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Bayesian error analysis of Rutherford backscattering spectra
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Abstract

Rutherford backscattering spectrometry has been used to obtain quantitative and traceable information about homogeneous films.
However, inhomogeneous films cannot be analysed with the same manual calculation methods, We have previously demonstrated that a
machine algorithm using simulated annealing is available to extract depth profiles from spectra obtained from such inhomogeneous samples.
In this work we show how a Bayesian error analysis can be used to construct error bounds on these depth profiles reflecting the uncertainty
introduced by Poisson noise on the dara. Hence we present, for the first time, RBS analysis which not only gives fully quantitative depth
profiles for complex samples, but also reliable estimates of the errors due to collection statistics on these profiles. © 1999 Elsevier Science

S.A. All rights reserved.
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1. Introduction

Rutherford backscattering spectrometry (RBS) is a well
established and powerful technique for determining the
elemental composition of thin films using an energetic
light ion beam (say, 1.5 MeV 4He+’). Because the data
analysis is very simple in principle, RBS can be used to
obtain quantitative and traceable information about homo-
geneous films. It has been used in a round robin exercise
organised by the National Physical Laboratory [1] to char-
acterise the 100 nm Ta,Os standard for electron spectro-
scopy. Another recent example of the use of RBS in
standards work is the characterization of a secondary
implanted standard by the Institute for Reference Materials
and Measurements in Geel [2]. We demonstrated 1% accu-
racy recently in the determination of the In content of
InGaAs films [3]. )

However, most interesting real films are not homoge-
neous. For example, for a metal film on silicon some of
the silicon may move toward the surface which would
mean that scattering events from it will be added to the
scattering from the metal. In such a case it is usually very
hard to devise a computational method transparent enough
to obtain depth profiles from the spectrum whose accuracy
is traceable. Moreover, most spectra obtained from real
samples are sufficiently complex to preclude manual extrac-
tion of any accurate depth profiles at all in a reasonable time.
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We have recently demonstrated that the general inverse
RBS problem (obtaining the depth profile from the spec-
trum) can be efficiently solved by machine using a simulated
annealing {SA) algorithm [4-107. This work is illustrative of
very hard cases that baffle analysts using traditional manual
methods.

In this paper we extend this work to show how the compu-
tational method is able to generate information about the
errors involved in the depth profiles obtained. These meth-
ods based on Bayesian statistics have previously been
applied to RBS data, but not to solve the general inverse
problem, and not in a way which is convenient for routine
analysis [11-13]. We are concerned to give analysts a tool
which they can use routinely to determine the reliability of
the information they extract from the data.

2. Bayesian inference

Suppose that the result of an RBS analysis of a sample
gives a spectrum which we denote by X = (X;,....X,)
where £ is the number of channels in the spectrum. This
spectrum can be viewed as a stochastic vector, at least in
the sense that it has been contaminated with noise and/or
modelling errors. However we assume an underlying deter-
ministic model which depends on a set of quantities
O =(6,....,6,). These parameters include some over
which we have experimental control, such as the initial
beam energy, incident angle, and detector solid angle, It
also contain parameters about which we would like to
learn, these include the number of layers and the proportions
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Fig. 1. (a) Theoretical depth profile used to generate the test RBS spectra
analysed, with (b) high, (c) medium, and (d) low level of noise, Confidence
limits { * 1 standard deviation) of the posterior probability distribution
obtained with MCMC for the different elements. Oxygen was only allowed
to exist at the surtuce of the sample, and Co and Fe were restricted to depths
below 2% 10'* at./em®.

of elements in each layer. By combining the standard theory
of RBS (see e.g. Ref. [14]) and statistical models of the error
mechanisms we can connect X and ® into a single statistical
model, which we denote by p(X|®) where p is a probability
density function for the observations X given the parameters
0. The Bayesian inference problem is to infer information
about the parameters ® given a statistical model and the

observed X. There is an exact mathematical answer to this
problem given by Bayes’ theorem [15] which states

p(BX) = p(X|O)p(O)p(X) - i (1)

Using a standard theory of RBS we have a deterministic ]
model which takes the parameter © to an expected spec-
trum. We call this the forward model. Let us denote the
forward model by the function w(®) = (u,,.... 1) where
u; 18 the expected signal in channel i/ of the spectrum.
Assuming for simplicity independent Poisson noise on the
channels gives B . I

p(X|6) = Iexp(—p1(0)) (O /X! )

The second factor we need, the so called prior distribu-
tion we calculate by conditioning on the number of layers in
the sample to get

p(O) = Zp(@"|n)p(n) (3)

where ©" are the parameters when there are exactly n layers.
The simplest possibility for a prior on # is to have a uniform
distribution on {l,....Max} where Max is some pre-set
maximum number of layers. We finally define the prior on
0" conditional on a fixed n. In general we have little or no
prior knowledge of the proportion of each element in each
sample hence we will assume a uniform distribution on the
simplex which defines the proportions. Finally, p(X) does
not depend on @ and can be treated as a constant. N

3. Calculating the posterior: MCMC

Having found the mathematical form of the distribution
p(®]X) the following algorithm makes computation possi-
ble. It is an example of 4 so-called Markov chain Monte -
Carlo (MCMC) algorithm, in which we construct 4 sequence
of parameter estimates ©,,0,,...,0,. We proceed from 0, to
©,., by considering a candidate  generated from some
random distribution g(®,,i). Note that the candidate posi-
tion depends only on the current value of the sequence. Thus
we are in fact constructing a Markov chain. The candidate ¢/
is then accepted (ie. ©,., is set to ¥) with pfd?ia_bil’i’i}_
@(®;,¢) according to the Metropolis criterion

(0, ) = min{[p(¥X)¢(h. O)V[P(O1X)a(0. Y] 1} ¢

General theory [15,16] tells us that the secggncg%
produced from such an algorithm will be a Markov chain,
and that its equilibrium distribution will be the required
posterior distribution p(®|X), which contains all the infor-
mation about the sample given the data, With it, it is possi-
ble to calculate the mean solution {©) as well as confidence
intervals given by the standard deviation o (©).

