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Abstract

An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic sub-
stances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in
muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one
standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Developments from artificial intelligence like artificial
neural networks, ANN, can be regarded as an engineering
procedure emulating the human brain activity. It can be
defined as a set of non-linear and non-stationary intercon-
nection of elemental processes able to carry out at least one
of the following functions: training, remembrance and gen-
eralization, or, abstraction of substantial properties. The
fundamentals of the ANN technique have been described
elsewhere [1,2] and several commercial and free codes are
accessible nowadays.
0168-583X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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Applications of ANN to atomic and nuclear physics has
increased during the last two decades [3–13], mainly in
problems related to nuclear reactors. The most used para-
digms in artificial intelligence applications to nuclear sci-
ence and particle physics are the expert system, genetic
algorithms, fuzzy system, neural networks and hybrid sys-
tem. Some applications to a, c and X-ray spectra have been
reported in the last decade [14–17]. Further application of
ANN in other cases where strong non-lineal effects are
present like in the spectral analyses generated in analytical
techniques like PIXE [18,19] and XRF (X-ray fluorescence)
[20,21] are scarce and in BIXE spectra (beta induced X-ray
emissions) remain unexplored [22,23]. In [24,25] a review of
applications of ANN and its potentialities in atomic and
nuclear physics is shown.

A case where the potentialities of ANN seem to be most
convenient is in the repetitive analysis of many spectra pre-
senting similar patterns with specific differences. A typical
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Fig. 1. Flux diagram showing the relationship between ANN inputs and
the classical PIXE experimental steps.
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case is presented in the elemental analysis of samples of
unknown composition using energy dispersive XRF spec-
troscopy. Their respective spectra present peaks of known
energy but different intensities containing information
required to the evaluation of the elemental concentrations
in each sample.

PIXE is a well established analytical method that allows
the determination of concentrations in the range of mg/kg
[26,27]. One of the factors that define the quality of the
analysis is the ability to determine the correct amount of
counts in each peak. Usually this is accomplished by the
use of some reliable computer code, like AXIL [28].

Additional inputs of the proper physical parameters
involved in the irradiation like beam intensity, detector effi-
ciency, geometrical parameters, etc., permit the determina-
tion of the elemental concentrations.

The purpose of this work has been to take advantage of
the non-linear properties and the neural network ability to
learn and generalize together with its fast response. Sam-
ples of fish tissues were irradiated with protons to deter-
mine their elemental concentrations as part of a study of
metal bioaccumulation by fishes. Several PIXE spectra
were obtained from muscle, liver and gills samples of Cyp-

rinus Carpio. A part of the samples set was analyzed by the
standard method and later used to train the ANN for fur-
ther calculations. Without assumptions about the distribu-
tion of data it was possible to detect elements (P, S, K, Ca,
Fe, Zn) and determine their concentration in these organic
samples obtained from fishes captured in Rapel Lake in
Chile.
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Fig. 2. Typical PIXE spectrum of a liver sample from fish C. carpio, using
2.0 MeV protons. The solid line is a fit given by AXIL.
2. Analysis

The analysis was performed in two phases. First, one in
which PIXE spectra were used to train the ANN and a sec-
ond one in which the application of ANN independently
produced results that were compared with those obtained
by standard methodology.

PIXE spectra from muscle, liver and gills samples were
used together with proper experimental data like average
beam intensity, irradiation times, target masses, plus
cross-sections values and detection system sensitivity, to
determine elemental concentrations. As mentioned above,
the amount of counts in each peak is currently used to
determine the elemental concentration. Here, a slightly dif-
ferent approach has been used based on the fact that ANN
application disregards additive constants. Then considering
the observation that the background contribution at the
peak is rather constant for equal irradiation times, the
use of the maximum value at the peak channel as an input
in ANN calculations, simplifies data handling and provides
equivalent results as those obtained when the full area is
used. These values and the already known concentrations
were given as an input and output data respectively in
the ANN training phase. Fig. 1 shows the flux diagram fol-
lowed in each phase.
2.1. PIXE analysis

The PIXE applications were performed at the Center for
Experimental Physics, Faculty of Sciences, University of
Chile, using the KN 3750 Van de Graaff electrostatic accel-
erator. Twenty one biological samples from a (C. Carpio)
fish were prepared by digestion with HNO3 and deposited
on 8.4 lm thickness Kapton films for later irradiation with
a 2.0 MeV proton beam. The X-ray photons emitted
from the samples were detected by a Si(Li) detector
(FWHM = 180 eV at 5.9 keV) coupled to conventional
electronic units and MCA. The detector was placed at
90� angle with respect to the incident beam. A typical spec-
trum from a liver sample is shown in Fig. 2, where the char-
acteristic Ka and Kb peaks appear over the continuous
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background. These X-ray spectra were analyzed using
AXIL [28] code provided by IAEA, obtaining the net num-
ber of counts in each peak for later use. Certified foils from
Micromatter for a number of elements are currently used
for quality assurance.

