectively. Using
MSE as an error metric, our model demonstrates a significantly
reduced error (0.825) more than two to three times as small as
CGCNN (MSE: 1.924), MEGNet (MSE: 1.686), OGCNN
(MSE: 1.953) as well as OFM (MSE: 2.922) as shown in
Figure 3b. Note that MSE is more sensitive to outliers than
MAE, the characterization of which is critical for the wide
distribution of dielectric constants. Particularly, the population
of high dielectric materials is much smaller than that of

moderate dielectric materials, it is particularly important to
reliably predict outlying values. Therefore, PROFiT-Net
exhibits tolerance to outliers and thus can be an effective
tool for exploring unknown high dielectric materials.

Next, we assessed the predictive capability of PROFiT-Net
for the band gap, Eg. We trained PROFiT-Net on three distinct
data sets, namely Eg

PBE, Eg
HSE06, and Eg

exp. Note that the data
fidelity increases progressively in the order of Eg

PBE, Eg
HSE06, Eg

exp.
Figure S2b illustrates the data distributions of Eg

PBE.
PROFiT-Net exhibits a 0.443 eV MAE, whereas the
OFMCNN shows a 0.615 eV MAE (Table S8), suggesting
again that the inclusion of elemental properties in the atomic
feature vector is crucial for improving predictive performance.
However, other graph-based models such as CGCNN,
MEGNet, and OGCNN demonstrate comparable or slightly
reduced MAE values of 0.421, 0.389, and 0.390 eV,
respectively. It is noteworthy that our model shows a positive
mean error (ME) value of 0.024 eV, whereas the MEs of
CGCNN, MEGNet, and OGCNN shows negative values of
−0.004, −0.012, and −0.033 eV, respectively. Given that
PBE(+U)-level DFT typically underestimates the band gap,
the overestimation trend of our model in predicting Eg

PBE can
be viewed as a corrective tendency of PROFiT-Net.

When PROFiT-Net was trained on the Eg
HSE06 data set with

improved fidelity, as depicted in Figure S2c, it demonstrated
the lowest MAE (0.513 eV) compared with the other models;
OFMCNN shows a 0.657 eV MAE, whereas the MAEs of
CGCNN, MEGNet, and OGCNN are 0.546, 0.534, and 0.513
eV, respectively (Table S8).

A more remarkable improvement was observed when our
model was trained on the highest-fidelity Eg

exp data set (data
distribution is shown in Figure S2d). Our model surpassed all
other models by more than 0.24 eV in terms of MAE (Figure
3c)�the MAE of our model is 0.504 eV, whereas those of
OFMCNN, CGCNN, MEGNet, and OGCNN are 0.738,
0.811, 0.832, and 0.814 eV, respectively. Considering these

Figure 2. Architecture of PROFiT-Net. The descriptor matrix, which
is constructed according to the scheme outlined in Figure 1, is
flattened into a one-dimensional array and fed as input to PROFiT-
Net. In the architecture diagram, the convolution layer, activation
function, average pooling, dropout, max pooling, and dense layers are
depicted in orange, green, blue, purple, brown, and yellow,
respectively. Relevant parameters values are given in Table S2.

Figure 3. (a) MAEs (b) and MSEs of dielectric constant prediction
(ε). MAEs of (c) band gap prediction (Eg

exp) and (d) formation
enthalpy prediction (ΔHf

exp) targeted to predict the experimental
values. All results represent error metrics evaluated on the test sets.
Corresponding scatter plots are displayed in Figure S3. PROFiT-Net,
OFMCNN, CGCNN, MEGNet, and OGCNN are depicted in blue,
purple, green, red, and brown, respectively.
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results, we believe that our model shows continuously
improved predictive ability as the fidelity of the training data
increases, a trend attributed to the use of accurate elemental
property features, reinforcing the aforementioned discussion.
Additionally, it is interesting to observe that OFMCNN also
shows a better performance compared with CGCNN,
MEGNet, and OGCNN in predicting Eg

exp. This highlights
the efficacy of employing valence electron interactions in the
accurate prediction of electronic properties over graph-based
representations.

Our final focus was predicting formation enthalpy, ΔHf. For
this purpose, we trained our model using ΔHf

PBE and ΔHf
exp

data sets. The distributions of ΔHf
PBE and ΔHf

exp as shown in
Figure S2e,f, respectively, display a predominance of negative
values indicating that these data sets primarily consist of
thermodynamically stable structures. In the prediction of
ΔHf

PBE, our model achieves a 0.053 eV MAE, representing a 3-
fold reduction in error compared with OFMCNN (MAE:
0.159 eV). While this improvement is substantial, the
performance is nearly on par with the graph-based models
(Table S8): CGCNN records a 0.059 eV MAE, MEGNet
demonstrates a 0.041 eV MAE, and OGCNN exhibits a 0.048
eV MAE.