4, Results and discussion

We have previously studied the iron-cobalt silicide
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Fig. 2. Theoretical test RBS spectra (points) and simulated annealing fit
(solid line) obtained for the structure shown in Fig. 1, for (a) high, (b)
medium, and (c¢) low level of noise, corresponding to beam fluence values
of 0.1, 1 and 10 pC, respectively. The partial fitted spectra due to the Fe
(long dash), Co (small dash), and surface O are also shown as dashed lines.

system with SA [4,7]. The system is interesting because the
similar masses of the neighbouring Fe and Co leads to
extensively superimposed signals in the RBS spectra.
While SA was able to effectively deconvolute the Fe and
Co depth profiles, the problem of confidence limits on the fit
remained open and will be studied here using MCMC.

We generated theoretical RBS spectra, from the depth
profile shown in Fig. 1a, to which we added different levels
of random statistical noise on each spectrum, obtaining the
resulis shown in Fig. 2. The spectra correspond to beam
fluence values of 0.1, 1, and 10 uC for a solid angle of
2.6 msr and the experimental conditions given in Ref. [7].
The solid lines in Fig. 2 are the fits obtained with SA, during
which some constraints were imposed on the parameter

space: oxygen was only allowed to exist at the surface of
the sample, as it comes from a surface oxide. and Co and Fe
were restricted to depths below 2 X 10'® at./fem®,

Fig. 1b-d shows the confidence limits (*1 standard
deviation) of the posterior probability distribution for the
different elements as obtained with MCMC for the three
levels of noise (Markov chain length 3000} where the
restrictions to the parameter space described above were
enforced. In all cases the profiles maich the original profile,
within error. As expected, the confidence intervals become
narrower for higher statistics. The standard deviation for Fe
(at 0.4 X 10" at./em® depth) is 5.9, 3.0 and 0.9 at.% for the
low, medium and high statistics data, respectively. It should
be noted, however, that the confidence intervals shown are
due only to the statistical error in X, as other sources of
uncertainty were not introduced in Eq. (2). For instance,
we have previously shown that a 1% uncertainty in the
value of the beam fluence can lead to an error in the Fe
and Co of up to 20% [7], but less than 3% in the Si. Other
uncertainties in the forward model w(®), due, e.g. to the
limited accuracy of the experimentally determined stopping
powers, would also lead to increased error.

Fig. 3 shows the confidence limits {*1 standard devia-
tion) of the posterior probability distribution for the different
elements, as obtained for the low statistics spectrum, after
lifting all restrictions to the parameter space. Below 2 X
10'® at/em? the results for Fe and Co are equivalent to
those obtained enforcing the parameter space restrictions.
This means that for Fe and Co the problem is well deter-
mined, i.e. unambiguous, up to that depth. That is due to the
fact that the concentration of Fe and Co in that depth range
is determined from the data between channels 280 and 380,
in which no counts due to Si or O can exist due to the
backscattering kinematics. However, the counts in channel
270 can be due to Si at the surface, or metal at about 3 X
10" at./em®. Thus the amount of Si is ambiguous; taking
into account the higher cross sections for heavier elements,
about 5 at.% metal at 3 X 10"® at./em® leads to about 20 at.%
Si at 0.5x 10" at/em® (instead of the original 70 at.%).
These results mean that the data are consistent with up o
10 at.% metal below 3 X 10'® at./em?, which leads to a large
ambiguity on the concentration of Si and O due to the lower
sensitivity of RBS for light elements.

5. Conclusions

We demonstrate that statistical bounds on the variability
of the solution obtained by simulated annealing due to
counting noise can be obtained with a sound and robust
mathematical procedure using Markov chain Monte Carlo
integration. We show incidentally that for the case studied
the solution is quite well defined even for very short coliec-
tion times. '

We also demonstrate that the intrinsic ambiguity of RBS
is not well characterised by the methods we present, since



34 N.P. Barradas et al. / Thin Solid Films 343-344 (1999) 31-34 ’ . S

100 d S H
g
]
=
Q
o]
=~
Yt
i~
g
S
=
0 . ; — : .
0 500 .. 1000 ... 1500 2000
Depth (10* at/em?)
100 " - ——
)
© 80 d"-- T e
T b N {0 ]
® BOH N NAT e ’ —ee 4
i LSO 4 PRI A NP
= K A AR
‘\I ',”\‘ A [0 7
2 40 J_‘ls'—', ',yj_{'____‘ \",' IR -~
E Ty sF
2 201 K040 v
< e A v - N = o
AR Fe Co w
__NV\\ Y/"‘ = ) =7 -

0 T
0 2000 4000 6000 8000 10000
Depth (10" at/cm?®)

Fig. 3. Confidence limits {*1 standard deviation) of the posterior prob-
ability distribution obtained with MCMC for the different elements, for the
high noise test spectrum. No restrictions were imposed on any element.

the variance of © reflects only the density of states in the
solution space. Many similar solutions may exist which
correctly yield the observed spectrum, but there may be a
few quite different solutions which are equally good,
although outside the calculated standard deviation. We
believe that this problem is usually easily overcome by
simply restricting the solution space searched: this would

be equivalent to introducing more specific priors, but a
proper treatment of this is outside the scope of this paper.
As in our previous treatment [4], theoretical spectra were
used for simplicity, since artefacts of errors in the forward
model (such as stopping power uncertainty and multiple and
plural scattering) do not have to be considered. .
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