In order to get the elemental concentration it is required
to know the absolute sensitivity of the spectroscopic sys-
tem, which can be expressed in terms of fundamental
parameters as:

JðEÞ ¼ N 0

e � A � rKðZÞ � xKðZÞ � gKi
ðZÞ � eðEÞ; ð1Þ

where rK (cm2), xK and gKi
(i = a,b) are, respectively, K-

shell ionization cross-section, fluorescence yield and line
fraction. e(E) is the absolute efficiency function of the
detector, N0 is the Avogadro number, e (C) is the elemental
charge and A is the atomic mass of the Z-element.

Here the sensitivity was determined by a set of N-stan-
dard thin film targets from Micromatter irradiated under
similar conditions as the biological ones [29]. Certified sam-
ples of Al, SiO, CuS, KCl, CaF2, Cr, Fe, ZnTe and CdSe
were used to obtain the efficiency parameter J expressed
per unit of charge and per unit of mass surface density in
the energy region of interest (i.e. 2–8 keV). The J(E) fitting
function was obtained from the N-standard samples Jl

(l = 1,2, . . .,N) through the equation.

J l ¼ JðEl
Ki
Þ ¼ Il

stðEKi
Þ

Ql � ml
st

; ð2Þ

where Il
st represents the net number of counts in the Ki

peak (i = a,b), Ql is the collected charge at the Faraday
cup and ml

st the mass per unit area. The fitted function
J(E) is shown in Fig. 3.

The concentration of the Z-element, CZ, defined as the
quotient between the elemental mass and the total mass
of the sample, was calculated using the following equation:

CZ ¼
IZðEKi

Þ
M � Q � JðEKi

Þ ; ð3Þ
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Fig. 3. Ka sensitivity curve obtained using thin film standards from
Micromatter. The solid line is a parametric fit, from [30].
where IZ, Q and M have the same meanings as before but
now in reference to the sample and J(E) (g�1 cm2 C�1) was
defined above.

The results obtained by the PIXE procedure are consid-
ered as ‘‘expected concentrations’’ when ANN are used.

2.2. ANN analysis

A feed-forward ANN has been used in the learning
phase, directly from concentration data obtained in real
time. The ANN was trained with the well known back
propagation algorithm in order to learn first and then
reproduce the process in order to obtain the concentration
of certain chemical elements in some organic samples. The
neural network feeds with input parameters like:

(a) The proton beam intensity impinging the sample.
(b) Mass and surface area of the sample.
(c) Spectral information of the detected X-ray.

For each element, an ANN with three layers (input,
hidden, output) was used to generate the mapping of the
p-input parameters (in this work p = 4, indicated in (a),
(b) and (c) above and specified below) to the q-output
parameters, here represented by the concentration of the
element in the sample (q = 1). The mapping is carried out
using the weights of the neuron connections, computed in
the supervised training process.

For training, the method for least square error back
propagation, the most often used supervised learning algo-
rithm, was used. Supervised learning means that for each
example, both the input and the expected output (the out-
put that ANN must produce) are known; so, training the
ANN means that the computed outputs must be the closest
to the expected outputs for each example. From a general
point of view we consider a neural network with p-inputs,
one hidden layer with L-neurons (L = 4 in this case) and
one output node. The value of the error Ek on an input/
output training pattern (xk,yk) is defined by:

Ek ¼ 1=2 yk � Ok
� �2

; ð4Þ

where Ok is the computed output generated when the kth
input vector xk ¼ ðxk

1 . . . xk
pÞ is presented to the network

and the transformation is conducted by the transfer sig-
moid function and where yk is the expected value for the
output corresponding to input xk.

Ok ¼ 1þ exp �Whk
� �� ��1

; ð5Þ

where hk ¼ ðhk
1 . . . hk

LÞ is the output vector of the hidden
layer and W is the weight vector of the output neuron:

hk
l ¼ 1þ exp �

X
wlxk

� �� ��1

; ð6Þ

and where wl denotes the weight vector of the lth hidden
neuron, (l = 1, . . .,L); and the overall measure of the error
is
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Fig. 4. NN topology for application with four inputs (m,S,Q,n), four
hidden neurons and one output neuron (concentration – C).
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Fig. 5. Elemental concentration obtained from the three samples of the
test set using ANN (CNN) and PIXE (Cexp), are shown for gill, liver and
muscle respectively for each element.
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E ¼
X

Ek: ð7Þ

The rule for changing weights following presentation of
input/output pair k is given by the gradient descent meth-
od, i.e. the quadratic error function is minimized by using
the iteration process.