However, when predicting the high-fidelity data of ΔHf
exp,

our model once again showcases a significantly smaller MAE
(0.119 eV) in comparison with the other models (Figure 3d).
This improvement is not only notable when contrasted with
the MAE of OFMCNN (0.224 eV), but also when compared
with the MAEs of CGCNN (0.165 eV), MEGNet (0.407 eV),
and OGCNN (0.182 eV).

To further assess the tolerance to variation in data set
fidelity, we compared the MAEs of various fidelities related to
the prediction of band gaps (Figure 4a) and formation

enthalpies (Figure 4b). Notably, our model demonstrated that
PROFiT-Net outperforms the other models as the fidelity
increases toward high-fidelity data sets, while in lowest fidelity
data set the accuracy is on par with the state-of-the-art graph
neural network (GNN). Thus, our model exhibits a high
degree of tolerance to variations in data set quality, alleviating
the need for reoptimization or the search for optimal
hyperparameters when applying the model to a new data set.

It is noteworthy that PROFiT-Net demonstrates an accuracy
level in predicting Eg

exp and ΔHf
exp that either surpasses or is

comparable to the accuracy achieved by DFT. When evaluated
against the same experimental band gap data set, the MAEs of
HSE and PBE0 hybrid-functional DFTs were recorded as 0.5
and 0.6 eV, respectively,22 which are comparable to the MAE
of PROFiT-Net (0.504 eV). In predicting ΔHf

exp, the MAE of
PBE(+U)-level DFT is 0.136 eV,26 indicating that PROFiT-
Net, with a smaller MAE of 0.119 eV, outperforms the
PBE(+U)-DFT. This suggests that PROFiT-Net can reliably
predict the band gap and thermodynamic stability of materials
with similar or improved accuracy compared to DFT.

To explore the potential influence of hyperparameters on
model performance, we reoptimized the hyperparameters of
other graph-based CNN models using the ε data set used for
the hyperparameter optimization of PROFiT-Net (Table S9
and Figures S4−S7). Even after this reoptimization, PROFiT-
Net showed the best performance for predicting ε.
Interestingly, the reoptimization improved the performance
of MEGNet and CGCNN for predicting Eg

HSE06. However,
PROFiT-Net still showed the best performance for predicting
the highest fidelity data of Eg

exp, and the main conclusion
therefore remained unchanged. We additionally benchmarked
the CNN models using open databases comprising DFT- or
DFPT-level data (Table S10), such as MatBench27 and
JARVIS-Leaderboard,28 where PROFiT-Net still shows a
comparable performance for the low-fidelity data sets.

For a deeper understanding of the origin of the improved
performance, we analyzed feature importance using the
Shapley additive explanation (SHAP) method.29 A detailed
procedure for quantifying the feature importance of PROFiT-
Net is provided in the Supporting Information and Figure S8.
Notably, PROFiT-Net is based on the pairwise interaction
between two properties, defining feature importance for pairs
of properties, which results in an 11 × 11 matrix (Figure S9).

Figure 5 shows the top five property pairs with the highest
feature importance for each target material property. Overall,
properties (X) paired with B, i.e., X-B, had significant
contributions. This behavior was attributed to the general
notion that material properties depend on their characteristic
parameters, e.g., alkali/alkaline earth metals (s block),
transition metals (d and f blocks), and nonmetals (p block).

Furthermore, we revealed the important contributions of E
and PN to determining ε and Eg. One can reasonably expect a
periodic trend of constituting the element’s properties, which
in turn affect the material’s properties. Moreover, bond
covalency, largely determined by E, is known to be strongly
correlated with ε and Eg.

30,31 Interestingly, the importance of
PN gradually increased as data set fidelity improved for Eg.
Additionally, the importance of E and CR, both of which are
vital physical quantities determining the bond characteristics
and, consequently, thermodynamic stability of materials,
became critical in predicting ΔHf.

To investigate the scalability of our model, we expanded the
chemical space from the given data sets to a large-scale
database. We used PROFiT-Net to predict ε, Eg

exp and ΔHf
exp

for 154,718 materials from Materials Project database as well
as CGCNN, MEGNet, and OGCNN. Figure 6a shows the
correlation between ε and Eg

exp when using PROFiT-Net. This
overall shape is similar to the Penn model where ε is inversely
proportional to the square of Eg

exp.32 This implies that our
model can learn the physical trend of material properties.