After the training phase was completed, a test procedure
to verify that the neural net effectively did learn the lessons
was performed.

To determine the concentrations of the elements: P, S,
K, Ca, Fe and Zn in the sample, a three-layers feed-for-
ward ANNs, with 4 inputs, 4 hidden neuron and 1 output
(4–4–1), was used for each element. The inputs, m, S, Q

and n (see Fig. 4) are, respectively, the mass and area of
the sample, the collected charge and the number of counts
in the maximum of the Ka peak in the considered element.

For each of the 21 available samples, we consider five
values for the ANN training, four (m,S,Q,n) as input
training (xk in Eqs. (4)–(7)), and one (elemental concentra-
tion) as expected output (yk in the equations). To train the
ANN, first the initial weights are fixed in a random way.
Then each sample (the 4 input values) is introduced in
the ANN, which compute the output (Ok in the above
equations), it is say, the actual concentration value. This
value is compared with expected concentration value and
according to the error, the weights are modified so that
both values (computed concentration and expected concen-
tration) become the closest possible.

Usually the training set is defined experimentally. In this
case due to the rather low number of available samples,
according to the experience of the authors a training set
of 18 spectra randomly selected and a testing set of three
spectra were used in each ANN. Results confirmed that
this selection was adequate.

An ANN for each the six considered elements, whit sim-
ilar topology, was trained in an independent manner and
the sigmoid activation function was used in the hidden
and output layers. The topology and the parameters used
(learning rate, momentum, error value, etc.) were obtained
in an experimental way.

3. Results and discussion

Without missing generality in this ANN application
only the six major elements, P, S, K, Ca, Fe and Zn
observed in the spectra were considered. Trace elements,
although important for other studies, were not statistically
useful for the present purpose. Elemental concentrations
were calculated by standard PIXE methodology in the
way described above. These results were considered as
‘‘expected concentrations’’. As for PIXE uncertainties,
overall values ranged between 6% and 10%. The major
source of error was the determination of the total mass sur-
face density in each sample. This was due to the type of the
materials analysed, fish tissue, which turn to form non-uni-
form layers on the backing Mylar foil.

In turns, a feed-forward neural network, with definite
topology was independently trained in parallel with the
backward error propagator to determine the elemental
concentrations of interest in the organic samples of this
study. The same six major elements common to the three
type of samples, gill, liver and muscle, were considered.

A total of 21 spectra (seven gills, seven liver, seven mus-
cle) provided 21 peaks for each element. Of these, 18 spec-
tra were randomly selected (the same spectra for each
element) and used in training the network and three were
used in testing it. All training cases were learned correctly
by each of the six neural networks.

Only for one test case (corresponding to element Zn) the
ANN predictions are out of one standard deviation from
the PIXE results. Bioaccumulation of Zn in muscle tissue
is low and its concentration is close to the detection limit
for this element and therefore larger uncertainties are
expected affecting the ANN predictions. The agreement is
illustrated in Fig. 5, where concentrations are shown for
each element in samples of gill, liver and muscle, from
the test set.

To asses the goodness of the ANN method in providing
concentrations values, a comparison with PIXE results was
done and is shown in Fig. 6. A linear regression calculation
for results from all elements, in the test and training sets,
was performed. Correlations factor, r2, of 0.86 and 0.99
were obtained for the test and training sets, respectively.
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4. Conclusions

The main purpose of this work was to explore the appli-
cation of ANN for a fast analysis of PIXE spectra in a
study of bioaccumulation of metals. It has been proved
that this methodology provides results as good as those
obtained by one of the already accepted methods. Even
though the number of cases was rather limited, the decision
to use independent neuronal topologies for each element
working in parallel, provided reliable results. Surely, the
experimental results would been improved with a greater
number of cases to use as training and test sets, but with
the 21 available cases, the results are enough good. So,
the use of ANN as a reasonable alternative for the elemen-
tal concentration determination in PIXE procedure, has
been established. In addition, this ANN application proved
to be fast enough as to predict that the analysis of a great
number of samples can be accomplished in few minutes,
avoiding the direct participation of the analyst in each
one. Once the ANN has been trained, its use become fast
thus permitting the automation of PIXE spectra analysis
and reducing costs and time.
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