Interestingly, PROFiT-Net does not predict negative band
gap materials, whereas the other models predict unphysical
negative band gaps. For instance, CGCNN, MEGNet, and

Figure 4. (a) MAEs of band gap prediction targeted to predict PBE
values (Eg

PBE), HSE06 values (Eg
HSE06), and experimental values (Eg

exp).
(b) MAEs of formation enthalpy per atom targeted to predict PBE
values (ΔHf

PBE) and experimental values (ΔHf
exp). PROFiT-Net,

OFMCNN, CGCNN, MEGNet, and OGCNN are depicted in blue,
purple, green, red, and brown, respectively.
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OGCNN predicted 577, 1739, and 2613 materials with
negative band gaps, respectively. Remarkably, this trend
correlates with the trend of ME observed in predicting the
band gap trained against the PBE-level data set (as discussed
earlier); the model exhibiting more negative ME values in
predicting the low-fidelity data tends to produce more negative
band gaps when predicting the high-fidelity data.

Next, we investigated the pairwise intercorrelations between
PROFiT-Net and other models, computing Pearson correla-
tion coefficients (R) for ε, Eg

exp, and ΔHf
exp. In predicting ε,

PROFiT-Net correlated strongly with other models (Figure
6b); R values with CGCNN, MEGNet, and OGCNN are
0.935, 0.816, and 0.929, respectively. This mutual validation
supports the reliability of predicting ε using various DL
models. However, weaker correlations among the various ML
models were observed in predicting the other properties, i.e.,
ΔHf

exp and Eg
exp. For instance, the correlation between PROFiT-

Net and MEGNet in predicting ΔHf
exp demonstrated a reduced

R value of 0.636 (Figure 6c). In predicting Eg
exp, the

correlations of CGCNN, MEGNet, and OGCNN with

PROFiT-Net are also weakened, resulting in R values of
0.809, 0.730, and 0.793, respectively (Figure 6d). This clearly
illustrates the distinctiveness of PROFiT-Net, particularly
when it is trained using the high-fidelity data set, compared
with the other DL models.

4. CONCLUSION
We developed PROFiT-Net, a DL model based on CNNs,
capable of accurately predicting various material properties
such as the dielectric constant, band gap, and formation
enthalpy. This model encodes the interrelation between atomic
and electronic properties of neighboring atoms, which is
incorporated into the conventional CNN architecture com-
prising of sequentially arranged convolution layers and dense
layers. PROFiT-Net exhibits improved performance over
various GNN models, especially in data sets with high fidelity,
and successfully reflects physical trends like predicting non-
negative DFT band gaps and Penn-like models.

Currently, PROFiT-Net includes only interactions between
neighboring atoms and uses a simple sequential CNN model.
However, it can be further enhanced by increasing the
dimension of the bond matrix to include many-body
interactions and/or by refining the CNN architecture (such
as customizing the convolution layer or autoencoder). These
are areas we plan to develop in the future. Our model also
maintains consistent accuracy across data sets of different sizes,
suggesting that techniques like multifidelity or transfer learning
could further enhance its performance. PROFiT-Net is a
versatile tool capable of predicting various material properties
represented by single scalar values. It exhibits favorable
behaviors such as fidelity tolerance and scalability. Thus, we
envisage that it can be widely used to predict new functional

Figure 5. Top five property pairs with the highest feature importance
for (a) ε, (b) PBE(+U)-level DFT band gaps (Eg

PBE), (c) HSE06-level
DFT band gaps (Eg

HSE06), (d) experimental band gaps (Eg
exp), (e)

PBE(+U)-level DFT formation enthalpies per atom (ΔHf
PBE), and (f)

experimental formation enthalpies (ΔHf
exp).

Figure 6. (a) Scatter plots of dielectric constants (ε) versus
experimental band gaps (Eg

exp) predicted by using PROFiT-Net.
Those of CGCNN, MEGNet, and OGCNN are represented in Figure
S10. Pearson correlation coefficient (R) of predicted (b) ε, (c) ΔHf

exp,
and (d) Eg

exp between PROFiT-Net and other DL models including
CGCNN (green), MEGNet (red), and OGCNN (brown). A total of
154,718 different materials were queried in the Materials Project.18

Each scatter plot is shown in Figure S11. The slopes, intercepts, and
Pearson correlation coefficients of the linear fits are tabulated in Table
S11.
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materials, leading to advancements in material design and
discovery.
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